(完整版)线性代数第五章特征值、特征向量试题及答案
- 格式:doc
- 大小:1.84 MB
- 文档页数:22
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT-因此,A 的属于1λ的所有特征向量为:TTk k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任意常数)。
第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
第五章 相似矩阵与二次型一、是非题〔正确打√,错误打×〕1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. <√>2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. <√>3.n 阶正交阵A 的n 个行<列>向量构成向量空间n R 的一个规X 正交基. <√>4.若A 和B 都是正交阵,则AB 也是正交阵. <√>5.若A 是正交阵,Ax y =,则x y =. <√>6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. <×>7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. <×>8.n 阶矩阵A 在复数X 围内有n 个不同的特征值. <×>9. 矩阵A 有零特征值的充要条件是0=A . <√>10.若λ是A 的特征值,则)(λf 是)(A f 的特征值<其中)(λf 是λ的多项式>.<√>11.设1λ和)(212λλλ≠是A 的特征值,1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. <×>12.T A 与A 的特征值相同. <√>13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. <×>14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足:B PAP =-1,则A 与B 有相同的特征值. <√>15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. <√>16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. <√>17.实对称矩阵A 的非零特征值的个数等于它的秩. <√>18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. <√>19.实对称阵A 与对角阵 Λ相似:Λ=-AP P 1,这里P 必须是正交阵. <×>20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. <×>21.任一实对称矩阵合同于一对角矩阵. <√>22.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为标准型.<×>23.任给二次型Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化为规X 型.<×>二、填空题1.向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,求两向量2α=____,3α=____,使321,,ααα两两正交.Ans:()T 1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α 2.若A 是正交阵,即E A A T =,则=A _____. Ans:1或-13.设⎪⎪⎪⎭⎫ ⎝⎛--=121001065A ,则A 的特征值为________.<-1,2,3>4.n 阶方阵A =)(ij a 的特征值为n λλλ,,,21 ,则=A ___________,=+++nn a a a 2211_____________.5.设二阶行列式A 的特征值为2,3,λ,若行列式482-=A ,则____=λ.<-1>6.设三阶矩阵A 的特征值为-1,1,2,则=--E A 14_____,=-+*E A A 23______. Ans:-15,97. 已知⎪⎪⎪⎭⎫ ⎝⎛=x A 00110002的伴随矩阵*A 有一特征值为2-,则=x -1或2 .8. 若二阶矩阵A 的特征值为1-和1,则2008A =E .9.当x =___时,矩阵⎪⎪⎪⎭⎫ ⎝⎛=01010110x A 能对角化.<-1,见教材>10.设A 为2阶矩阵,1α,2α是线性无关的二维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为_______.提示:由⎪⎪⎭⎫ ⎝⎛=1200)()(2,12,1ααααA 知A 与⎪⎪⎭⎫ ⎝⎛1200相似,⎪⎪⎭⎫ ⎝⎛1200非零特征值为1.11、设A 为正交矩阵,λ为A 阵的特征值,则λA E -=_____0___.12、设3阶方阵A 的特征值为互不相同,若0=A 行列式则A 的秩为_____.<2>13.<3分>二次型32312123222144)(x x x x x x x x x a f +++++=经过正交变换Py x =可化为标准型216y f =,则a =_____.<a =2>14.二次型()222123123121323,,222f x x x x x x x x x x x x =+++++的秩是______; 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a .15.已知二次型yz xz xy z y x a f 222)(222-++++=,a 的取值为_____时f 为正定, a 的取值为_____时f 为负定. <1;2- a a >16. 