2.1 人教版七年级上册数学第二章《整式的加减》 第2课时 整式 专题训练含答案及解析
- 格式:doc
- 大小:116.00 KB
- 文档页数:10
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版七年级数学上册课时练 第二章 整式的加减 2.2整式的加减一、选择题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=22.下列计算正确的是( )A .224x x x +=B .2352x x x +=C .3x ﹣2x=1D .2222x y x y x y -=-3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --4.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .325.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( )A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔6.某天数学课上老师讲了整式的加减运算,小颖回家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:5(2a 2+3ab-b 2)-(-3+ab+5a 2+b 2)=5a 2■-6b 2+3被墨水弄脏了,请问被墨水遮盖住的一项是()A .+14abB .+3abC .+16abD .+2ab 7.有两桶水,甲桶装有a 升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的13倒给甲桶,假定桶足够大,水不会溢岀.我们将上述两个步骤称为一次操作,进行重复操作,则( ) A .每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B .每操作一次,甲桶中的水量都会减小,但永远倒不完C .每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D .每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少8.已知m)n 为常数,代数式2x 4y)mx |5-n|y)xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个9.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x )y 有关B .与x 有关C .与y 有关D .与x )y 无关10.有理数m)n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A .mB .2n -mC .-mD .m -2n 二、填空题11.给定一列按规律排列的数:32-,1,710-,917,…,根据前4个数的规律,第2020个数是_____. 12.若(x -1)4(x+2)5=a 0+a 1x+a 2x 2+…+ a 9x 9,求:a 1+a 3+a 5+a 7+a 9=________.13.观察下列单项式:0,23x -,38x ,415x -,524x ⋯按规律写出第n 个单项式是________.14.若3132m a b -与52114n a b +的和仍是单项式,则56m n +的值为______ ) 15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12)16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3)5)7)8)9)11)12)13)15)16)17)19)20)21)23)24)25)…则第2 013个“智慧数”是______.三、解答题16.已知关于,x y 的多项式212x my +-与多项式36nx y -+的差中不含有关于,x y 的一次项,求m n mn ++的值. 17.有这样一道题“计算:(2m 4-4m 3n -2m 2n 2)-)m 4-2m 2n 2)+)-m 4+4m 3n -n 3)的值,其中14m =)n=-1.”小强不小心把14m =错抄成了14m =-,但他的计算结果却也是正确的,你能说出这是为什么吗? 18.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x 条(x >2).(1)若该客户按方式一购买,需付款 元(用含x 的式子表示);若该客户按方式二购买,需付款 元.(用含x 的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.19.如图,数轴上有三个点A ,B ,C ,表示的数分别是﹣4,﹣2,3.(1)若使C 、B 两点的距离是A 、B 两点的距离的2倍,则需将点C 向左移动 个单位;(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒a 个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t 秒:①点A 、B 、C 表示的数分别是 、 、 (用含a 、t 的代数式表示);②若点B 与点C 之间的距离表示为d 1,点A 与点B 之间的距离表示为d 2,当a 为何值时,5d 1﹣3d 2的值不会随着时间t 的变化而改变,并求此时5d 1﹣3d 2的值.20.已知210x x +-=,求322002200120032007x x x +--的值.21.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.22.有一道题目,是一个多项式减去2146x x +-,小强误当成了加法计算,结果得到223x x -+,正确的结果应该是多少?23.在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究–猜想归纳–逻辑证明–总结应用.下面我们也来像数学家们那样分四步找出这两个代数式的关系:对于代数式()()a b a b +-与22a b -)()1特值探究)当2a =)0b =时,()()a b a b +-=________)22a b -=________当5a =-)3b =时,()()a b a b +-=________)22a b -=________()2猜想归纳:观察()1的结果,写出()()a b a b +-与22a b -的关系:________)()3逻辑证明:如图,边长为a 的正方形纸片剪出一个边长为b 的小正方形之后,剩余部分(即阴影部分)又剪拼成一个矩形(不重叠无缝隙),请你说说是如何用这个图来得出()2中的关系?()4总结应用:利用你发现的关系,求:①若226a b -=,且2a b +=,则a b -=________)②()()()()()248162121212121+++++的值.(提示:你可能要用到公式()m n mn a a =) 【参考答案】1.B 2.D 3.C 4.A 5.D 6.A 7.D 8.C 9.D 10.C 11.4041408040112.-813.()()1(1)11n n n n x ---+14.1615.2 68716.-717.才会出现小强计算结果也是正确的18.(1)200x+1200;180x+1440;(2)按方案一购买较合算;(3)先按方案一购买2套西装获赠送2条领带,再按方案二购买3条领带. 所需费用为1600+200×3×90%=2140(元),是最省钱的购买方案.19.(1)1或9(2)①﹣4﹣at ;﹣2+2t ;3+5t ;②19.20.-2008.21.(1)8b 2+4ab ;(2)422.2915x -+)23.()14)4)16)16) ()2 ()()22a b a b a b +-=-)()3 略;()4①3)②3221-.。
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第二章《整式的加减》章节达标检测考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022•义乌市模拟)下列各组式子中,是同类项的为( )A.2a与2b B.a2b与2ab2C.2ab与﹣3ba D.3a2b与a2bc解:A.所含字母不相同,不是同类项,故A不符合题意;B.所含字母相同,但相同字母指数不相同,不是同类项,故B不符合题意;C.所含字母相同,相同字母的指数相同,是同类项,故C符合题意;D.所含字母不尽相同,不是同类项,故D不符合题意;故选:C.2.(2分)(2021秋•曲阳县期末)下列各组中的两个单项式,属于同类项的是( )A.6xy和6xyz B.x3与53C.2a2b与﹣ab2D.0.85xy4与﹣y4x解:A、6xy和6xyz中所含字母不同,不是同类项,故本选项不符合题意;B、x3与53中所含字母不同,不是同类项,故本选项不符合题意;C、2a2b与﹣ab2中所含字母相同,但相同含字母的指数不同,不是同类项,故本选项不符合题意;D、0.85xy4与﹣y4x中所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意.故选:D.3.(2分)(2021秋•雁峰区校级期末)下列各组代数式中,不是同类项的是( )A.2与﹣2B.﹣5xy2与3xy2C.﹣3t与20t D.2a2b与﹣b2a解:A、2与﹣2是同类项,故A不符合题意;B、﹣5xy2与﹣3xy2是同类项,故B不符合题意;C、﹣3t与20t是同类项,故C不符合题意;D、2a2b与﹣b2a不是同类项,故D符合题意.故选:D.4.(2分)(2021秋•长安区期末)某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为( )A.元B.元C.0.3a元D.0.7a元解:某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为:a÷(1﹣30%)=a÷0.7==(元),故选:B.5.(2分)(2022•泰州)下列计算正确的是( )A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2解:A、原式=5ab,符合题意;B、原式=3y2,不符合题意;C、原式=8a,不符合题意;D、原式不能合并,不符合题意.故选:A.6.(2分)(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为( )A.﹣8B.6C.﹣6D.8解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.7.(2分)(2021秋•未央区校级期末)下列结论中,正确的是( )A.单项式的系数是3,次数是2B.多项式2x2+xy+3是四次三项式C.单项式a的次数是1,系数为0D.﹣xyz2单项式的系数为﹣1,次数是4解:∵单项式的系数是,次数是3,∴A不合题意.∵多项式2x2+xy+3是二次三项式,∴B不合题意.∵单项式a的次数为1,系数为1.∴C不合题意.∵﹣xyz2是系数为﹣1,次数为4的单项式.故D符合题意.故选:D.8.(2分)(2021秋•江阴市期末)某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10%B.增加4%C.减少4%D.大小不变解:长方形草地的长为x,宽为y,则改造后长为1.3x,宽为0.8y,则改造后的面积为:1.3x×0.8y=1.04xy,所以可知这块长方形草地的面积增加4%.故选:B.9.(2分)(2021秋•石狮市期末)若(2x﹣1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a,则a6﹣a5+a4﹣a3+a2﹣a1的值为( )A.0B.1C.728D.729解:把x=0代入,得:(﹣1)6=a把x=﹣1代入得:[2×(﹣1)﹣1]6=a6﹣a5+a4﹣a3+a2﹣a1+a,(﹣3)6=a6﹣a5+a4﹣a3+a2﹣a1+1,∴a6﹣a5+a4﹣a3+a2﹣a1=728,故选:C.10.(2分)(2021秋•镇江期末)代数式kx+b当中,当x取值分别为﹣1,0,1,2时,对应代数式的值如下表:x…﹣1012…kx+b…﹣1135…则﹣2k﹣b的值为( )A.﹣1B.2C.﹣3D.﹣5解:∵x=2时,代数式2k+b=5,∴﹣2k﹣b=﹣(2k+b)=﹣5.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•杨浦区二模)如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为 4m 元.解:∵这种商品的单价为32÷8=4元,∴这种商品m千克的售价为4m元.故答案为:4m.12.(2分)(2021秋•井研县期末)多项式﹣2x﹣x3+4x2+1,按x的升幂排列为 1﹣2x+4x2﹣x3 .解:把多项式﹣2x﹣x3+4x2+1按x的升幂排列为1﹣2x+4x2﹣x3,故答案为:1﹣2x+4x2﹣x3.13.(2分)(2021秋•余干县校级期末)当n= ±2 时.2x|n|与﹣3x2是同类项.解:∵2x|n|与﹣3x2是同类项,∴|n|=2,解得n=±2.故答案为:±2.14.(2分)(2021秋•龙泉驿区校级期末)如果关于x,y的多项式xy|a|﹣+1是三次三项式,则a的值为 ﹣2 .解:∵关于x,y的多项式xy|a|﹣+1是三次三项式,∴|a|=2且a﹣2≠0,解得,a=﹣2.故答案为:﹣2.15.(2分)(2021秋•南关区校级期末)某种商品每件的进价为m元,标价为n元,后来由于该商品积压,于是将此商品按标价的70%销售,则该商品每件利润为 (0.7n﹣m) 元.解:由题意得:该商品的每件利润为:70%n﹣m=(0.7n﹣m)元,故答案为:(0.7n﹣m).16.(2分)(2021秋•潍坊期末)已知m﹣n=2,mn=﹣5,则3(mn﹣n)﹣(mn﹣3m)的值为 ﹣4 .解:原式=3mn﹣3n﹣mn+3m=3m﹣3n+2mn,∵m﹣n=2,mn=﹣5,∴原式=3(m﹣n)+2mn=3×2+2×(﹣5)=6﹣10=﹣4,故答案为:﹣4.17.(2分)(2021秋•大名县期末)如图,阴影部分面积用代数式表示为 a+b﹣6 .解:阴影部分的面积为3(a﹣2)+2b﹣×3a﹣×2b=3a﹣6+2b﹣a﹣b=a+b﹣6,故答案为:a+b﹣6.18.(2分)(2021秋•武功县期末)一个两位数,十位上的数字与个位上的数字之和是5,个位上的数字是a (a<5),则这个两位数为 50﹣9a .(用含a的代数式表示)解:由题意得,这个两位数为10(5﹣a)+a=50﹣10a+a=50﹣9a.则这个两位数是50﹣9a.故答案为:50﹣9a.19.(2分)(2021秋•镇平县校级期末)下面是一个简单的数值运算程序,当首先输入a=﹣2时,计算出正数为止,那么输出的结果是 2 .解:当a=﹣2时,则3a+5=﹣1<0;当a=﹣1时,则3a+5=2>0,故答案为:2.20.(2分)(2021秋•延庆区期末)如下表是某面包店的价目表.小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个,他挑选了香蒜面包.如果小明原本的结账金额为a元,则小明后来的结账金额为 a 或(a+1.5)或(a+2.5) 元.(用含a的式子表示)面包品种甜甜圈芒果面包香蒜面包切片面包奶香片奶油面包单价5元6元7.5元11元12元12元解:小明原本拿了4个面包最低价钱是5元,小明后来的结账金额为a+7.5﹣5=(a+2.5)元;或小明原本拿了4个面包最低价钱是6元,小明后来的结账金额为a+7.5﹣6=(a+1.5)元;或小明原本拿了4个面包最低价钱是大于等于7.5元,小明后来的结账金额为a元.故小明后来的结账金额为a或(a+1.5)或(a+2.5)元.故答案为:a或(a+1.5)或(a+2.5).三.解答题(共8小题,满分60分)21.(4分)(2021秋•井研县期末)化简:2x+(5x﹣3y)﹣(﹣5y+3x).解:原式=2x+5x﹣3y+5y﹣3x=4x+2y.22.(4分)(2021秋•龙泉驿区校级期末)先化简,再求值:3x2y2﹣5xy2+(4xy2﹣9)+2x2y2,其中,y =2.解:原式=3x2y2﹣5xy2+4xy2﹣9+2x2y2=5x2y2﹣xy2﹣9,当,y=2时,原式===45+6﹣9=42.23.(7分)(2021秋•雁峰区校级期末)已知M=3x2﹣2xy+y2,N=x2﹣xy+y2.(1)化简:M﹣2N;(2)当x=﹣1,y=2时.求M﹣2N的值.解:(1)M﹣2N=(3x2﹣2xy+y2)﹣2(x2﹣xy+y2)=3x2﹣2xy+y2﹣2x2+2xy﹣2y2=x2﹣y2.(2)当x=﹣1,y=2时,原式=(﹣1)2﹣22=1﹣4=﹣3.24.(8分)(2021秋•房县期末)下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.(1)填空:①以上化简步骤中,第一步的依据是 乘法分配律 ;②以上化简步骤中,第 二 步开始不符合题意,这一步错误的原因是 去括号没变号 ;(2)请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.解:(1)①以上化简步骤中,第一步的依据是乘法分配律;故答案为:乘法分配律.②以上化简步骤中,第二步开始出现不符合题意,这一步错误的原因是去括号没变号;故答案为:二,去括号没变号.(2)原式=3x2y+2xy﹣(2xy+2x2y)=3x2y+2xy﹣2xy﹣2x2y=x2y,当x=﹣1,y=﹣时,原式==﹣.25.(8分)(2021秋•雄县期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)5与 ﹣3 是关于1的平衡数;(2)7﹣2x与 2x﹣5 是关于1的平衡数(用含x的式子表示);(3)若a=2x2﹣3(x2+x),b=4﹣3x+(6x+x2),判断a与b是否是关于1的平衡数,并说明理由.解:(1)∵5+(﹣3)=2,∴5与﹣3是关于1的平衡数.故答案为:﹣3;(2)由已知条件可知,2﹣(7﹣2x)=2x﹣5,∴7﹣2x与2x﹣5是关于1的平衡数,故答案为:2x﹣5;(3)a与b不是关于1的平衡数,理由如下:∵a+b=(2﹣3+1)x2+(﹣3﹣3+6)x+4=4≠2,∴a与b不是关于1的平衡数.26.