种群竞争模型研究
- 格式:pdf
- 大小:820.83 KB
- 文档页数:19
实例2动物种群的相互竞争与相互依存的模型在生物的种群关系中,一种生物以另一种生物为食的现象,称为捕食.一般说来,由于捕食关系,当捕食动物数量增长时,被捕食动物数量就逐渐下降,捕食动物由于食物来源短缺,数量也随之下降,而被捕食动物数量却随之上升.这样周而复始,捕食动物与被捕食动物的数量随时间变化形成周期性的震荡.田鼠及其天敌的田间种群消长动态规律也是如此.实验调查数据表明:无论是田鼠还是其天敌的数量都呈周期性的变化,天鼠与天敌的作用系统随时间序列推移,田鼠密度逐渐增加,其天敌随之增加,但时间上落后一步.由于天敌密度增加,则田鼠密度降低,而田鼠密度的降低,则其天敌密度亦减少,如此往复循环,从而形成一定的周期.试用数学模型来概括这一现象,并总结出其数量变化的近似公式.一问题分析及模型的建立设)(t x 和)(t y 分别表示t 时刻田鼠与其天敌的数量,如果单独生活,田鼠的增长速度正比于当时的数量,即x dtdx λ=而田鼠的天敌由于没有被捕食对象,其数量减少的速率正比于当时的数量,即y dtdy μ-=现在田鼠与其天敌生活一起,田鼠一部分遭到其天敌的消灭,于是以一定的速率α减少,减少的数量正比于天敌的数量,因此有x y dtdx )(αλ-=类似地,田鼠的天敌有了食物,数量减少的速率μ减少β,减少的量正比于田鼠的数量,因此有y x dtdy )(βμ--=上述公式,最后两个方程联合起来称为Volterra-Lot 方程,这里μλβα,,,均为正数,初始条件为0)0(,)0(y y x x ==现在通过实验调查所得到的数据如表,此数据为每隔两个月田间调查一次,得到的田鼠及其天敌种群数量的记录,数量的单位经过处理.试建立合理的数学模型.表田鼠种群数量记录29.733.132.569.1134.2236.0269.6162.269.639.834.020.722.037.657.6124.6225.0272.7195.794.541.925.710.922.533.548.292.5183.3268.5230.6115.5表田鼠天敌种群数量记录1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.91.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3二模型的求解Volterra-Lotok 方程的解析解即y x ,的显示解难求出,因此公式的参数方程不宜直接用Matlab 函数来拟合解,可用如下的方法来求其近似解.Volterra-Lotok 可转化为⎩⎨⎧+-=-=dtx y d dt y x d )(ln )(ln βμαλ在区间],[1i i t t -上积分,得ii i i i S t t x x 111)(ln ln αλ--=---ii i i i S t t y y 211)(ln ln βμ+--=---这里,⎰-=ii t t i ydt S 11,⎰-=ii t t i xdt S 22,m i ,,1 =于是得到方程组⎩⎨⎧==222111B P A B P A 这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-im m m S t t S t t S t t A 1121211011 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-m m mS t t S t t S t t A 212212012 ⎪⎪⎭⎫ ⎝⎛=αλ1P ⎪⎪⎭⎫ ⎝⎛-=βμ2P Tm m x x x x B ln ,,(ln 1011-= T m m y y y y B )ln ,,(ln 101-= 因此方程组参数的最小二乘解为111111)(B A A A P T T -=22122)(B A A A P T T -=由于)(t x 和)(t y 均为未知,因此21,S S i 用数值积分方法的梯形公式解)(21111--+-≈=⎰-i i i i t t i y y t t ydt S i i )(1121--+-==⎰-i i i i t t x x t t xdt S i i这样就可求得参数的近似值.模型参数求解的程序为clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X;Y];T=[0:2:60];for i=1:30A(i,1)=T(i+1)-T(i);A(i,[23])=((T(i+1)-T(i))/2)*[-(N(1,i+1)+N(1,i)),-(N(2,i+1)+N(2,i))];B(i,[12])=[log(N(1,i+1)/N(1,i)),log(N(2,i+1)/N(2,i))];end;A1=A(:,[13]);P1=inv((A1'*A1))*A1'*B(:,1)A2=A(:,[12]);P2=inv((A2'*A2))*A2'*B(:,2)上述结果代入Volterra-Lotok方程,用MATLAB函数ode45求方程在时间[0,60]的数值解.