二次型322322214332x x x x x f +++=经过正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x ______⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形=f _______,从而1),,(321=x x x f 表示的曲面类型是_________. Ans:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3212121212132100001y y y x x x ,23222152y y y f ++=,椭球面 三、 选择题 1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一特征值为< C >.<A> 22a ; <B>22a - ; <C>22-a ; <D>22--a .2.若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有<A >个线性无关.<A> 3个; <B> 1个; <C> 2个; <D> 4个.3.特征值一定是实数的矩阵是<B ><A>正交矩阵 <B> 对称矩阵<C>退化矩阵 <D>满秩矩阵4. 设α是矩阵A 对应于其特征值λ的特征向量,则其对角化矩阵AP P 1- 对应于λ的特征向量为< D >.<A>α1-P ; <B>αP ; <C>αT P ; <D>α .5. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是< C > .(A) A 的特征值全为正;<B> A 的一切顺序主子式全为正; <C> A 的元素全为正;<D>对一切n 维列向量x ,Ax x T 全为正.6.下列各式中有<A >等于22212136x x x x ++.<A> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛21213421,x x x x ; <B> ()112213,23x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; <C> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--21213511,x x x x ; <D> ()112211,43x x x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 7.矩阵〔 C 〕是二次型22212136x x x x ++的矩阵. <A>⎪⎪⎭⎫ ⎝⎛--3111;<B>⎪⎪⎭⎫ ⎝⎛3421;<C>⎪⎪⎭⎫ ⎝⎛3331; <D>⎪⎪⎭⎫ ⎝⎛3151;8.设A 、B 为同阶方阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,且BX X AX X T T =,当〔 D 〕时,B A =. <A>)()(B r A r =; <B>A A =T ;<C>B B =T ; <D>A A =T 且B B =T ;9.A 是n 阶正定矩阵的充分必要条件是〔 D 〕. <A>0>A ; <B>存在n 阶矩阵C,使C C A T =; <C>负惯性指标为零; <D>各阶顺序主子式均为正数; 10.1)()()(),,(22221,21--++-+-=n a x a x a x x x x f n n 是< B >. <A>非正定二次型 ;<B>正定; <C>负定; <D>不定;11.正定二次型),,(,21n x x x f 的矩阵应是〔 B 〕.<A>非对称且左右对角线上元素都是正数;<B>对称且各阶顺序子式都是正数;<C> 对称且所有元素都是正数;<D> 对称且矩阵的行列式是正数;12.使实二次型 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x k k k k k z y x 0101),,( 正定的参数k 应该是< C >.<A>0>k ;<B>02>k ;<C>不存在; <D>0<k ;13.阶矩阵A 为正定的充分必要条件是< C >. <A>0>A ; <B> 存在n 阶矩阵,使A=C C T ;<C> A 的特征值全大于0; <D> 存在n 维列向量α≠0,有0>ααA T ;14.次型232221321)2()1()1()(x k x k x k x x x f -+-++=,当< B >时是正定的.<A>k>0; <B> k>2; <C> k>1;<D> k=1;15.设A ,B 为正定矩阵,则< C >.<A>AB 、B A +都正定; <B>AB 正定,B A +不一定正定; <C>AB 不一定正定,B A +正定; <D>AB 和B A +都不一定正定;16.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是<C> <A>实对称矩阵 <B> 正定矩阵<C>可逆矩阵 <D>正交矩阵17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B ,则A 与B<A>合同, 且相似. <B> 合同, 但不相似 .<C>不合同, 但相似. <D> 既不合同, 又不相似.[ B ]18. 设矩阵⎪⎪⎭⎫ ⎝⎛=1221A , 则在实数域上与A 合同矩阵为〔 D 〕 <A> ⎪⎪⎭⎫ ⎝⎛--2112 <B>⎪⎪⎭⎫ ⎝⎛--2112 <C> ⎪⎪⎭⎫ ⎝⎛2112<D> ⎪⎪⎭⎫ ⎝⎛--1221 19.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是<A> 01≠λ <B> 02≠λ <C> 01=λ <D>02=λ [ B ]20.n 阶实对称矩阵A 为正定矩阵的充分必要条件是 < C > <A> 所有k 级子式为正),,2,1(n k = <B>A 的所有特征值非负 <C> 1-A 为正定矩阵 <D>秩<A >=n。