(10分)(2021秋•昌吉市校级期末)北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只6元,超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款.现某顾客要到该超市购买茶壶5只,茶杯x只(茶杯数多于5只).(1)若x=10,按方案①购买需付款 130 元,按方案②购买需付款 144 元.(2)若该顾客按方案①购买,需付款 6x+70 元(用含x的代数式表示);若该顾客按方案②购买,需付款 5.4x+90 元(用含x的代数式表示).(3)若x=40,请通过计算说明此时按哪种方案购买较为合算?(4)若x=40,综合①②两种优惠方案,你能设计一种更省钱的购买策略吗?请写出来.解:(1)当x=10时,方案①需付款:20×5+6×(10﹣5)=100+30=130(元);方案②需付款:0.9(20×5+10×6)=144(元).故答案为:130,144;(2)购买x只茶杯,5只茶壶,方案①需付款:20×5+6×(x﹣5)=6x+70.方案②需付款:0.9×(20×5+6x)=5.4x+90.故答案为:6x+70;5.4x+90;(3)当x=40时,方案①需付款:6x+70=6×40+70=310(元).方案②需付款:5.4x+90=5.4×40+90=306(元).310>306,∴方案②更合算;(4)先按方案①购买5只茶壶,赠送5只茶杯,花钱100元,再按方案②购买剩下的35只茶杯花钱35×6×0.9=189元,共计花费289元.27.(9分)(2021秋•长海县期末)一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?解:(1)图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).∵铺地砖每平方米的平均费用为80元,∴铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.28.(10分)(2021秋•长海县期末)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠九折优惠低于300元但不低于100元300元或超过300元其中300元部分给予九折优惠,超过300元部分给予八折优惠(1)某顾客一次性购物500元,他实际付款 430 元;(2)若顾客在该超市一次性购物x元,当x小于300但不小于100时,他实际付款0.9x元,当x大于或等于300时,他实际付款 (0.8x+30) 元(用含x的式子表示);(3)如果某顾客两次购物货款合计620元,第一次购物的货款为a元(100<a<300),某顾客两次购物实际付款多少元(用含a的式子表示)?解:(1)实际付款:300×90%+(500﹣300)×80%=270+160=430(元),故答案为:430;(2)实际付款:300×90%+(x﹣300)×80%=270+0.8x﹣240=(0.8x+30)元,故答案为:(0.8x+30);(3)解:0.9a+0.8(620﹣300﹣a)+270=0.9a+256﹣0.8a+270=(0.1a+526)元.答:两次购物张某实际付款(0.1a+526)元.。
七年级数学上册——整式的加减专题练习(满分120分,90分钟完卷)学校:班级:七()班姓名:___________1.化简:(1)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y)(4分); (2)y-{y-2x+[5x-3(y+2x)+6y]} (4分).2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(7分)3.先化简,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.(6分)4.求4x2+3xy+2y2与x2-5xy+2y2的差.(6分)5.已知A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.(7分)6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.(6分)1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为()(4分)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是()(4分)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=()(4分)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是() (4分)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于() 4分)A.9a-4B.9a-1C.9a-2D.9a-36 (2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(4分)A.A>BB.A=BC.A<BD.无法确定7.(4分)(2016·湖南株洲中考)计算:3a-(2a-1)=.8.(4分)(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=.9.(4分)(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为.10.(4分)2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.(6分)12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(8分)(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?13. (2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(8分)(1)求A; (2)若|a+1|+(b-2)2=0,计算A的值.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(9分)(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.15.已知A=2x2-3x-1,B=x2-3x-5, (1)计算2A+3B; (2)通过计算比较A与B的大小.(9分)七年级数学上册——整式的加减专题练习(参考答案)1.化简:-2(x+y)-5(x-y)+4(x+y)+3(x-y); (2)y-{y-2x+[5x-3(y+2x)+6y]}.x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y) (2)y-{y-2x+[5x-3(y+2x)+6y]}=3(x-y)-5(x-y)+3(x-y)-2(x+y)+4(x+y)=y-[y-2x+(5x-3y-6x+6y)]=(x-y)+2(x+y)=x-y+2x+2 =y-(y-2x+5x-3y-6x+6y)y=3x+y. =y-y+2x-5x+3y+6x-6y=3x-3y.2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(2m-4)岁,小华的年龄为岁,则这三名同学的年龄的和为m+(2m-4)+=m+2m-4+(m-2+1)=4m-5(岁).答:这三名同学的年龄的和是(4m-5)岁.,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.y+2x)-[3x-(x-y)]-2x=3y+6x-3x+x-y-2x=2(x+y).因为x,y互为相反数,所以x+y=0.所以3(y+2x)-[3x-(x-y)]-2x=2(x+y)=2×0=0.4x2+3xy+2y2与x2-5xy+2y2的差.x2+3xy+2y2)-(x2-5xy+2y2)=4x2+3xy+2y2-x2+5xy-2y2=3x2+8xy.A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.A+B-(A-B)=4A+B-A+B=3A+2B.∵∴∴3A+2B=5x2+xy+5y2=(x2+3xy+4y2)+(4x2-2xy+y2)=2+3=5.∴4A+B-(A-B)=5.6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)=(2m-m+4m+6-1)x+6=(5m+5)x+6.因为它的值与x的取值无关,所以5m+5=0,所以m=-1.因为m2+(4m-5)+m=m2+5m-5,所以当m=-1时,m2+(4m-5)+m=(-1)2+5×(-1)-5=-9.1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为(B)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是(A)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=(C)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是(D)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于(A)A.9a-4B.9a-1C.9a-2D.9a-36.导学号19054071(2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是(A)A.A>BB.A=BC.A<BD.无法确定7.(2016·湖南株洲中考)计算:3a-(2a-1)=a+1.8.(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=1.9.(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为-3x2y+xy2.10.导学号19054072(2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为8.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.A+B=9x2-2x+7,B=x2+3x-2,∴A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9.∴A-B=8x2-5x+9-(x2+3x-2)=8x2-5x+9-x2-3x+2=7x2-8x+11.12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?解(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品后的总销售额为(88a+88b)元;(2)根据题意,得88a+88b-100a=-12a+88b(元),则销售100件这种商品后共盈利(-12a+88b)元.13.导学号19054073(2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A;(2)若|a+1|+(b-2)2=0,计算A的值.解(1)由题意得A=2(-4a2+6ab+7)+7a2-7ab=-8a2+12ab+14+7a2-7ab=-a2+5ab+14.(2)根据题意及绝对值与平方的非负性可得a=-1,b=2,故A=-a2+5ab+14=3.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.解(1)A-2B=2x2+3xy+2y-1-2=2x2+3xy+2y-1-2x2+2xy-2x+1=5xy+2y-2x;(2)由(1)得A-2B=5xy+2y-2x=(5y-2)x+2y,因为A-2B的值与x的取值无关,所以5y-2=0,即y=.15.导学号19054074已知A=2x2-3x-1,B=x2-3x-5,2A+3B; (2)通过计算比较A与B的大小.解(1)因为A=2x2-3x-1,B=x2-3x-5,所以2A+3B=2(2x2-3x-1)+3(x2-3x-5)=4x2-6x-2+3x2-9x-15=7x2-15x-17;(2)因为A-B=(2x2-3x-1)-(x2-3x-5)=2x2-3x-1-x2+3x+5=x2+4≥4>0,所以A>B.。
1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
图 1 图2人教版七年级上册 第二章《整式的加减》综合测试题一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是( ).A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是( ).A .15x +是多项式B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ).A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为( ).A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为( ).A .5B .6C .7D .85.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为( ).A .7B .9C .-7D .-96.友龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算a ⊗b =2ab 2+a 2b . 若a =-2,b=3,则输出的值为( ).A .-9B .-12C .-24D .67.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( ).A .2的倍数B .3的倍数C .5的倍数D .9的倍数8.已知y=x -1,则(x -y)2+(y -x)+1的值为( ).A .-1B .0C .1D .29.已知有理数a 、b 、c 在数轴上的位置如图1所示,且a 与b 互为相反数,那么| a -c |-| b +c |的值为( ).A .0B .1C .a +bD .2c 10.如图2,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为( ).A .2a -3bB .4a -8bC .2a -4bD .4a -10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a 元收费;图4 图3 若超过100度,那么超过部分每度按b 元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a 3b n +1与单项式-3a m -2b 2的和仍是单项式,则3m -4n=_________.13.如图3,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x 、y 、z 的代数式表示)14.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______.18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元.三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b . (1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B+C 的结果却是一样的,你认为这可能吗?说明你的理由.222(3)51x x x --=-+第1个 第2个 第3个 第4个22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股.(1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)填写下表:(2)归纳猜测第n 个图形棋子的个数(用含n 的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x -3x 2+5x 3-7x 4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n (n 为正整数)项是什么?(3)当x =1时,求它的前2016项的和.参考答案一、选择题1.B .提示:列代数式表示“a 与4的积的平方”为 (4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1. 3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6.5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9.6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数.8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1.9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a+c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a -3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元. 12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1.13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12. 15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元.三、解答题19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5.(2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17.20.(1)由于31222-+=,所以12b =. (2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-. 当32a =-,b =12时,原式=-8×(32-)×12=6. 21.可能. 理由如下:A -B +C=(-6x 2+4x)-(-x 2-3x)+(5x 2-7x +4)=-6x 2+4x +x 2+3x +5x 2-7x +4=4.由于化简后的结果中不含有字母x ,所以无论x 取何数值,其结果都是4.22.(1)王家持股:(2a 2+1)-(a -1)=2a 2-a +2.李家持股:(5a 2-3a +3)-(2a 2+1)-(2a 2-a +2)=a 2-2a .(2)当a =300时,a 2-2a = 3002-2×300=89400.所以李家能获得的钱数为:89400×15%×20=268200(元).23.(1)填表如下:(2)3(n+1);(3)同意建军的说法. 理由如下:当n=671时,3(n+1)= 3×(671+1)=2016. 所以第670个图形有2016颗黑色棋子. 24.(1)第100项是-199x100;(2)第n(n为正整数)项是(-1)n+1(2n-1)x n;(3)当x=1时,原式=1-3+5-7+…+4029-4031=(1-3)+(5-7)+…+(4029-4031)=-2×1008=-2016.。
