六年级数学体积
- 格式:doc
- 大小:166.00 KB
- 文档页数:2
第5课时体积和容积的认识[教学内容]苏教版义务教育教科书六年级上册第10~11页例6、例7,试一试和练一练,第14页练习三第1~4题。
[教学目标]1.使学生经历观察、操作、猜测、验证正等活动,体会物体是占有空间的,而且占有的空间是有大小的,能理解体积和容积的意义,能直观比较物体体积或容器容积的大小。
2.使学生在概念建立的过程中,感受空间与空间大小,体会实验、观察、比较对于学习数学的作用,进一步积累几何学习的经验,培养观察、操作、概括和想象等思维能力,发展空间观念。
3.使学生进一步体会数学活动中探索的乐趣,产生对数学学习的积极情感,养成独立思考、主动交流的学习习惯。
[教学重点]理解体积和容积的意义[教学难点]体会并区分体积和容积的意义。
[教学准备]1.教师准备时令水果;玻璃杯若干个;学生每人准备12个同样大小正方体。
2.多媒体课件;布置学生进行课前预习,完成相关课后练习。
[教学过程]3分钟小讲师一、导入新课1.谈话:通过课前预习,知道我们今天要学习什么内容?2.揭示课题:体积和容积3.出示预习任务还记得课前老师给大家布置了哪些预习任务?预习任务:(1)自主阅读数学书第10、11页例6、7,圈画出重点内容,说说体积和容积的含义。
(2)独立完成书上试一试、练一练及练习三第1-4题,体会物体的体积与容积的区别,尝试用文字或画图表达出来。
引导:你觉得我们是直接汇报预习效果,还是先在小组里交流、讨论一下再汇报?[设计说明:提前布置预习任务,引导学生有针对性的进行新知自学,培养学生的自学能力,及与同伴交流互通的意识,使学生会学习、真学习。
]二、预习汇报,认识体积和容积1.结合例6,认识体积(1)认识空间。
提问:谁能结合例6,谈谈什么是体积?引导:你能利用课件演示或实物操作,让大家看的能明白一些吗?提问:左杯中的水倒入右杯,为什么还剩下一些水?这个实验说明什么?揭示:物体占有空间。
(2)认识空间大小在两个同样大的玻璃杯里分别放一个桃和一个荔枝,再往这两个杯里倒满水。
小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
六年级上册数学试卷体积和容积阶段练习苏教版1 填空.(1)()叫物体的体积.(2)把石块没入水中(水未溢出),水面上升部分的体积确实是石块的().(3)把一块橡皮泥先捏成一个长方体,再捏成一个正方体,长方体和正方体的()相等.(4)冰箱、手机、微波炉三种物品相比,()的体积最大,()的体积最小.【答案】(1)物体所占空间的大小(2)体积(3)体积(4)冰箱手机【解析】(1)物体所占空间的大小(2)体积(3)体积(4)冰箱手机2 辨一辨。
(对的画“√”,错的画“×”)(1)正方体的体积比长方体的体积大。
()(2)所有的物体都有体积。
()(3)物体的体积越大,容积也就越大。
()(4)水杯中装了半杯牛奶,牛奶的体积确实是水杯的容积。
()(5)把两个完全相同的长方体拼成一个大长方体,体积和表面积都不变。
()【答案】(1)×(2)√(3)×(4)×(5)×【解析】(1)×(2)√(3)×(4)×(5)×3 选一选。
(将正确答案的序号填在括号里)(1)冰箱的体积()它的容积。
①大于②小于③等于(2)如图所示,用相同的小正方体搭成的两个长方体,它们的体积()。
①一样大②第一个大③第二个大(3)做一个汽油箱,要用多少铁皮,是求油箱的();那个油箱占多大的空间是求油箱的();油箱能装多少汽油是求油箱的()。
①体积②容积③表面积(4)假如一个水杯最多装水400毫升,我们就说那个水杯的()是400毫升。
①体积②容积③表面积【答案】【解析】(1)①(2)③(3)③①②(4)②4 用大小相同的小正方形搭一搭,谁搭的长方体体积大?【答案】笑笑搭的长方体体积大【解析】笑笑搭的长方体体积大5 填上适当的体积或容积单位。