《线性代数》单元自测题答案第五章 方阵的特征值与特征向量一、 填空题:1.0; 2.36-; 3.6,111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭; 4.4-; 5.ξ1-p . 二、 单选题:1.B ; 2.A ; 3.D ; 4.D ; 5.D .三、计算题1.解:因A 的特征多项式22)1)(1()1)(1(0101010-+=--=---=-λλλλλλλλA E 所以A 的特征值为11-=λ,132==λλ当11-=λ时,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----000101020101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,则属于11-=λ的全体特征向量为11ξk )0(1≠k 。
当132==λλ时,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000101000101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,则属于132==λλ的全体特征向量为3322ξξk k + (2k ,3k 不同时为0)。
2. 解 因A 的特征多项式)1()1()1)(1(32401022322-+=-+=+--+--=-λλλλλλλλA E所以A 的特征值为,121-==λλ13=λ.对于121-==λλ,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000224000224321x x x 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛-=0211ξ,⎪⎪⎪⎭⎫ ⎝⎛=2012ξ,由于二重特征根121-==λλ的代数重数等于几何重数,故知A 可对角化.对于13=λ,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000424020222321x x x 得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,取()⎪⎪⎪⎭⎫ ⎝⎛-==120002111321ξξξP ,则有⎪⎪⎪⎭⎫ ⎝⎛--=Λ=-1000100011AP P .因此P 为所求的相似变换矩阵,Λ即为所求的对角矩阵.3.解:(1)由已知得4,,5-y 是A 的特征根,于是有 05242424254=----=--x A E , 解得4=x . 从而有 )4()5(1242424212+-=---=-λλλλλλA E ,故可得5=y .(2)当521==λλ时,解0)5(=-X A E ,得基础解系()()T T 101,02121-=-=ξξ.当43-=λ时,解0)4(=--X A E ,得基础解系()T 2123=ξ. 取()⎪⎪⎪⎭⎫ ⎝⎛--==210102211,,321ξξξP , 则Λ=-AP P 1。
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。
一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.若A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001000210100002B x 与相似,则x=( ) A .-1 B .0 C .1D .2答案:B2.若A 相似于⎥⎦⎤⎢⎣⎡-=Λ1001,则|A-E|=( ) A .-1 B .0 C .1D .2答案:B3.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( )A .4B .3C .2D .1答案:B4.设3阶实对称矩阵A 的特征值为λ1=λ2=0,λ3=2,则秩(A )=( ) A .0 B .1 C .2 D .3 答案:B5.设A 为n 阶正交矩阵,则行列式|A 2|=( ) A .-2 B .-1 C .1 D .2 答案:C6.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|B -1|=( ) A .121 B .71 C .7 D .12 答案:A7.设A 为3阶矩阵,且已知|3A+2E |=0,则A 必有一个特征值为( ) A .23- B .32- C .32 D .23答案:B8.设A 与B 是两个相似n 阶矩阵,则下列说法错误..的是( ) A.B A =B.秩(A )=秩(B )C.存在可逆阵P ,使P -1AP=BD.λE-A =λE-B答案:D9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( )A.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001 B.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011 C.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001 D.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101答案:A10.设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是( )A .E-AB .-E-AC .2E-AD .-2E-A 答案:D11.设λ=2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于( )A .41B .21C .2D .4 答案:A12.