第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.单项式的系数是( )A.B.πC.2D.3.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+14.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,35.下列各式按字母x的降幂排列的是()A.-5x2-x2+2x2B.ax3-2bx+cx2C.-x2y-2xy2+y2D.x2y-3xy2+x3-2y26.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.多项式x|m|-(m-4)x+7是关于x的四次三项式,则m的值是( )A.4B.-2C.-4D.4或-48.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c -a|-|b-c|=( )A.-3a B.2c-a C.2a-2b D.b9.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2B.10C.7D.610.已知M=4x2-x+1,N=5x2-x+3,则M与N的大小关系为( )A.M >N B.M<N C.M=N D.无法确定11.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab +5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是( )A.+2ab B.+3ab C.+4ab D.-ab12.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-4二、填空题13.单项式的系数是__,次数是__.14.请写出一个系数是-2,次数是3的单项式:________________.15.三个连续奇数,中间的一个是n,则这三个数的和是________.16.在代数式3xy2,m,6a2-a+3,,2,4x2yz-xy2,,中,单项式有________个,多项式有________个,整式有________个.17.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为_____.三、解答题18.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)19.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3(x2﹣5x+1)﹣2(3x﹣6+x2)20.已知:关于x的多项式2ax3-9+x3-bx2+4x3中,不含x3与x2的项.求代数式3(a2-2b2-2)-2(a2-2b2-3)的值.21..设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,(1)求B-2A(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.22.观察下列三行数:0,3, 8,15,24, …2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和23.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.参考答案1.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】试题分析:单项式的系数是:.故选D.考点:单项式.3.B【解析】多项式0.3x2y﹣2x3y2﹣7xy3+1,有四项分别为:0.3x2y,﹣2x3y2,﹣7xy3,+1,最高次为5次,是五次四项式,故A正确;四次项的系数是-7,故B错误;常数项是1,故C正确;按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1,故D正确,故符合题意的是B选项,故选B.4.B【解析】多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选:B.5.C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列.【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选:C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.6.B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.7.C【解析】分析:根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.详解:∵多项式x|m|−(m−4)x+7是关于x的四次三项式,∴|m|=4,-(m-4)≠0,∴m=-4.故选:C.点睛:本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:b<a<0<c,∴a+b<0,c﹣a>0,b-c<0,则原式=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故选A.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.9.A【解析】【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.10.B【解析】分析:用N-M,去括号合并同类项后,根据差的符号情况可判断M与N的大小关系.详解:M=4x2-x+1,N=5x2-x+3,∴N-M=(5x2-x+3)-(4x2-x+1)=5x2-x+3-4x2+x-1=x2+2≥0,∴M<N.故选B.点睛:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【详解】依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选A.【点睛】本题考查了整式的加减运算.解决此类题目的关键是运用移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.C【解析】分析:注意认真观察图形,根据图形很容易发现规律:第n个图形是4n+1,可得答案..详解:第一个图需要5根.第二个图需要9根.比第一个图多4根.依此类推,第n个图中需要5+4(n-1)=4n+1.故选:C.点睛:此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.13.4【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【详解】单项式的系数是:,次数是:1+3=4.故答案为:;4.【点睛】本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.3n【解析】【分析】中间数为n,分别表示出其它两个数,求和即可.【详解】由题意得,其它两个数为:n-2,n+2,则三个数的和=n-2+n+n+2=3n.故答案为:3n.【点睛】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.16.336【解析】分析:根据单项式、多项式、整式的概念解答即可.详解:3xy2,m,2是单项式;6a2-a+3,4x2yz-xy2,是多项式;3xy2,m,6a2-a+3,2,4x2yz-xy2,是整式;,的分母中含有字母,不是整式(是分式).故答案为:3,3,6.点睛:本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为:118.x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.19.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+1520.【解析】【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求值即可.【详解】∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=.【点睛】本题考查了整式的加减和求值,解答此题的关键是能根据整式的加减法则进行化简,难度不21.(1)﹣7x﹣5y;(2)-1.【解析】分析:(1)、根据多项式的减法计算法则得出答案;(2)、根据非负数的性质得出x 和y的值,然后根据B-2A=a进行代入得出a的值.详解:解:(1)、B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y(2)、∵|x﹣2a|+(y﹣3)2=0 ∴x=2a,y=3又B﹣2A=a,∴﹣7×2a﹣5×3=a,∴a=﹣1.点睛:本题主要考查的是多项式的减法计算法则,属于基础题型.在解答这个问题的时候我们一定要注意去括号的法则.22.(1)规律是:,,,,…;(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍;(3)【解析】【分析】通过观察归纳可得:第①行数规律是序数平方减1,即,, ,,….通过观察归纳可得: 第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.【详解】(1)规律是:,,,,….(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍,(3)=【点睛】本题主要考查数字规律,解决本题的关键是要熟练掌握分析数字规律的方法.23.2【解析】【分析】原式去括号合并得到结果,即可作出判断.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。
第2章《整式的加减》选择题精选1.(2019秋•南海区期末)若代数式x﹣2y+8的值为18,则代数式3x﹣6y+4的值为()A.30B.﹣26C.﹣30D.342.(2019秋•肇庆期末)多项式x2y+3xy﹣1的次数与项数分别是()A.2,3B.3,3C.4,3D.5,33.(2019秋•黄埔区期末)下列式子中,与﹣3a2b是同类项的是()A.﹣3ab2B.﹣ba2C.2ab2D.2a3b4.(2019秋•封开县期末)计算正确的是()A.3ab﹣2ab=ab B.3ab﹣2ab=1C.3ab+2ab=5a2b2D.3ab+2ab=55.(2019秋•揭阳期末)裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元6.(2019秋•斗门区期末)已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3B.﹣3C.1D.﹣17.(2019秋•龙华区期末)若单项式3x m+3y3﹣axy n+1=4xy3,那么()A.a×m=2B.a×n=2C.m×n=2D.m n=﹣48.(2019秋•白云区期末)已知一个单项式的系数是3,次数是5,则这个单项式可能是()A.5x2y B.﹣3x5C.3x2y5D.3x2y39.(2019秋•白云区期末)若某矿山2018年采矿量为n吨,经过技术改良后,预计2019年采矿量将比2018年增产30%,则2019年该矿山的预计采矿量是()吨.A.(1﹣30%)n B.(1+30%)n C.n+30%D.30%•n10.(2019秋•揭阳期末)若﹣ab2m与2a n﹣1b6是同类项,则m+n=()A.3B.4C.5D.711.(2019秋•光明区期末)下列各式计算正确的是()A.32=6B.(−12)3=18C.3a+b=3ab D.4a3b﹣5ba3=﹣a3b12.(2019秋•番禺区期末)若x=2时,多项式mx3+nx的值为6,则当x=﹣2时,多项式mx3+nx的值为()A.﹣6B.6C.0D.2613.(2019秋•番禺区期末)下列说法中,正确的是()A.若x,y互为倒数,则(﹣xy)2020=﹣1B.如果|x|=2,那么x的值一定是2C.与原点的距离为4个单位的点所表示的有理数一定是4D.若﹣7x6y4和3x2m y n是同类项,则m+n的值是714.(2019秋•海珠区期末)已知5x1+m y4与x3y4是同类项,则m的值是()A.3B.2C.5D.415.(2019秋•禅城区期末)下列运算正确的是()A.2a2b﹣a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab16.(2019秋•南沙区期末)下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.z2+4z3=5z517.(2019秋•普宁市期末)下列各式一定成立的是()A.3(x+5)=3x+5B.6x+8=6(x+8)C.﹣(x﹣6)=﹣x+6D.﹣a+b=﹣(a+b)18.(2019秋•顺德区期末)某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是()A.1010B.4C.2D.119.(2019秋•顺德区期末)如果a﹣3b=2,那么2a﹣6b的值是()A.4B.﹣4C.1D.﹣120.(2019秋•高明区期末)下列计算正确的是()A.﹣32=﹣6B.3a2﹣2a2=1C.﹣1﹣1=0D.2(2a﹣b)=4a﹣2b21.(2019秋•高明区期末)如果2a m b3与﹣5a4b n是同类项,则m﹣2n=()A.5B.﹣5C.2D.﹣222.(2019秋•东莞市期末)已知2x3y2和﹣2x m y2n是同类项,则式子m+n的值是()A.5B.﹣5C.4D.623.(2019秋•花都区期末)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.3m+3n=6mnC.4xy﹣3xy=1D.2m2n﹣2mn2=024.(2019秋•花都区期末)如果单项式﹣2x a+2y3与3xy b﹣1是同类项,那么ab的值为()A.4B.﹣4C.8D.﹣825.(2019秋•荔湾区期末)单项式﹣9xy2z3的系数和次数分别是()A.﹣9,6B.9,6C.﹣1,6D.﹣9,326.(2019秋•花都区期末)已知x﹣2y=3,则代数式2x﹣4y﹣12的值为()A.6B.﹣6C.9D.﹣927.(2019秋•香洲区期末)把一个大正方形和四个相同的小正方形按图①、①两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .a +2bB .a +bC .3a +bD .a +3b28.(2019秋•普宁市期末)下列判断中正确的是( )A .2a 2bc 与﹣2bca 2不是同类项B .单项式﹣x 2的系数是﹣1C .5x 2﹣xy +xy 2是二次三项式D .m 23不是整式29.(2019秋•龙湖区期末)下列各式的计算,正确的是( )A .3a +2b =5abB .5y 2﹣3y 2=2C .4m 2n ﹣2mn 2=2mnD .﹣12x +7x =﹣5x30.(2019秋•龙湖区期末)下列添括号正确的是( )A .x +y =﹣(x ﹣y )B .x ﹣y =﹣(x +y )C .﹣x +y =﹣(x ﹣y )D .﹣x ﹣y =﹣(x ﹣y )31.(2019秋•揭西县期末)化简a ﹣(a +b )﹣2(a ﹣b )得( )A .0B .﹣2a ﹣3bC .﹣2a +bD .﹣2a ﹣2b32.(2019秋•龙岗区期末)下列说法正确的是( )A .3a ﹣5的项是3a ,5B .2x 2y +xy 2+z 2是二次三项式C .2x 2y 与﹣5yx 2是同类项式D .单项式﹣3πyx 2的系数是﹣333.(2019秋•龙岗区期末)2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.三种方案哪种降价最多( )方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.A .方案一B .方案二C .方案三D .不能确定 34.(2019秋•新会区期末)长方形的一边长为2a +3b ,另一边比它大a ﹣b ,那么这个长方形的周长是( )A .3a +2bB .5(a +b )C .8a +6bD .10(a +b )35.(2019秋•宝安区期末)下列各式计算不正确的是( )A .3m ﹣m =3B .﹣2a +3a =aC .﹣(2a ﹣3)=﹣2a +3D .(﹣2)3=﹣8 36.(2019秋•罗湖区期末)下列说法中:①3xy 5的系数是35;①﹣ab 2的次数是2;①多项式mn 2+2mn ﹣3n ﹣1的次数是3;①a ﹣b 和xy 6都是整式,正确的有( ) A .1个 B .2个 C .3个 D .4个37.(2019秋•罗湖区期末)下列计算正确的一个是( )A .﹣y 2﹣y 2=0B .x 2+x 3=x 6C .﹣(x ﹣6)=﹣x +6D .x 2y +xy 2=2x 3y 338.(2019秋•怀集县期末)﹣(a 2﹣b 3+c 4)去括号后为( )A .﹣a 2﹣b 3+c 4B .﹣a 2+b 3+c 4C .﹣a 2﹣b 3﹣c 4D .