第三章 晶体结构
- 格式:ppt
- 大小:1.17 MB
- 文档页数:60
第三章晶体结构与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体①晶体:是内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的物质。
②非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。
2、晶体的特征(1)晶体的基本性质晶体的基本性质是由晶体的周期性结构决定的。
①自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。
b.“自发”过程的实现,需要一定的条件。
晶体呈现自范性的条件之一是晶体生长的速率适当。
②均一性:指晶体的化学组成、密度等性质在晶体中各部分都是相同的。
③各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。
④对称性:晶体的外形和内部结构都具有特有的对称性。
在外形上,常有相等的对称性。
这种相同的性质在不同的方向或位置上做有规律的重复,这就是对称性。
晶体的格子构造本身就是质点重复规律的体现。
⑤最小内能:在相同的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比较,其内能最小。
⑥稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
⑦有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。
⑧能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。
X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。
利用这种性质人们建立了测定晶体结构的重要试验方法。
非晶体物质没有周期性结构,不能使X射线产生衍射,只有散射效应。
(2)晶体SiO2与非晶体SiO2的区别①晶体SiO2有规则的几何外形,而非晶体SiO2无规则的几何外形。
②晶体SiO2的外形和内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。
③晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。
④晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性结构,不能使X射线产生衍射,只有散射效应。
高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较2、获得晶体的三条途径①熔融态物质凝固.②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出.3、晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”.4、晶胞中微粒数的计算方法-—均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学常见的晶胞为立方晶胞.立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
二、构成物质的四种晶体1、四种晶体的比较晶体类型分子晶体原子晶体金属晶体离子晶体质硬度一般较软很硬一般较硬,少部分软较硬熔沸点很低很高一般较高,少部分低较高溶解性相似相溶难溶于任何溶剂难溶于常见溶剂(Na等与水反应)大多易溶于水等极性溶剂导电传热性一般不导电,溶于水后有的导电一般不具有导电性(除硅)电和热的良导体晶体不导电,水溶液或熔融态导电延展性无无良好无物质类别及实例气态氢化物、酸(如HCl、H2SO4)、大多数非金属单质(如P4、Cl2)、非金属氧化物(如SO2、CO2,SiO2除外)、绝大多数有机物(有机盐除外)一部分非金属单质(如金刚石、硅、晶体硼),一部分非金属化合物(如SiC、SiO2)金属单质与合金(Na、Mg、Al、青铜等)金属氧化物(如Na2O),强碱(如NaOH),绝大部分盐(如NaCl、CaCO3等)2、晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体.金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
材料科学基础第三章典型晶体结构晶体是由原子、离子或分子组成的周期性排列的固体结构。
它们的结构对于材料的性质和应用影响深远。
本章将介绍一些典型的晶体结构,包括金属晶体结构、离子晶体结构和共价晶体结构。
金属晶体是由金属原子组成的。
金属晶体结构可以用球状原子模型来描述。
金属原子可以看作是球形的,它们通过共享电子形成金属键。
金属晶体中的原子排列成规律的三维结构。
最简单的金属晶体结构是体心立方结构和面心立方结构。
体心立方结构中,每个原子位于一个正方体的体心位置,而面心立方结构中,每个原子位于一个正方体的顶点和中心位置。
这两种结构有着较高的密度和较强的力学性能。
离子晶体是由阴离子和阳离子组成的。
它们的结构可以用离子球模型来描述。
在离子晶体中,阴离子和阳离子以静电引力相互吸引,并形成离子键。
离子晶体的结构可以是简单立方结构、体心立方结构或面心立方结构。
简单立方结构中,离子只在顶点处相互接触;体心立方结构中,每个离子位于正方体的顶点和体心位置;面心立方结构中,每个离子位于正方体的顶点、体心和面心位置。
离子晶体通常具有较高的熔点和硬度,且易于形成晶体缺陷。
共价晶体是由非金属原子组成的。
共价晶体的结构可以用化学键模型来描述。
共价键是由原子间的共享电子形成的。
共价晶体通常由原子通过共价键相互连接而成。
最简单的共价晶体结构是简单立方结构和面心立方结构。
简单立方结构中,每个原子通过共价键与六个邻近原子相连;面心立方结构中,每个原子通过共价键与六个邻近原子相连,并且每个原子还与另外三个与之共面的原子形成三键。
共价晶体通常具有较高的硬度和熔点,且具有较强的化学惰性。
在材料科学中,典型晶体结构对于探索材料性质和设计材料应用至关重要。
不同的晶体结构决定了材料的物理性质、化学稳定性和机械性能。
通过研究晶体结构,科学家们可以为特定应用设计和制造材料,以满足不同领域的需求。
总之,本章介绍了一些典型的晶体结构,包括金属晶体结构、离子晶体结构和共价晶体结构。
第三单元金属材料的晶体结构与结晶一、名词解释1.晶体晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。
2.晶格抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。
3.晶胞组成晶格的最小几何单元称为晶胞。
4.单晶体如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。
5.多晶体由许多晶粒组成的晶体称为多晶体。
6.晶界将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。
7.晶粒多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。
8.结晶通过凝固形成晶体的过程称为结晶。
9.变质处理变质处理就是在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的方法。
10.合金合金是指两种或两种以上的金属元素或金属与非金属元素组成的金属材料。
11.组元组成合金最基本的、独立的物质称为组元。
12.相相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。
13.组织组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。
14.定向结晶定向结晶是通过控制冷却方式,使铸件沿轴向形成一定的温度梯度,从而可使铸件从一端开始凝固,并按一定方向逐步向另一端结晶的过程。
15.滑移单晶体塑性变形时,在切应力作用下,晶体内部上下两部分原子会沿着某一特定的晶面产生相对移动,这种现象称为滑移。
二、填空题1.晶体与非晶体的根本区别在于原子排列是否规则。
2.金属晶格的基本类型有体心立方晶格、面心立方晶格与密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷三类。
4.金属结晶包括:晶核形成和晶核长大两个过程。
5.金属结晶的必要条件是过冷,金属的实际结晶温度不是一个恒定值。
6.金属结晶时冷却速度越大,过冷度越大,金属的实际结晶温度越低。
7.金属的晶粒愈细小,其强度、硬度越高,塑性、韧性也越好。