若A 与B 相似,则( ) A.A ,B 都和同一对角矩阵相似 B.A ,B 有相同的特征向量 C.A -λE =B -λE D.|A |=|B | 答案:D13.下列向量中与α=(1,1,-1)正交的向量是( ) A. 1α=(1,1,1) B. 2α=(-1,1,1) C. 3α=(1,-1,1) D. 4α=(0,1,1)答案:D14.若2阶矩阵A 相似于矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-3202,E 为2阶单位矩阵,则与矩阵E -A 相似的矩阵是( )A .⎪⎪⎪⎭⎫ ⎝⎛4101B .⎪⎪⎪⎭⎫⎝⎛--4101C .⎪⎪⎪⎭⎫ ⎝⎛--4201D .⎪⎪⎪⎭⎫ ⎝⎛---4201答案:C15.下列矩阵是正交矩阵的是( ) A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001B.21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101C.⎥⎦⎤⎢⎣⎡--θθθθcos sin sin cosD.⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--336102233660336122 答案:A16.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .A E - C .A E -- D .A E -2 答案:D17.已知矩阵A 与对角矩阵D =⎪⎪⎭⎫ ⎝⎛--100010001相似,则A 2=( ) A .A B .D C .E D .-E答案:C18.设矩阵A =⎪⎪⎭⎫⎝⎛001010100,则A 的特征值为( )A .1,1,0B .-1,1,1C .1,1,1D .1,-1,-1答案:B19.设A 为n (n ≥2)阶矩阵,且A 2=E ,则必有( ) A .A 的行列式等于1 B .A 的逆矩阵等于E C .A 的秩等于n D .A 的特征值均为1答案:C20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛3000130011201111,则A 的线性无关的特征向量的个数是( ) A .1 B .2C .3D .4 答案:C21.设向量α=(4,-1,2,-2),则下列向量是单位向量的是( ) A .31α B .51α C .91α D .251α 答案:B22.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T答案:A23.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ 3 = ( )A.4B.5C.6D.7答案:B24.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( ) A.A T B.A 2 C.A -1 D.A*答案:A7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.249.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2B.0C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
1122,.m m A k kAa b aA bEAA A A Aλλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 α是A 关于λ的特征向量,则α也是上述多项式的特征向量。
推论:(1)对于数量矩阵λE ,任何非零向量都是它的特征向量,特征值都是λ.(2)上三角、下三角、对角矩阵的特征值即对角线上的各元素.(3)n 阶矩阵A 与他的转置矩阵TA 有相同的特征多项式,从而有相同的特征值,但是它们的特征向量可能不相同.例 题一、特征值、特征向量1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=200031141,201034011B A 且A 的特征值为2和1(二重), 那么B 特征值。
解:TA A ,具有相同的特征值.T AB =, 所以B 和A 具有相同的特征值,B 的特征值为: 2和1(二重)。
2.设A 是n 阶方阵, *A 为A 的伴随矩阵, |A | = 5, 则方阵*AA B =的特征值是___, 特征向量是______.解:因为 E A A A AA ||**==, 所以对于任意n 维向量αααα||||*A E A AA ==有 所以|A | = 5是*AA B =的特征值, 任意n 维向量α 为对应的特征向量。
3.三阶方阵A 的特征值为1, -1, 2, 则2332A A B -=的特征值为_______. 解:42322,5)1(3)1(2,11312232323=⋅-⋅-=-⋅--⋅-=⋅-⋅,3.设A 为n 阶矩阵,0A ≠,*A 为A 的伴随矩阵,E 为n 阶单位矩阵,若A 有特征值λ,则*2()A E +必有特征值解:因为AA A =•,•A 的特征值为λA,所以上式的特征值为:1)(2+λA4.设n 阶矩阵A 的特征值为1, 2, …, n , 试求|2|E A +.解:因为A 的特征值为1, 2, …, n , 所以2A + E 的特征值为),,2,1(12n i i =+. 所以∏=+=+ni i E A 1)12(|2|。