﹣a 2+b 3﹣c 439.(2019秋•宝安区期末)若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )A .﹣1B .1C .2D .340.(2019秋•阳江期末)下列计算正确的是( )A .3x 2﹣x 2=3B .3x 2+2x 3=5x 5C .3+x =3xD .(﹣3)2=9 41.(2019秋•中山市期末)单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,242.(2019秋•香洲区期末)下列去括号正确的是( )A .a ﹣(3b ﹣c )=a ﹣3b ﹣cB .a +3(2b ﹣3c )=a ﹣6b ﹣9cC .a +(b ﹣3c )=a ﹣b +3cD .a ﹣2(2b ﹣3c )=a ﹣4b +6c 43.(2019秋•福田区期末)下列每组单项式不是同类项的是( )A .﹣3x 与2xB .ab 与﹣2baC .xy 与xzD .xy 2与12xy 2 44.(2019秋•福田区期末)下列各式运算正确的是( )A .2x +3y =5xyB .2x +3x =5xC .x +x 2=2x 3D .x 2+x 2=2x 445.(2019秋•盐田区期末)若﹣a 3b 与2a 3b n 的和为单项式,则n 的值是( )A .﹣2B .﹣1C .1D .2参考答案与试题解析一.选择题(共45小题)1.【解答】解:①x ﹣2y +8=18,①x ﹣2y =10,①3x ﹣6y +4=3(x ﹣2y )+4=3×10+4=34故选:D .2.【解答】解:多项式x 2y +3xy ﹣1的次数与项数分别是:3,3.故选:B .3.【解答】解:与﹣3a 2b 是同类项的是﹣ba 2,故选:B .4.【解答】解:A .3ab ﹣2ab =ab ,正确;B .3ab ﹣2ab =ab ,故本选项不合题意;C .3ab +2ab =5ab ,故本选项不合题意;D .3ab +2ab =5ab ,故本选项不合题意.故选:A .5.【解答】解:①裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m , ①二月份的利润为50(1+m )万元,三月份的利润为50(1+m )2,①这个商店第一季度的总利润是[50+50(1+m )+50(1+m )2]万元.故选:D .6.【解答】解:①单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,①2x 3y 1+2m 与3x n +1y 3是同类项,则{n +1=31+2m =3①{m =1n =2, ①m ﹣n =1﹣2=﹣1故选:D .7.【解答】解:①3x m +3y 3﹣axy n +1=4xy 3,①3﹣a =4,m +3=1,n +1=3,解得a =﹣1,m =﹣2,n =2,①a ×m =2,故选项A 符合题意;a ×n =﹣2,故选项B 不符合题意;m ×n =﹣4,故选项C 不符合题意;m n =4,故选项D 不符合题意.故选:A .8.【解答】解:A 、5x 2y ,单项式的系数是5,次数是3,故此选项不合题意;B 、﹣3x 5,单项式的系数是﹣3,次数是5,故此选项不合题意;C 、3x 2y 5,单项式的系数是3,次数是7,故此选项不合题意;D 、3x 2y 3,单项式的系数是3,次数是5,故此选项符合题意.故选:D.9.【解答】解:2019年该矿山的预计采矿量是(1+30%)n吨.故选:B.10.【解答】解:根据题意得:2m=6,n﹣1=1,解得m=3,n=2,①m+n=3+2=5.故选:C.11.【解答】解:A、32=9,原计算错误,故此选项不符合题意;B、(−12)3=−18,原计算错误,故此选项不符合题意;C、3a与b不是同类项,并能合并,原计算错误,故此选项不符合题意;D、4a3b﹣5ba3=﹣a3b,原计算正确,故此选项符合题意;故选:D.12.【解答】解:①x=2时,mx3+nx=6,①8m+2n=6,①当x=﹣2时,mx3+nx=﹣8m﹣2n=﹣(8m+2n)=﹣6.故选:A.13.【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;B、若|x|=2,那么x是±2,故B错误;C、与原点的距离为4个单位的点所表示的有理数是4或﹣4,故C错误;D、若﹣7x6y4和3x2m y n是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.故选:D.14.【解答】解:①5x1+m y4与x3y4是同类项,①1+m=3,解得m=2,故选:B.15.【解答】解:A、2a2b﹣a2b=a2b,故原题计算正确;B、2a﹣a=a,故原题计算错误;C、3a2+2a2=5a2,故原题计算错误;D、2a和b不能合并,故原题计算错误;故选:A.16.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、2c2﹣c2=c2,故此选项错误;C、x2y﹣4yx2=﹣3x2y,正确;D、z2+4z3,无法计算,故此选项错误;故选:C.17.【解答】解:A、原式=3x+15,故本选项错误.B、原式=6(x+43),故本选项错误.C、原式=﹣x+6,故本选项正确.D、原式=﹣(a﹣b),故本选项错误.故选:C.18.【解答】解:由题意可得,当x=1时,第1次输出的结果是4,第2次输出的结果是2,第3次输出的结果是1,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,第8次输出的结果是2,第9次输出的结果是1,第10次输出的结果是4,…,从第三次输出的结果开始,每次输出的结果分别是1、4、2、1、4、2、…,每三个数一个循环.所以(2020﹣2)÷3=672…2,所以2020次输出的结果是4.故选:B.19.【解答】解:当a﹣3b=2时,2a﹣6b=2(a﹣3b)=4,故选:A.20.【解答】解:A、﹣32=﹣9,故原题计算错误;B、3a2﹣2a2=a2,故原题计算错误;C、﹣1﹣1=﹣2,故原题计算错误;D、2(2a﹣b)=4a﹣2b,故原题计算正确;故选:D.21.【解答】解:根据题意得:m=4,n=3,则m﹣2n=4﹣6=﹣2.故选:D .22.【解答】解:①2x 3y 2和﹣2x m y 2n 是同类项,①m =3,2n =2,解得:n =1.故m +n =3+1=4.故选:C .23.【解答】解:A .2a 2+3a 2=5a 2,正确,故本选项符合题意;B .3m 与2n 不是同类项,所以不能合并,故本选项不合题意;C .4xy ﹣3xy =xy ,故本选项不合题意;D .2m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意. 故选:A .24.【解答】解:由题意得:a +2=1,b ﹣1=3,解得:a =﹣1,b =4,则ab =﹣4,故选:B .25.【解答】解:单项式﹣9xy 2z 3的系数和次数分别是:﹣9,6.故选:A .26.【解答】解:①x ﹣2y =3,①2x ﹣4y ﹣12=2(x ﹣2y )﹣12=2×3﹣12=6﹣12=﹣6故选:B .27.【解答】解:设小正方形的边长为x ,则a ﹣2x =b +2x ,则4x =a ﹣b ,所以大正方形的周长﹣小正方形的周长=4(a ﹣2x )﹣4x=4a ﹣12x=4a ﹣3a +3b=a +3b .故选:D .28.【解答】解:A .2a 2bc 与﹣2bca 2是同类项,故本选项不合题意;B .单项式﹣x 2的系数是﹣1,正确,故本选项符合题意;C .5x 2﹣xy +xy 2是三次三项式,故本选项不合题意;D .m 23是整式,故本选项不合题意.故选:B .29.【解答】解:A .3a 与2b 不是同类项,所以不能合并,故本选项不合题意;B .5y 2﹣3y 2=2y 2,所以不能合并,故本选项不合题意;C .4m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意;D .﹣12x +7x =﹣5x ,正确,故本选项符合题意.故选:D .30.【解答】解:A 、x +y =﹣(﹣x ﹣y ),故这个选项错误;B 、x ﹣y =﹣(﹣x +y ),故这个选项错误;C 、﹣x +y =﹣(x ﹣y ),故这个选项正确;D 、﹣x ﹣y =﹣(x +y ),故这个选项错误.故选:C .31.【解答】解:a ﹣(a +b )﹣2(a ﹣b )=a ﹣a ﹣b ﹣2a +2b=﹣2a +b .故选:C .32.【解答】解:A .3a ﹣5的项是3a ,﹣5,故本选项不合题意;B .2x 2y +xy 2+z 2是三次三项式,故本选项不合题意;C .2x 2y 与﹣5yx 2是同类项式,正确,故本选项符合题意;D .单项式﹣3πyx 2的系数是﹣3π,故本选项不合题意.故选:C .33.【解答】解:方案一:m ﹣(1﹣10%)(1﹣30%)m =m ﹣63%m =37%m , 方案二:m ﹣(1﹣20%)(1﹣15%)m =m ﹣68%m =32%m ,方案三:m ﹣(1﹣20%)(1﹣20%)m =m ﹣64%m =36%m ,①m >0,①37%m >36%m >32%m ,①方案一降价最多,故选:A .34.【解答】解:①长方形的一边长为2a +3b ,另一边比它大a ﹣b , ①另一边为:2a +3b +a ﹣b =3a +2b ,①这个正方形的周长是:2(3a +2b +2a +3b )=10(a +b ).故选:D .35.【解答】解:A 、3m ﹣m =2m ,计算错误,符合题意;B 、﹣2a +3a =a ,计算正确,不合题意;C 、﹣(2a ﹣3)=﹣2a +3,计算正确,不合题意;D 、(﹣2)3=﹣8,计算正确,不合题意,故选:A .36.【解答】解:①3xy 5的系数是35的说法正确; ①﹣ab 2的次数是3,原来的说法错误;①多项式mn 2+2mn ﹣3n ﹣1的次数是3的说法正确;①a ﹣b 和xy 6都是整式的说法正确.正确的有3个.故选:C .37.【解答】解:A 、﹣y 2﹣y 2=﹣2y 2,故此选项错误;B 、x 2+x 3,无法合并,故此选项错误;C 、﹣(x ﹣6)=﹣x +6,正确;D 、x 2y +xy 2,无法合并,故此选项错误,故选:C .38.【解答】解:原式=a 2+b 3﹣c 4,故选:D .39.【解答】解:①2a ﹣3b =﹣1,①原式=1﹣2(2a ﹣3b )=1+2=3,故选:D .40.【解答】解:(A )原式=2x 2,故A 错误,(B )3x 2与2x 3不是同类项,故B 错误,(C )3与x 不是同类项,故C 错误,故选:D .41.【解答】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D .42.【解答】解:A 、原式=a ﹣3b +c ,故本选项不符合题意.B 、原式=a +6b ﹣9c ,故本选项不符合题意.C 、原式=a +b ﹣3c ,故本选项不符合题意.D 、原式=a ﹣4b +6c ,故本选项符合题意.故选:D .43.【解答】解:A 、﹣3x 与2x 是同类项,故此选项不合题意;B 、ab 与﹣2ba 是同类项,故此选项不合题意;C 、xy 与xz 不是同类项,故此选项符合题意;D 、xy 2与12xy 2是同类项,故此选项不合题意; 故选:C .44.【解答】解:A 、原式不能合并,不符合题意;B 、原式=5x ,符合题意;C 、原式不能合并,不符合题意;D 、原式=2x 2,不符合题意,故选:B .45.【解答】解:①﹣a 3b 与2a 3b n 的和为单项式,①n=1.故选:C.。
简单1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选B.2、一个多项式减去-3a的差为2a2-3a-4,则这个多项式为()A.2a2-6a-4 B.-2a2+6a+4 C.2a2-4 D.-2a2+4【分析】利用:被减数=差+减数,列式计算.【解答】依题意,得:2a2-3a-4+(-3a)=2a2-6a-4.故选A.3、(8xy-x2+y2)-3(-x2+y2+5xy)【分析】先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】原式=8xy-x2+y2+3x2-3y2-15xy=2x2-2y2-7xy.4、不改变式子a-(2b-3c)的值,把它括号前面的符号变成相反的符号应为()A.a+(-2b+3c)B.a+(-2b)-3c C.a+(2b+3c)D.a+[-(2b+3c)] 【分析】只需将括号里面的各项变号即可.【解答】a-(2b-3c)=a+(-2b+3c).故选A.5、合并同类项:2ax+3by+4ax+3by-2ax.【分析】先找出同类项,再合并即可.【解答】2ax+3by+4ax+3by-2ax=(2-2+4)ax+(3+3)by=4ax+6by.7、7(p3+p2-p-1)-2(p3+p)【分析】原式去括号合并同类项即可得到结果.【解答】原式=7p3+7p2-7p-7-2p3-2p=5p3+7p2-9p-7.简单1. 化简a-b-(a+b)的结果是()A.0 B.2b C.-2b D.b【分析】去括号,合并同类项即可.【解答】原式=a-b-a-b=-2b.故选C.2. 不改变3a2-2b2-b+a+ab的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是()A.+(3a2+2b2+ab)-(b+a)B.+(-3a2-2b2-ab)-(b-a)C.+(3a2-2b2+ab)-(b-a)D.+(3a2+2b2+ab)-(b-a)【分析】先在3a2-2b2-b+a+ab中找出二次项+3a2、-2b2和+ab,然后再找出一次项-b、+a,最后按要求去做即可.【解答】3a2-2b2-b+a+ab中是二次项的有:+3a2、-2b2和+ab,一次项有:-b、+a,根据题意得:3a2-2b2-b+a+ab=+(3a2-2b2+ab)-(b-a),在四个选项中,C是正确的,故选C.3. 下面运算正确的是()A.3x+2y=5xy B.3x2y-3yx2=0C.3a2+2a2=5a4D.3b3-2b2=b【分析】根据同类项的定义及合并同类项的法则进行逐一计算即可.【解答】A、3x+2y不是同类项,不能合并;B、正确;C、3a2+2a2=5a2;D、不是同类项,不能合并.故选B.4. 使(ax2-2xy+y2)-(-x2+bxy+2y2)=5x2-9xy+cy2成立的a,b,c的值依次是()A.4,-7,-1 B.-4,-7,-1 C.4,7,-1 D.4,7,1 【分析】此题可通过对等式左边的整式进行合并同类项处理,再根据等式两边同类项的系数相等即可确定出a、b、c的值.【解答】由于(ax2-2xy+y2)-(-x2+bxy+2y2)=(a+1)x2-(2+b)xy-y2=5x2-9xy+cy2;若令上面等式成立,需满足15291abc⎪⎨⎪⎩-⎧+=+==;解得:471abc⎪⎪-⎧⎨⎩===;故选C.5.化简(a-b)-(a+b)的结果是______.【分析】先去括号,然后合并同类项求解.【解答】原式=a-b-a-b=-2b.6.计算:4(a2b-2ab2)-(a2b+2ab2)=______.【分析】此题考查的是多项式的加减,去掉括号,前有负号的要变号,再合并同类项.【解答】4(a2b-2ab2)-(a2b+2ab2)=4a2b-8ab2-a2b-2ab2=3a2b-10ab2故答案为:3a2b-10ab2.7.长方形的长为a+b,宽为a-b,则它的周长为______.【分析】由2(长+宽)=周长,列出关系式,去括号合并即可得到结果.【解答】根据题意得:2(a+b+a-b)=4a,则长方形的周长为4a.8.多项式3x2-2x+1减去一个多项式A的差是4x2-3x+4,则这个多项式A=_____.【分析】根据题意可得,被减数为3x2-2x+1,减数为4x2-3x+4,根据被减数-减数=差,即可求出答案.【解答】A=(3x2-2x+1)-(4x2-3x+4)=-x2+x-3.9. 化简5(a2b-2ab2+c)-4(2c+3a2b-ab2).【解答】原式=5a2b-10ab2+5c-8c-12a2b+4ab2=-7a2b-6ab2-3c.10.化简再求值:3(x-y)-2(x+y)+2,其中x=1,y=-2.【分析】先去括号、合并同类项得出x-5y+2,再把x=1,y=-2代入求出即可.【解答】3(x-y)-2(x+y)+2=3x-3y-2x-2y+2=x-5y+2当x=1,y=-2时,原式=1-5×(-2)+2=1+10+2=13.11.观察下面的分解因式过程,说说你发现了什么?根据你的发现,把下面的多项式分解因式:mx-my+nx-ny.【分析】分组后提取公因式即可得到结果;【解答】原式=m(x-y)+n(x-y)=(x-y)(m+n);难题1.已知多项式2x2+my-12与多项式nx2-3y+6的差中,不含有x,y,求m+n+mn的值.【分析】根据此题的题意,可将此题化为关于Ax2+By+C=0的形式,因为不含有x、y,即x、y的系数为0,从而求出m和n,代入求解即可.【解答】(2x2+my-12)-(nx2-3y+6)=(2-n)x2+(m+3)y -18,因为差中,不含有x、y.所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7.2. 已知:A=2x2+3xy-2x-1,B=-x2+xy-1.若3A+6B的值与x的值无关,求y的值.【分析】先求出3A+6B的结果,然后根据3A+6B的值与x的值无关,可知x的系数为0,据此求出y的值.【解答】3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1)=(15y-6)x-9,∵3A+6B的值与x的值无关,∴15y-6=0,解得:y=25.3. 有两则招工启示,其中甲公司的工资采用年薪制(以一年为单位定工资标准),起薪(开始工作时的工资)为每年10000元,以后逐年增加,每年增加600元;而乙公司采用半年薪制(以半年为单位定工资标准),起薪为每半年5000元,以后每半年增加一次,每一次增加200元.哪个公司的条件更优惠,为什么?【分析】本题可将两个公司的工资标准统一以年为单位进行计算,根据工作的年限进行分析:甲公司:起薪(开始工作时的工资)为每年10000元,以后逐年增加,每年增加600元;乙公司:乙公司采用半年薪制(以半年为单位定工资标准),起薪为每半年5000元,以后每半年增加一次,每一次增加200元.