(1)花瓶的容积大约是250()。
(2)消毒柜的容积约是220()。
(3)一部手机的体积约是50()。
(4)哈密瓜的体积约是8()。
第3讲巧算体积【知识梳理】长方体体积=长×宽×高正方体体积=棱长×棱长×棱长长方体或正方体体积=底面积×高(或横截面积×长)在长方体与正方体的体积(容积)问题的解决中,除了要运用好数学课中学过的有关知识和方法外,还要对图形进行认真的观察和比较,特别要根据给出的图形或题目对图形的描述,想象出原来物体的形象,这样有助于问题的解决。
我们还需要掌握以下几点:1. 根据长方体展开图,确定长方体的长、宽、高。
2. 将一个物体变形为另一种物体,体积不变。
3. 物体浸入水中,排开水的体积等于物体的体积。
【典例精讲】【例1】如图,沿图中的虚线折叠,可以围成一个长方体,围成的这个长方体的体积是多少立方厘米?【训练1】将下图沿虚线折叠,可以围成一个长方体,求围成的这个长方体的体积。
【例2】把一个长方体切成两个长方体有三种切法。
如果切面与前、后两个面平行,切成的两个长方体的表面积的和比原来长方体的表面积增加432平方厘米;如果切面与左、右两个面平行,切成的两个长方体的表面积的和比原来长方体的表面积增加234平方厘米;如果切面与上、下两个面平行,切成的两个长方体的表面积的和比原来长方体的表面积增加624平方厘米。
求原来这个长方体的体积。
【训练2】一个长方体,不同的三个面的面积分别是96平方分米、84平方分米和56平方分米,这个长方体的体积是多少立方分米?【例3】有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?【训练3】有一个棱长为6厘米的正方体铁块,把它浸没在一个装有水的长方体容器中。
取出铁块后,水面下降了2厘米。
这个长方体容器的底面积是多少平方厘米?【例4】现有长方体容器A,它的长是30厘米,宽是20厘米,里面装有水,水的高度是24厘米;另有长方体容器B,长40厘米,宽30厘米,高20厘米,B容器是空的。
六年级数学体积部分
一、1.设计一个圆锥形烟囱帽,底面的半径是40厘米,高是30厘米,需要材料多少平方厘米?
2.从一个底面半径是3厘米,高是4厘米的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到一个如下图的几何体,求这个几何体的表面积是多少平方厘米?
二、1.一个圆柱形水桶,若将高改为原来的一半,底面直径为原来的2倍,可装水40千克。
那么原来的水桶可以装水多少千克?
2.一个圆形水桶,若将高改为原来的2倍,底面直径是原来的一半后,可装水40千克,那么原来的水桶可以装水多少千克?
三、1.一个盛有水的圆柱形容器,底面半径是5厘米,深20厘米,水深15厘米,现将一个底面半径是2厘米,高是17厘米的铁圆柱垂直放人水中容器中,求这时容器的水深是多少厘米?
2、一个盛有水的圆柱形容器底面半径为5厘米,深20厘米,水深15厘米,将一个底面半径为2厘米,高为1.8厘米的铁圆柱,垂直放入容器中,求这时容器的水深是多少厘米?
3、在一只底面半径是10厘米的圆柱形瓶中,水深8厘米,要在瓶中放入长和宽都是8厘米,高是15厘米的一款铁块,把铁块竖放在水中,水面上升几厘米?
四、1.一个圆柱的体积是84.78立方分米,它的侧面积等于两个底面积之和,这个圆柱表面积是多少平方分米?
2.一个圆柱体的体积是25.12立方分米,它的侧面积等于两个底面积之和,这个圆柱体表面积是多少平方分米?
五、某种饮料瓶的容积是3L,它的瓶身呈圆柱形(不包括瓶颈),现在瓶中装有一些饮料,正放时饮料高度是20厘米,倒放时剩余部分的高度是5里米,问瓶中现有饮料多少升?
2.一个酒瓶,里面深30厘米,底面半径是10厘米,瓶里深15厘米,把酒塞塞紧后,使瓶口向下倒立,这时酒深25厘米,酒瓶的容积是多少毫升?。