5. 零为矩阵A 的特征值是A 为不可逆的(A) 充分条件 (B) 必要条件 (C)充要条件 (D) 非充分、非必要条件 解:假设n λλλ,,,21 为A 的所有特征值, 则n A λλλ 21||=. 所以 0为A 的特征值⇔A 可逆 (C)为答案.6. 设21,λλ是矩阵A 的两个不同的特征值, βα与是A 的分别属于21,λλ的特征向量, 则有βα与是(A) 线性相关 (B) 线性无关 (C) 对应分量成比例 (D) 可能有零向量 7. 设21,λλ是矩阵A 的两个不同的特征值, ηξ,是A 的分别属于21,λλ的特征向量,则(A) 对任意0,021≠≠k k , ηξ21k k +都是A 的特征向量. (B) 存在常数0,021≠≠k k , ηξ21k k +是A 的特征向量. (C) 当0,021≠≠k k 时, ηξ21k k +不可能是A 的特征向量.(D) 存在惟一的一组常数0,021≠≠k k , 使ηξ21k k +是A 的特征向量. 解:21λλ≠为A 的二个相异的特征值, 所以存在非零向量ηξ,, 满足ηληξλξ21,==A A . 而且ηξ,线性无关.假设存在 λ 满足: )()(2121ηξληξk k k k A +=+ 所以 ηλξληλξλ212211k k k k +=+, 即0)()(222111=-+-ηλλξλλk k k k因为 ηξ,线性无关, 所以 111k k λλ-= 0, 1λλ=; 221k k λλ-= 0,2λλ=. 和21λλ≠矛盾. 所以(C)为答案.8. 设0λ是n 阶矩阵A 的特征值, 且齐次线性方程组0)(0=-x A E λ的基础解系为21ηη和, 则A 的属于0λ的全部特征向量是(A) 21ηη和 (B) 21ηη或 (C)2211ηηC C +(21,C C 为任意常数) (D) 2211ηηC C +(21,C C 为不全为零的任意常数)解. 因为齐次线性方程组0)(0=-x A E λ的基础解系为21ηη和, 所以方程组0)(0=-x A E λ的全部解为2211ηηC C +(21,C C 为任意常数),但特征向量不能为零, 则A 的属于0λ的全部特征向量是: 2211ηηC C +(21,C C 为不全为零的任意常数), (D)为答案. 9.设1=λ是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10410213t A 的特征值,求:(1)t 的值;(2) 对应于1=λ的所有特征向量。
解:因为1=λ,t t E A ⇒=⋅⇒=-000为任意实数。
(2) 1,0=≠λt 时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00100021000142021000142021400420214t E A λ所以2)(=-E A r λ. 方程组0)(=-x E A λ基础解系所含解向量个数为1个相应的方程组为⎩⎨⎧==-02132x x x . 取2,123==x x 得. 所以解向量为()T 1,2,0, 对应于1=λ的全部特征向量为()Tk 1,2,0当1,0==λt 时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-000210001000210004000210214000420214E A λ所以 2)(=-E A r λ,方程组0)(=-x E A λ基础解系所含解向量个数为1个相应的方程组为⎩⎨⎧=-=020321x x x . 取2,123==x x 得. 所以解向量为()T1,2,0,对应于1=λ的全部特征向量为()Tk 1,2,0。
10.设A 是3阶矩阵,且矩阵A 的各行元素之和均为5,求矩阵A 的特征值、特征向量。
[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1115111A 11题答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1111112135212λb a 031=-=-=b a λ 11. 已知()T1,1,1-=α是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2135212b a 的特征向量 ,求b a ,和α的特征值。
12.设A 是n 阶矩阵,满足A 2=A ,求矩阵A 的特征值。
解:()0002=⇒=-⇒=-A E A A A A 或者1001==⇒=-λλ或者E A13.设向量()Tn αααα 21,=,()n b b b 21,=β都是非零向量,且满足条件0=βαT ,记n 阶矩阵βαT A =,求:(1)2A (2)求A 的特征值与特征向量。
解:(2) 设λ为特征值,x Ax λ= ,x 不为零,x Ax x A 22λλ==任意n 个线性无关的特征向量都是它的特征向量,可选n 个单位向量。
14. 设矩阵15310a c Ab ca -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦,其行列式1A =-,又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1)Tα=--,求a b c 、、和0λ的值 解:因为λλAAA A =⇒=••,所以A 的特征值01λλ-=αλααλααλα0001-=⇒=⇒=•A AA A ,所以α也是A 的特征向量。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1111111013510λa c b c a1,3,0=-==λb c a 又因为1-=A ,代入可得:2==c a15. 设()Ta 1,0,1-=,矩阵Taa A =,n 为正整数,则=-n A aE解:,()2,002321===⇒=-⋅=-λλλλλλλE A16. 若3维列向量βα,满足2=βαT,其中T α为α的转置,则矩阵Tβα的非零特征值为:解:()2,,332211321321=++=⎪⎪⎪⎭⎫⎝⎛βαβαβαβββααα,TT T βαβαβα2=⋅2222=⇒=⇒=⋅λλλA A A 二、相似矩阵定义1: 设A , B 都是n 阶矩阵, 若有n 阶可逆矩阵P , 使P -1AP =B 。