则第一年,甲公司为10000元,乙公司为:5000+5200=10200元;第二年,甲公司为10600元,乙公司为:5400+5600=11000元;第三年,甲公司为11200元,乙公司为:5800+6000=11800元;…由此可以发现,从第一年开始甲公司与乙公司的差距依次为:200元,400元,600元…,年限越长甲公司与乙公司的差距越大.所以到乙公司条件更优惠.【解答】第一年,甲公司为10000元,乙公司为:5000+5200=10200元;第二年,甲公司为10600元,乙公司为:5400+5600=11000元;第三年,甲公司为11200元,乙公司为:5800+6000=11800元;…由此可以发现,从第一年开始甲公司与乙公司的差距依次为:200元,400元,600元…,年限越长甲公司与乙公司的差距越大.所以到乙公司条件更优惠.4. 豆豆和爸爸妈妈一起玩游戏.她先从一副扑克牌中抽出下面16张牌:黑桃J8.7.4.3.2;梅花K.Q.6.5.4;红桃A.Q.4;方块A.5.接着把这16张牌合上扣在桌上,从中取走一张牌.然后,豆豆在妈妈的耳朵边悄悄地告诉她这张牌的点数,又在爸爸的耳朵边悄悄地说了这张牌的花色.这时,豆豆又问爸爸妈妈:“你们知道我取走的是哪一张牌吗?”妈妈说:“我不知道”.爸爸说“我知道你不知道”.妈妈想了想,又说:“现在我知道了”.爸爸紧接着说:“我也知道了”.请问:豆豆取走的是哪一张牌?为什么?【分析】妈妈说不知道,表明这个点数不是唯一的,即是A、Q、5、4中的一个;爸爸说我知道你不知道,表明具有这个花色的所有牌的点数也至少出现了两次;再进一步根据题意分析求解.【解答】方块5.妈妈说不知道,表明这个点数不是唯一的,即是A、Q、5、4中的一个;爸爸说我知道你不知道,表明具有这个花色的所有牌的点数也至少出现了两次,因为如果具有这种花色的牌里,某张牌的点数在16张里只有一个,那么妈妈就有知道的可能.所以,这张牌不可能是黑桃或是梅花,即这张牌必在红桃A、Q、4与方块A、5之中.妈妈说现在知道了,显然不是A;爸爸紧接着说我也知道了,那么只能是方块5,因为如果是红桃,还是无法判断.5. 有一个游戏的规则是:你想一个数,乘以2,加上6,再除以2,最后减去你所想的数,我就知道结果.这个结果是()A.1 B.2 C.3 D.4 【分析】设这个数为a,然后可得根据题意进行运算后所得的结果与a 没关系,进而可得出答案.【解答】设你想的一个数为a,则有(2a+6)÷2-a=(a+3)-a=3.所以不论你想的是什么数,结果都是3.故选C.6. 一个正方形和一个圆的周长相等,已知正方形的边长为4厘米,那么正方形和圆的面积哪个大?大多少?(得数保留一位小数)【分析】先根据正方形的周长=边长×4求出周长,即得出圆的周长是4×4=16厘米,再利用圆的周长公式求出半径,代入圆的面积=πr2,即可求出圆的面积,然后进行比较即可.【解答】正方形的面积:4×4=16(平方厘米)正方形的周长:4×4=16(厘米)圆的半径:16÷3.14÷2≈2.5(厘米)3.14×2.52=3.14×6.25=19.625≈19.6(平方厘米)19.6-16=3.6(平方厘米)7.有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的12倒入乙杯,第二次将乙杯中水的13倒回甲杯,第三次将甲杯中的14倒回乙杯,第四次将乙杯中的15倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?【分析】把甲杯中原有水量看作单位“1”,通过几次计算发现规律,倒的次数为奇数次的时候,两杯中的水一样多.因为2015是奇数,故这时甲杯中的水与乙杯中水一样多,均为12,所以甲杯中的水是原来的12.【解答】设甲杯中原有水为单位“1”,则甲、乙两杯的总量也为“1”,乙的量=1-甲的量;第1次倒出的量为:1×12=12,第1次倒后:甲=12,乙=1-12=12;第2次倒出的量为:12×13=16,第2次倒后:甲=12+16=23,乙=1-23=13;第3次倒出的量为:23×14=16,第3次倒后:甲=23-16=12,乙=1-12=12;第4次倒出的量为:12×15=110,第4次倒后:甲=12+110=35,乙=1-35=25;第5次倒出的量为:35×16=110,第5次倒后:甲=35−110=12,乙=1-12=12;可得:倒的次数为奇数次的时候,两杯中的水一样多均为12,因为2015是奇数,所以倒2015次后,甲杯中的水是原来的12.答:反复倒2015次后,甲杯中的水是原来的12.8.当x=1时,代数式12ax3-3bx+4的值是7,则当x=-1时,这个代数式的值是()A.7 B.3 C.1 D.-7 【分析】把x=1代入代数式求出a、b的关系式,再把x=-1代入进行计算即可得解.【解答】x=1时,12ax3-3bx+4=12a-3b+4=7,解得12a-3b=3,当x=-1时,12ax3-3bx+4=-12a+3b+4=-3+4=1.故选C.难题1、化简2a-2(a+1)的结果是()A.-2 B.2 C.-1 D.1 【分析】先去括号,然后合并同类项即可.【解答】2a-2(a+1),=2a-2a-2,=-2.故选:A.2、已知x-3y=-3,则5-x+3y的值是()A.0 B.2 C.5 D.8【分析】代数式添括号后,就能出现x-3y,然后整体代入求值.【解答】∵x-3y=-3,∴5-x+3y=5-(x-3y)=5-(-3)=8.故选D.3、使(ax2-2xy+y2)-(-x2+bxy+2y2)=5x2-9xy+cy2成立的a,b,c的值依次是()A.4,-7,-1 B.-4,-7,-1 C.4,7,-1 D.4,7,1 【分析】此题可通过对等式左边的整式进行合并同类项处理,再根据等式两边同类项的系数相等即可确定出a、b、c的值.【解答】由于(ax2-2xy+y2)-(-x2+bxy+2y2)=(a+1)x2-(2+b)xy-y2=5x2-9xy+cy2;若令上面等式成立,需满足a+1=5,2+b=9,c=−1;解得:a=4,b=7,c=−1;故选C.4、已知a-b=5,c+d=-3,则(b+c)-(a-d)的值为()A.2 B.-2 C.8 D.-8【分析】先把所求代数式去括号,再添括号化成已知的形式,再把已知整体代入即可求解.【解答】根据题意可得:(b+c)-(a-d)=(c+d)-(a-b)=-3-5=-8,故选D.5、已知两个多项式的和是6a2-5a+3,其中一个多项式是5a2+2a-1,则另一个多项式是()A.a2-3a+4 B.a2-3a+2 C.a2-7a+2 D.a2-7a+4 【分析】两个多项式的和,已知一个多项式,则用多项式的和减去已知多项式,合并同类项得出另一个多项式.【解答】已知两个多项式的和和其中一个多项式,求另一个多项式,用6a2-5a+3-(5a2+2a-1)=a2-7a+4故选D.6、扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是____________.【分析】此题看似复杂,其实只是考查了整式的基本运算.把每堆牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.【解答】设第一步时,每堆牌的数量都是x(x≥2);第二步时:左边x-2,中间x+2,右边x;第三步时:左边x-2,中级x+3,右边x-1;第四步开始时,左边有(x-2)张牌,则从中间拿走(x-2)张,则中间所剩牌数为(x+3)-(x-2)=x+3-x+2=5.故答案为:5.7、试说明:无论x,y取何值时,代数式.(x3+3x2y-5xy2+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常数.【分析】将整式化为最简后即可得出答案.【解答】原式=x3+3x2y-5xy2+6y3+y3+2xy2+x2y-2x3-4x2y+x3+3xy2-7y3,=0.原式化简值结果不含x,y字母,∴无论x,y取何值,原式的值均为常数0.8、先去括号,再合并同类项:(x+y-z)+(x-y+z)-(x-y-z).【分析】首先利用去括号法则去掉括号,然后利用合并同类项法则合并同类项即可.【解答】原式=x+y-z+x-y+z-x+y+z=x+y+z.9、先去括号,再合并同类项:3(2x2-y2)-2(3y2-2x2).分析:首先利用分配律计算,然后去括号法则去掉括号,利用合并同类项法则合并同类项即可.解答:原式=6x2-3y2-6y2+4x2=10x2-9y2.10、某校组织若干师生进行社会实践活动.若学校租用45座的客车x 辆,则余下15人无座位;若租用60座的客车则可少租用1辆,则最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是()A.75-15x B.135-15x C.75+15x D.135-60x 【分析】先求出总人数,然后根据整式的加减法则求解.【解答】总人数为:45x+15,则最后一辆车的人数为:45x+15-60(x-2)=135-15x.故选B.11、化简:(3x2-xy-2y2)-2(x2+xy-2y2)【分析】先去括号,再合并同类项即可得出答案.【解答】原式=3x2-xy-2y2-2x2-2xy+4y2=3x2-2x2-xy-2xy-2y2+4y2=x2-3xy+2y2.。
人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、53.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是35.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A (1)(2) B. (1)(2)(3) C. (2)(3)(4) D. (1)(2)(3)(4)8.已知-2m6n与5x m2x n y是同类项,则( )A. x=2,y=1B. x=3,y=1C. x=32,y=1 D. x=3,y=09.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a元,则该商品的标价是( )A. 1720a元 B.2017a元 C.1825a元 D.2518a元10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-411.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 2312.大于1正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( )A 9 B. 10 C. 11 D. 12二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.18.一个三角形的第一边长2a+3b,第二边比第一边短a,第三边比第一边大2b,那么这个三角形的周长是__________.三、解答题(共66分)19.给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算.20.计算:(8a-7b)-(4a-5b)+(3a-2b).21.课堂上李老师给出了一道整式求值题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.23.已知-5x m y3+104x m-4xy2是关于x,y的六次多项式,求m的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m+3,第二项的次数为4+m,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m=6, ②所以m=2. ③于是原多项式为-5x2y3+104x2-4xy2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应等式.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:名称小麦玉米黄豆亩产量/千克400 600 220(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.答案与解析一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元【答案】C【解析】分析】用原价减去降低的价钱得出现价即可.【详解】售价为m元的商品,降价30%就是在原价的基础上减去30%m元,所以,现价是m-30%m=(1-30%)m元,故选C.【点睛】本题考查了列代数式,掌握销售问题中的基本数量关系是解决问题的关键.2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】【分析】先把等式左边的整式相加减,再分别令等式两边x的二次项系数、一次项系数及常数项分别相等即可.【详解】∵等式的左边=3x2-3x+2+x2-3x+3=(3+1)x2-(3+3)x+2+3=4x2-6x+5,∴A=4,B=6,C=5,故选D.【点睛】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键.3.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍【答案】A【解析】【分析】根据代数式来判定各选项给出的表达意义是否正确,注意“和”、“差”、“倍”、“商”的表述.【详解】A.3a2b⎛⎫⎪⎝⎭的意义应是“a除以2b的商的立方”,故A选项错误,符合题意;B. a+2b2的意义是a与b2的2倍的和,正确,不符合题意;C. (a+2b)2的意义是a与b的2倍的和的平方,正确,不符合题意;D. 2(a+b)2的意义是a与b的和的平方的2倍,正确,不符合题意, 故选A.【点睛】本题考查了代数式的意义,正确分析是解题的关键.4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是3【答案】D【解析】【分析】根据单项式系数以及次数的定义进行判断即可.【详解】单项式-23πxy5的数字因数是-3π5,所有字母指数的和为:1+2=3,所以单项式的系数是-35π,次数是3,故选D.【点睛】本题考查了单项式的系数与次数,熟记相关概念是解题的关键.5.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据题意可得m=-1,|5-n|=1或m=-2,|5-n|=4,求出m、n的值,然后求出m n的值即可.【详解】∵代数式2x4y+mx|5-n|y+xy化简之后为单项式,∴化简后的结果可能为2x4y,也可能为xy,当结果为2x4y时,m=-1,|5-n|=1,解得:m=-1,n=4或n=6,则m n=(-1)4=1或m n=(-1)6=1;当结果为xy时,m=-2,|5-n|=4,解得:m=-2,n=1或n=9,则m n=(-2)1=-2或m n=(-2)9=-29,综上,m n的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同【答案】D【解析】【分析】根据整式,单项式,多项式的概念分析各个式子即可得.【详解】单项式有3a,1π,xyz共3个,多项式有12x-y,a2-y+23,x y z3-+共3个,整式有12x-y,3a,a2-y+23,1π,xyz,x y z3-+共6个,故选D.【点睛】本题考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4)【答案】B【解析】试题分析:在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 考点:去括号法则.8.已知-2m 6n 与5x m 2x n y 是同类项,则( )A. x =2,y =1B. x =3,y =1C. x =32,y =1D. x =3,y =0 【答案】B【解析】【分析】根据同类项的概念可得2x=6,y=1,由此即可求得答案.【详解】∵-2m 6n 与5x m 2x n y 是同类项,∴2x=6,y=1,∴x =3,y =1,故选B.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项中的两个相同:(1)所含字母相同;(2)相同字母的指数相同.9.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a 元,则该商品的标价是( ) A. 1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 【答案】D【解析】【分析】根据商品打折数与商品价钱的关系进行列式即可,打折后价格=原价格×10折数. 【详解】根据题意可知商品的标价为:a÷0.9÷0.8 =a×101098= 2518a 元,故选D.【点睛】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.11.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 23【答案】B【解析】【详解】试题分析:由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.解:∵2x2+3y+7=8,∴2x2+3y=1,则原式=3(2x2+3y)+8=3+8=11,故选B考点:代数式求值.12.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( ) A. 9 B. 10 C. 11 D. 12【答案】B【解析】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(1)(2)2m m-+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B.考点:规律型.二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.【答案】(1). 1 (2). 0【解析】【分析】根据同类项的定义可知m+1=3,再根据合并同类项的法则可得n-1=-1,由此即可得答案.【详解】∵a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,∴m+1=2,1+(n-1)=0,∴m=1,n=0,故答案为1,0.【点睛】本题考查了合并同类项以及同类项的定义,熟练掌握同类项的概念以及合并同类项的法则是解题的关键.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.【答案】1【解析】【分析】根据两者合并得结果是单项式可得5x2m-n y9与4x5y3n是同类项,继而根据同类项:所含字母相同且相同字母的指数也相同可得出关于m和n的方程,解出即可得出答案.【详解】∵5x2m-n y9-4x5y3n=x5y9,∴25 39m nn-=⎧⎨=⎩,∴43 mn=⎧⎨=⎩,∴m-n=4-3=1,故答案为1.【点睛】本题考查了合并同类项以及解二元一次方程组,解答本题关键是掌握同类项定义中两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.【答案】mn【解析】【分析】根据多项式次数的定义进行求解即可得.【详解】∵m,n都是正整数,且m>n,∴mnm>n,∴多项式x m+y n+z mn的次数是mn,故答案为mn.【点睛】本题考查了多项式的次数,熟知多项式的次数是指多项式中次数最高的单项式的次数是解题的关键.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.【答案】-2b2-ab-4【解析】【分析】由题意可知m=(a2-b2-4)-(a2+b2+ab),去括号后合并同类项即可得.【详解】由题意,m=(a2-b2-4)-(a2+b2+ab)=a2-b2-4-a2-b2-ab=-2b2-ab-4,故答案为-2b2-ab-4.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则以及合并同类项法则是解题的关键.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.【答案】-4x2+2xy+2【解析】【分析】根据规定的运算列式,然后去括号、合并同类项即可得.【详解】由题意:222xy 3x 2xy x 2x 35xy ------+=(xy-3x 2)-(22xy x --)+(22x 3--)-(5xy -+)=xy-3x 2+2xy+x 2-2x 2-3+5-xy=-4x 2+2xy +2,故答案为-4x 2+2xy +2.【点睛】本题考查了整式的加减,解题的关键是弄清规定运算的规则,正确列出式子.18.一个三角形的第一边长2a +3b ,第二边比第一边短a ,第三边比第一边大2b ,那么这个三角形的周长是__________.【答案】5a +11b【解析】【分析】先表示出三角形的三边长,然后根据三角形的周长公式列式进行计算即可得.【详解】三角形的第一边长是2a+3b ,则第二边长为2a+3b-a ,第三边长为2a+3b+2b,∴(2a+3b)+(2a+3b-a)+(2a+3b+2b)=2a+3b+2a+3b-a+2a+3b+2b=5a+11b,故答案为5a+11b.【点睛】本题考查了整式的加减的应用,解决本题的关键是熟记三角形的周长公式,即1=a+b+c .本题的关键是根据三角形的第一边长,求出另外两条边的边长.三、解答题(共66分)19.给出三个多项式:12x 2+x -1, 12x 2+3x +1, 12x 2-x ,请你选择其中两个进行加法运算. 【答案】详见解析.【解析】【分析】本题答案不唯一,列式后根据去括号法则以及合并同类项法则进行计算即可. 【详解】如选择12x 2+x -1, 12x 2+3x +1, 则:(12x 2+x -1)+( 12x 2+3x +1)=12x 2+x -1+ 12x 2+3x +1=x 2+4x ; 如选择12x 2+x -1,12x 2-x,则:(12x2+x-1)+(12x2-x)=12x2+x-1+12x2-x=x2-1;如选择12x2+3x+1,12x2-x,则:(12x2+3x+1)+(12x2-x)=12x2+3x+1+12x2-x=x2+2x+1;【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.20.计算:(8a-7b)-(4a-5b)+(3a-2b).【答案】7a-4b.【解析】【分析】先去括号,然后合并同类项即可.【详解】(8a-7b)-(4a-5b)+(3a-2b)=8a-7b-4a+5b+3a-2b=7a-4b.【点睛】本题考查了整式的加减,明确整式的加减就是合并同类项是解题的关键.21.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】【分析】先化简(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3),得结果为3,由此进行解答即可.【详解】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.【点睛】本题考查了整式加减——化简求值,熟练掌握去括号法则以及合并同类项法则是解答本题的关键.22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.23.已知-5x m y 3+104x m -4xy 2是关于x,y 的六次多项式,求m 的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m +3,第二项的次数为4+m ,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m =6, ②所以m =2. ③于是原多项式为-5x 2y 3+104x 2-4xy 2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.【答案】不正确,错在第①步.正确解法见解析.【解析】【分析】根据常数的次数不是单项式的次数进而得出m的值.【详解】不正确,错在第①步,正确解法:由原多项式知,第一项的次数为m+3,第二项的次数为m,第三项的次数为3,所以最高次数为m+3,又因为这个多项式是六次多项式,所以m+3=6,即m=3于是原多项式为-5x3y3+104x3-4xy2.【点睛】本题考查了多项式的次数,正确把握多项式的次数的定义是解题关键.注意常数的次数不是单项式的次数.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.【答案】(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【解析】【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【答案】(1)详见解析;(2)春风旅行社合算,理由见解析.【解析】【分析】(1)利用旅行社的收费标准可列出代数式,(2)把a=20代入即可求解.【详解】(1)春风旅行社的总费用为3×500+500a×50%=1 500+250a(元),华北旅行社的总费用为(3+a)×500×80%=1 200+400a(元);(2)当a=20时,春风旅行社费用为1 500+250×20=6 500(元),华北旅行社费用为1 200+400×20=9 200(元),6 500元<9 200元,故春风旅行社合算.【点睛】本题考查了列代数式以及代数式求值,正确理解题意列出代数式是解题的关键.26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.【答案】(1) (4-x);(2)三种农作物的总售价为(540x+7 440)元;(3)三种农作物的总售价为9 060元.【解析】【分析】(1)减去小麦、玉米的种植面积即可得;(2)根据种植面积×亩产量×销售单价列式计算即可得;(3)把x=3代入(2)中的结果即可求得答案.【详解】(1)由题意得,黄豆的种植面积为:10×(1-60%)-x=(4-x)(亩),故答案为(4-x);(2)三种农作物总售价为:10×60%×400×2+2×600x+220×(4-x)×3=4 800+1 200x+2 640-660x=(540x+7 440)(元),答:三种农作物的总售价为(540x+7 440)元;(3)当x=3时,540x+7 440=540×3+7 440=9 060(元),答:三种农作物的总售价为9060元.【点睛】本题考查了整式加减的应用,正确理解题意,弄清各量之间的关系列出式子是解题的关键.。
一、选择题1.下列方程中,解为x=-2的方程是( ) A .2x+5=1-x B .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 2.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2C .﹣2D .﹣63.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________. A .53B .53-C .-2D .14.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB5.下列变形中,正确的是( ) A .变形为B .变形为C .变形为D .变形为6.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号B .18号C .19号D .20号7.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A .120元B .125元C .135元D .140元8.下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b = B .若a b =,则ac bc = C .若a b =,则22a b c c = D .若x y =,则33x y -=-9.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( ) A .6折B .7折C .8折D .9折10.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b12.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨二、填空题13.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.14.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;15.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 16.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________. 17.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.18.某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________. 19.如果ma mb =,那么下列等式一定成立的是_______. ①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.20.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.三、解答题21.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖. (1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多? (3)小明现有32元钱,最多可买多少本练习本?22.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数; (2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少? 23.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值.24.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a (如图2).(1)请用含a 的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)25.运用等式的性质解下列方程: (1)3x =2x -6; (2)2+x =2x +1; (3)35x -8=-25x +1. 26.10.3x -﹣20.5x + =1.2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将x=-2代入方程,使方程两边相等即是该方程的解. 【详解】 将x=-2代入,A.左边≠右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解; 故选:B. 【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.2.C解析:C 【分析】 将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2. 故选C . 【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.3.B解析:B 【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可. 【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解, ∴20+2m=15+1, 解得:m=-2, ∴方程变为3x-4=6x+1,解得:x=53 .故选B.【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m的值,难度不大.4.C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.5.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.6.A解析:A【解析】【分析】设休假第一天日期为x号,则其余三天的日期为(x+1),(x+2),(x+3),根据四天的日期之和为74建立方程求出其解即可.【详解】解:设休假第一天日期为x号,由题意,得:x+(x+1)+(x+2)+(x+3)=74,解得:x=17,故选A.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用, 相邻两个整数之间相差1的关系的运用,解答时根据四天的日期之和为74建立方程是关键.7.B解析:B【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x元,x x⨯+=+,0.8(140%)15解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 8.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.C解析:C 【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 80020%800⨯-≥,解不等式可得:8x ≥.【详解】设打折x 折,由题意可得: 12000.1x 80020%800⨯-≥,解得:8x ≥.故选C. 【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.10.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=. 故选D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.11.A解析:A 【分析】按照分式和整式的性质解答即可. 【详解】解:A .因为C 做分母,不能为0,所以a=b ; B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D.a和b可以互为相反数.故选:A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.12.C解析:C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.二、填空题13.36°【分析】设这个角的度数为根据补角的性质列出方程求解即可【详解】设这个角的度数为可得解得故答案为:36°【点睛】本题考查了一元一次方程的应用掌握解一元一次方程的解法补角的性质是解题的关键解析:36°【分析】设这个角的度数为x,根据补角的性质列出方程求解即可.【详解】设这个角的度数为x,可得︒-=x x1804x=︒解得36故答案为:36°.【点睛】本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.14.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x +3 【分析】根据顺水速度=静水中的速度+水速,即可列出代数式. 【详解】解:船在这条河中的顺水速度是(x+3)km/h; 故答案为:x+3; 【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系.15.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握 解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可. 【详解】因为原方程是关于x 的一元一次方程,所以21+=m , 移项,得12m =-. 合并同类项,得1m =-.把1m =-代入原方程,得224x --=. 移项,得242x -=+. 合并同类项,得26x -=. 系数化为1,得3x =-. 故答案为:3x =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.16.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键解析:34-【分析】原式利用题中的新定义计算即可求出值. 【详解】根据题中的新定义得123x-亥61=- 126613x-⨯-=-2461x --=- 43x -=34x =-故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键.17.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1 【分析】根据新定义的运算法则,代入计算即可得到答案. 【详解】解:∵*2a b b a =-, ∴()3*12(1)31x x +=+-=, ∴211x -=, ∴1x =; 故答案为:1. 【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算.18.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程解析:赚了8元 【解析】 【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可. 【详解】解:设两种计算器进价分别为x 元,y 元, 则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元. 【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.19.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.20.632【解析】【分析】设甲队胜了x 场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x 场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x 场,则平了12x 场,负了112x -场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】 设甲队胜了x 场,则平了12x 场,负了112x -场, 根据题意可得: 1131102122x x x ⎛⎫+⨯+-⨯= ⎪⎝⎭, 解得:x =6, 所以132x =,1122x -=,故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.三、解答题21.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.22.(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数.(2)根据相反数的定义求解即可.(3)根据题意列出方程求解即可.【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-.因为473-+=,所以点C 表示的数为3.(2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-.因为 1.54 5.5--=-,所以点B 表示的数为 5.5-.(3)设小虫P 与小虫Q 的运动时间为t .依题意得0.50.27t t +=,解得10t =,则点D 表示的数是0.51041⨯-=.【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键.23.a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.24.(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a 表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a ,则a 的上一个数为a−18,下一个数为a +18,前一个数为a−2,后一个数为a +2;(2)设中间的数是a ,依题意有5a =2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.25.(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.26.4【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可;试题12 1.20.30.5x x -+-= 10103x --10205x +=65 50x-50-30x-60=18 20 x=128x=6.4。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元. 故选:A . 【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A.本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 4.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2C .3D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.7.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 10.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .11.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D.此题考查多项式,解题关键在于掌握其定义.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6 【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631 【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论. 【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点. 第20个图形共有4+2×3+3×3+…+19×3+20×3 =4+3×(2+3+…+19+20) =4+3×209 =4+627 =631(个). 故答案为:12;631. 【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 6.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n个式子为2n-1a n,∴第8个式子为:27a8=128a8,故答案为:128a8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.7.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=,故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.10.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
人教版七年级数学上册第二章整式的加减专题训练考试时间:90分钟;考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子中a ,﹣23xy 2,29x y-+,0,是单项式的有()个.A.2B.3C.4D.52、若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为().A.M N+B.M N-C.3M N-D.3N M-3、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)4、已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A.28131x x +-B.2251x x -++C.2851x x -+D.2251x x --5、下列去括号错误的个数共有().①222(33)233y x y z y x y z --+=--+;②229[(54)]954x y z x y z --+=-++;③4[6(51)]4651x y z x y z +-+-=--+;④(92)(4)924x y z x y z -+++=----.A.0个B.1个C.2个D.3个6、下列代数式中单项式共有()2312314,,,0.3,,,,0,353a b m ax b r a x y ππ+--+-.A.2个B.4个C.6个D.8个7、下列不能用4m 表示的是()A.葡萄的价格是4元/千克,买kg m 葡萄的价钱B.一个正方形的边长是m ,这个正方形的周长C.甲平均每小时加工m 个零件,4h 后共加工的零件个数D.若4和m 分别表示一个两位数中的十位数字和个位数字,表示这个两位数8、用代数式表示:a 的2倍与3的和.下列表示正确的是()A.2a -3B.2a +3C.2(a -3)D.2(a +3)9、下列运算中,正确的是()A.3x+4y=12xy B.x 9÷x 3=x 3C.(x 2)3=x6D.(x﹣y)2=x 2﹣y210、下列是按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是()A.(﹣1)nxn +ny B.﹣1nxn +nyC.(﹣1)n +1xn +nyD.(﹣1)nxn +(﹣1)nny第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B -的值不变,则12()(2)33a Ab B ---的值是_______.2、某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510⨯本甲种书及3310⨯本乙种书,Q =______(用科学记数法表示).3、多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________.4、多项式112510m x x -+-是关于x 的四次三项式,则m =________________5、去括号:3254(1)a a a ⎡⎤---=⎣⎦________.三、解答题(5小题,每小题10分,共计50分)1、如图,用字母表示图中阴影部分的面积.2、已知230a b -++=,试求:(1)a b +的值;(2)a b +的值.3、化简求值:132(41)(34)2x x x +-+--,其中12x =-.4、化简:(1)4xy -(3x 2-3xy )-2y +2x 2(2)(a+b)-2(2a-3b)+3(a-2b)5、探究规律题:按照规律填上所缺的单项式并回答问题:(1)a,﹣2a2,3a3,﹣4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)当a=﹣1时,求代数式a+2a2+3a3+4a4+…+99a99+100a100+101a101的值.-参考答案-一、单选题1、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可.【详解】解:式子中a,﹣23xy2,29x y-+,0,是单项式的有a,﹣23xy2,0,一共3个.故选B.【考点】本题主要考查了单项式的定义,解题的关键在于能够熟练掌握单项式的定义.2、C【解析】【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【详解】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.3、C 【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,12345678945++++++++= ,∴第46、47、48、49、50个有序数对依次是()1,10、()2,9、()3,8、()4,7、()5,6.所以C 选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.4、D 【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D.【考点】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5、D 【解析】【分析】根据整式加减的计算法则进行逐一求解判断即可.【详解】解:①222(33)233y x y z y x y z --+=-+-,故此项错误;②229[(54)]954x y z x y z --+=-++,故此项正确;③4[6(51)]4651x y z x y z +-+-=-+-,故此项错误;④(92)(4)924x y z x y z -+++=--++,故此项错误;故选D.【考点】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关知识进行求解.6、C 【解析】【分析】根据单项式的定义,即可得到答案.【详解】解:2312314,,,0.3,,,,,0,353a b m ax b r a x y ππ+--+-中,单项式有,m -30.3,,,5b π-340,3r π,共6个,故选C.【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键.7、D 【解析】【分析】对选项逐个计算,查看是否为4m 即可.【详解】解:A.m 千克葡萄的价钱是4m ,不合题意;B.正方形的周长是4m ,不合题意;C.甲4h 后共加工4m 个零件,不合题意;D.这个两位数是410m ⨯+,也就是40m +,符合题意.故选D.【考点】此题考查了根据题意列代数式,解题的关键是理解题意.8、B 【解析】【分析】a 的2倍与3的和也就是用a 乘2再加上3,列出代数式即可.【详解】9、C 【解析】【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式=6x ,错误;C、原式=6x ,正确;D、原式=22x 2xy y -+,错误,故选:C.【考点】整式的乘除运算是进行整式的运算的基础,需要完全掌握.10、A 【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可.【详解】解:按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是:(﹣1)nxn +ny ,故选:A .【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键.二、填空题1、-2【解析】【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a xb y =-+-+∵对于任意有理数 ,x y ,代数式 2A B -的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【考点】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.2、4m +5n43.510⨯【解析】【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510⨯+5×3310⨯=20×310+15×310=35×310=43.510⨯.故答案为:4m +5n ,43.510⨯.【考点】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.3、35ab 4-【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案.【详解】多项式2333325467a c bc ab a -+--各项分别是:22a c ,37bc -,35ab ,4-,336a -最高次项是35ab ,常数项是4-.故答案为:35ab ,4-.【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.4、5【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:∵多项式1110m x -+2x -5是关于x 的四次三项式,∴m ﹣1=4,解得m =5,故答案为:5.【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键.5、32541a a a -+-【解析】【分析】先去小括号,再去中括号.括号外为负,则括号内每项均要变号;括号外为正,则直接去括号即可.【详解】原式()3232541541a a a a a a =--+=-+-.故答案为:32541a a a -+-.【考点】本题考查的知识点是去括号的方法,解题关键是注意从外到内去括号.三、解答题1、阴影部分的面积为mn pq-【解析】【分析】根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.【详解】解:由题意得:==S S S mn pq --阴影大长方形空白长方形,∴阴影部分的面积为mn pq -.【考点】本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.2、(1)﹣1;(2)5【解析】【分析】(1)由非负数的性质可求得a 、b 的值,然后将a 、b 的值代入a b +即可;(2)由非负数的性质可求得a 、b 的值,然后分别求得a 、b 的绝对值,最后带入计算即可.【详解】解:(1)∵230a b -++=,∴20a -=,30b +=,∴2a =,3b =-,∴()+231a b =+-=-;(2)∵2a =,3b =-,∴2=a ,3=3b =-,∴=2+3=5a b +.【考点】本题主要考查的是求代数式的值、求一个数绝对值、非负数的性质,几个非负数的和为0,这几数都为0.3、132x -+,2【解析】【分析】利用去括号法则先化简再求值.【详解】解:原式338222x x x =-+-+132x =-+,把12x =-代入上式得,原式2=.【考点】此题主要考查学生利用去括号法则先化简再求值的能力,学生做这类题时要认真细心.4、(1)-x 2+7xy -2y ;(2)b-3a .【解析】【分析】(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy -(3x 2-3xy )-2y +2x 2=4xy -3x 2+3xy -2y +2x2=-x 2+7xy -2y ;(2)解:(a +b )-2(2a -3b )+3(-2b )=a +b-4a +6b-6b=b-3a .【考点】本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.5、(1)55a ,66a -;(2)20172017a ,20182018a -;(3)1(1)n n a +-;(4)51-【解析】【分析】(1)根据规律找出系数和次数的规律即可;(2)根据(1)的规律即可求得第2017个和第2018个单项式;(3)根据(1)的规律写出第n 个单项式;(4)将1a =-代入求值即可【详解】(1)根据规律第5个单项式为55a ,第6个单项式为66a -故答案为:55a ,66a -(2)第2017个和第2018个单项式分别为20172017a ,20182018a -(3)系数的规律:第n 个对应的系数是1(1)n n +-⨯,指数的规律:第n 个对应的指数是n ,∴第n 个单项式是1(1)n n a +-,(4)当a =﹣1时,a +2a 2+3a 3+4a 4+…+99a 99+100a 100+101a 1011234100101=-+-+-+-……()()()123499100101=-++-+++-+- (50101)=-51=-【考点】此题考查单项式的规律探索,分别找出单项式的系数和指数的规律是解决此类问题的关键.。
一、解答题1.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.4.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.5.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭.本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.8.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.9.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】 (1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.10.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.11.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.12.上海与南京间的公路长为364km,一辆汽车以xkm/h的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh ; (2)如果汽车的速度增加2km/h ,从上海到南京需3642x +h ; (3)如果汽车的速度增加2km/h ,可比原来早到3643642x x ⎛⎫-⎪+⎝⎭h . 【点睛】 本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.14.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积 解析:10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.15.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.16.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.17.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.18.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.19.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2,∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解. 21.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.22.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.23.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A﹣(3A﹣2B)的值即可;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【详解】(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.24.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.25.已知:A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.26.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.27.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.解析:见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.28.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-=29.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
简单1、n是任意整数,则表示任意一个奇数的式子是()A.n B.2n C.2n-1 D.2n+1 【分析】n是任意整数,偶数是能被2整除的数,则偶数可以表示为2n,因为偶数与奇数相差1,所以奇数可以表示为2n+1,据此解答.【解答】n是任意整数,则表示任意一个奇数的式子是:2n+1;故选D.2、已知-2a+3b=5,那么代数式9b-6a+2的值为()A.3 B.7 C.17 D.16 【分析】先把9b-6a+2变形为3(3b-2a)+2,然后利用整体代入的方法进行计算.【解答】∵-2a+3b=5,即3b-2a=5,∴9b-6a+2=3(3b-2a)+2=3×5+2=17.故选C.3、m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或nC.m+n D.m,n中的较大数【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n的次数是m,n中的较大数是该多项式的次数.【解答】根据多项式次数的定义求解.由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.4、下列代数式中,不是整式的是()A.2a ba+B.214a+C.0 D.2a bπ【解答】根据整式的概念可知,不是整式有2a ba+,因为它的分母中含有字母,是分式.故选A.5、一个n次多项式(n为正整数),它的每一项次数()A.都不大于n B.都不小于n C.都等于n D.都小于n 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数可正确判定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数∴n次多项式的次数必然都小于等于n.故选A.6、用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚【分析】每增加一个数就增加四个棋子.【解答】n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.7、多项式(a-4)x3-x b+x-b是关于x的二次三项式,求a-b.【分析】根据多项式的定义分别分析得出即可.【解答】因为多项式(a-4)x3-x b+x-b是关于x的二次三项式,所以(a-4)x3这一项系数应为0,-x b应是最高次项.由题意,得a-4=0,b=2,即a=4,b=2,所以a-b=2.8、若多项式x2+2kxy+y2-2xy-k不含xy的项,求k的值.【分析】多项式合并得到结果,根据结果不含xy项,即可确定出k的值.【解答】原式=x2+(2k-2)xy+y2-k,由结果中不含xy项,得到2k-2=0,则k=1.9、用“⊗”定义新运算:对于任意实数a、b,都有a⊗b=b2+1,例如:7⊗4=42+1=17,那么2015⊗3=__________;当m为实数时,m⊗(m⊗2)=__________.【分析】根据题意a⊗b=b2+1,分别代入求出即可.【解答】∵7⊗4=42+1=17,∴2015⊗3=32+1=10;当m为实数时,m⊗(m⊗2)=m⊗(22+1)=m⊗5=52+1=26.故答案为:10,26.10、已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则()A.m=-5,n=-1 B.m=5,n=1 C.m=-5,n=1 D.m=5,n=-1 【分析】根据多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,可令其系数为0.【解答】因为多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2.所以含x3和x2的单项式的系数应为0,即m+5=0,n-1=0,求得m=-5,n=1.故选C.11、关于x的多项式4x m-2(n-1)x+3是二次三项式的条件是,()A.m=2,n=1 B.m=2,n≠1C.m≠2,n=0 D.m=2,n≠0【分析】由于多项式是关于x的二次三项式,所以m=2,但-(n-1)≠0,根据以上两点可以确定m和n的值.【解答】∵多项式是关于x的二次三项式,∴m=2,但-(n-1)≠0,即n≠1,综上所述,m=2,n≠1,故选B.12、多项式3x2-2x-1的各项分别是()A.3x2,2x,1 B.3x2,-2x,1 C.-3x2,2x,-1 D.3x2,-2x,-1 【解答】多项式3x2-2x-1的各项分别是:3x2,-2x,-1.故选D.13、下列说法正确的是()A.x5+3x2y4-27x5是六次三项式B.xyz的系数是0C.a2b3c是五次单项式D.3x2-x+1的一次项系数是1【分析】根据多项式的次数与项数的定义,单项式的系数与次数的定义求解即可.【解答】A、x5+3x2y4-27x5是六次三项式,本选项正确;B、xyz的系数是1,本选项错误;C、a2b3c是六次单项式,本选项错误;D、3x2-x+1的一次项系数是-1,本选项错误.故选A.14、对于多项式-3x+2xy2-1,下列说法正确的是()A.一次项系数是3 B.最高次项是2xy2C.常数项是1 D.是四次三项式【分析】根据多项式的项和次数的定义进行判断.【解答】多项式-3x+2xy2-1,A、一次项系数是-3,故此选项错误;B、最高次项是2xy2,此选项正确;C、常数项是-1,故此选项错误;D、是三次三项式,故此选项错误.故选B.15、如果(m-1)x4-x n+x-1是二次三项式,则m=_________,n=_________.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数可得m-1=0,n=2,再解即可.【解答】由题意得:m-1=0,n=2,解得:m=1,n=2,故答案为:1;2.难题1、购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款_________元.【分析】用3本笔记本的总价加上5支铅笔的总价即可.【解答】应付款3a+5b元.故答案为:3a+5b.2、为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.【分析】用购买m个篮球的总价加上n个排球的总价即可.【解答】购买这些篮球和排球的总费用为(80m+60n)元.故答案为:(80m+60n).3、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是__________米.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(ba+1)米.故答案为:(ba+1).4、某人买了50元的乘车月票卡,如果此人乘车的次数用m表示,则记录他每次乘车后的余额n元,如下表:乘车次数m 月票余额n/元1 50-0.82 50-1.63 50-2.44 50-3.2 ……(1)写出此人乘车的次数m表示余额n的公式;(2)利用上述公式,计算:乘了13次车还剩多少元?(3)此人最多能乘几次车?【分析】①根据表中的数据可知余额n等于50减去0.8乘以乘车的次数用m;②把m=13代入即可求值;③用总钱数除以0.8所得的最大整数即为最多能乘的次数车.【解答】①n=50-0.8m;②当m=13时,n=50-0.8×13=39.6(元);③当n=0时,50-0.8m=0.解出,m=62.5∵m为正整数∴最多可乘62次.5、17个连续整数的和是306,那么紧接在这17个数后面的那17个连续整数的和等于_____________.【分析】从题中所给信息可以知道,设17个连续整数的任意一个数位x,则在他后面第17个数为17+x,从而可以求出这17个数后面的那17个连续整数的和.【解答】由题意可知:17个连续整数的和是306,那么紧接着后面的那17个连续整数的和为306+17×17=595.故填595.6、(1)填写下表,并观察下列两个代数式的值的变化情况.n 1 2 3 4 5 6 7 85n+6n2(2)随着n的值逐渐变大,两个代数式的值如何变化?(3)估计一下,哪个代数式的值先超过100?【分析】(1)逐个求值,将结果准确计算即可.(2)随着n的值逐渐变大,5n逐渐变大,所以5n+6也逐渐变大;n2也逐渐变大.(3)当n=19时,5n+6=101,而当n=10时,n2=100,所以n2的值先超过100.【解答】(1)填表:第一排依次填11,16,21,26,31,36,41,46,第二排依次填1,4,9,16,25,36,49,64.(2)随n的值逐渐增大,两代数式的值也相应增大.(3)n2的值先超过100.7、假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是()号.A.28 B.23 C.20 D.13 【分析】根据编码的方法分析,在1~30中,除以5余3的数有8,13,18,23,28,而其中除以7余6的数只有13,故可求得答案.【解答】∵1~30中,除以5余3的有:8,13,18,23,28,1~30中,除以7余6的有:13,20,27,∴刻的数是36的钥匙所对应的原来房间应该是13.故选D.8、下列说法正确的有()①-mn2+3n2m-5+2m3n2是五次四项式②3a-2的相反数是-3a+2③5πR2的次数是 3 ④34x3是7次单项式.A.1个B.2个C.3个D.4个【分析】根据多项式次数及项数的定义,相反数的定义,单项式次数的定义,分别进行各项的判断即可.【解答】①①-mn2+3n2m-5+2m3n2是五次四项式,正确;②3a-2的相反数是-3a+2,正确;③5πR2的次数是2,原说法错误,故本选项错误;④34x3是3次单项式,原说法错误,故本选项错误;综上可得:①②正确.故选B.9、多项式-x3+3的次数和项数分别为()A.-1,3 B.-1,2 C.3,2 D.3,4【分析】多项式-x3+3的最高次项为-x3,常数项为3,故为三次二项式.【解答】多项式-x3+3的次数和项数分别为3,2.故选C.10、对于多项式22t2+3t-1,下列说法中不正确的是()A.它是关于t的二次三项式B.当t=-1时,此多项式的值为0C.它的常数项是-1D.二次项的系数是2【分析】A、根据多项式的次数和项数的定义即可判定是否正确;B、把t=-1代入多项式计算即可求出多项式的值,然后即可判定是否正确;C、D、根据多项式各项的定义可以判定是否正确.【解答】A、多项式22t2+3t-1是二次三项式,故选项正确;B、当t=-1时,此多项式的值为4-3-1=0,故选项正确;C、它的常数项是-1,故选项正确;D、二次项的系数是22=4,故选项错误.故选D.11、按某种标准,单项式5x2y和多项式a2b+2ab2-5属于同一类,则下列哪一个多项式也属于此类()A.3x3+2xy4B.x2-2 C.abc-1 D.m2+2mn+n2【分析】观察单项式5x2y和多项式a2b+2ab2-5,发现它们的次数都是3次,因此可以属于同一类,然后找出四个选项中的三次多项式即可.【解答】∵单项式5x2y和多项式a2b+2ab2-5的次数都是3次,又∵多项式3x3+2xy4的次数为4;x2-2的次数为2;abc-1的次数为3;m2+2mn+n2的次数为2;∴多项式abc-1的次数与单项式5x2y和多项式a2b+2ab2-5的次数相同.故选C.12、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.13、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y 【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.14、对于一个六次多项式,它的任何一项的次数()A.都小于6 B.都等于6 C.都不小于6 D.都不大于6 【分析】六次多项式,即其次数最高次项的次数六次.也就是说,每一项都可以是六次,也可以低于六次,但不可以超过六次.【解答】一个六次多项式,它的任何一项的次数都不大于6.故选D.15、若m,n为自然数,则多项式x m-y n-4m+n的次数应当是()A.m B.nC.m+n D.m,n中较大的数【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m,n均为自然数,而4m+n是常数项,所以多项式的次数应该是x,y的次数,由此可以确定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m-y n-4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.16、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选B.17、当a为何值时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.【分析】由于(2-7a)x3-3ax2-x+7是关于x的二次三项式,则需满足2-7a=0且-3a≠0,根据以上两点可以确定a的值.【解答】∵化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式,∴2-7a=0且-3a≠0,∴a=27且a≠0,综上所述,a=27.故当a=27时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.。