作图可看到田鼠及其天敌数量的周期震荡.求方程Volterra-Lotok的数值解的程序为定义函数vlok为[vlok.m]function dydt=vlok(T,Y)dydt=[(0.8765-0.5468*Y(2))*Y(1);(-0.1037+0.0010*Y(1))*Y(2)];clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X,Y];T=[0:2:60];[t,Y]=ode45(@vlok,[0:0.5:60],[29.71.6]);plot(t,Y(:,1)/100,'k');hold on;plot(t,Y(:,2),'-.k');title('田鼠及其天敌的Volterra-Lotok模型拟合曲线');xlabel('时间');ylabel('数量(只/每百)');gtext('田鼠');gtext('天敌');legend('田鼠','天敌');legend('田鼠','天敌');图田鼠及其天敌的模拟曲线实线和虚线分别为田鼠和天敌的实际值,田鼠的数量为y坐标乘以100.。
几类生物竞争模型的解全文共四篇示例,供读者参考第一篇示例:生物竞争是生态系统中普遍存在的现象,不同生物种群之间为了获取有限的资源或生存空间而展开斗争的过程。
生物竞争模型是对这种竞争过程进行数学建模和研究的方法,通过模型可以更好地理解和预测种群之间的相互作用及演化规律。
在生物学研究中,主要有几类生物竞争模型,包括物种竞争模型、资源竞争模型、捕食者-猎物模型等。
一、物种竞争模型:物种竞争模型用于描述不同种群之间的竞争关系,其中最著名的模型之一是Lotka-Volterra竞争模型。
该模型是由意大利数学家阿尔弗雷多·洛特卡和美国生物学家维托尔·沃尔泰拉于20世纪初提出的,它基于如下假设:1)只有两个物种竞争;2)竞争对个体出生和死亡的速率有影响。
Lotka-Volterra竞争模型可以用以下微分方程表示:\begin{cases}\frac{dx}{dt} = ax - bx^2 - cxy \\\frac{dy}{dt} = -fy + exy\end{cases}x和y分别表示两个竞争物种的种群数量,a、b、c、d为相关参数。
该模型可以描述两个种群在共享资源时的竞争关系,通过数值计算可以得到不同种群数量随时间的演化规律。
资源竞争模型用于研究不同种群对有限资源的竞争过程,其中最典型的模型是Rosenzweig-MacArthur资源竞争模型。
该模型基于几个基本假设:1)资源是有限的;2)种群的增长受到资源的限制;3)不同种群对资源的利用有差异。
Rosenzweig-MacArthur资源竞争模型可以用以下微分方程表示:三、捕食者-猎物模型:捕食者-猎物模型用于描述捕食者和猎物之间的相互作用,其中最著名的模型是Lotka-Volterra捕食者-猎物模型。
该模型基于捕食者和猎物种群数量之间的相互依赖关系,可以用以下微分方程表示:x表示猎物种群数量,y表示捕食者种群数量,a、b、c、d为相关参数。
两种群间的相互竞争摘要本文针对两种群间的竞争问题作了详细的论述,主体分为两部分,第一部分主要通过理论分析的方法来阐述模型,第二部分主要利用MATLAB通过数值分析的方法从另一个角度来阐述模型,两个部分相辅相成,从不同的角度对同一个模型进行分析,并在最后得到一致的结果。
另外本文在第一部分主要以理论的方式对模型进行数学上的描述,在第二部分主要以生物间的角度对模型进行描述,与此同时对第一部分作一个总结。
关键词:稳定性平面动力系统增广相空间轨线一、问题提出两种群竞争模型很好的描述了种群间的各种关系,而如果从发展的眼光来看待问题,我们不禁对两种群在未来很长一段时间内的状态产生兴趣,换句话说,我们要研究的是在无穷远的将来,两个种群的数量变化关系,这对我们进一步研究生物学的各种问题是有意义的。
二、基本假设假设1: 有甲乙两个种群,它们独自生存时的数量变化服从Logistic 规律。
假设2: 两种群一起生存时,乙种群对甲种群增长的阻滞作用与乙种群的数量成正比,甲种群对乙种群增长的阻滞作用与甲种群的数量也成正比。
三、问题分析根据“假设1”,我们容易得到方程组如下1122()(1)()(1)dx t x r x dt n dy t y r y dtn ⎧=-⎪⎪⎨⎪=-⎪⎩ (1) 其中()x t ,()y t 分别为甲乙两种群随时间变化的数量;1r ,2r 为它们的固有增长率;1n 和2n 为环境允许条件下,甲乙两种群的最大数量。
再由“假设2”,对方程组(1)变形,我们得到方程组如下11122212()(1)()(1)dx t x y r x s dt n n dy t x y r y s dt n n ⎧=--⎪⎪⎨⎪=--⎪⎩(2) 其中1s 的含义是,对于供养甲种群的资源而言,单位数量乙(相对于2n )的消耗为单位数量甲(相对于1n )消耗的1s 倍;2s 的含义是,对于供养乙种群的资源而言,单位数量甲(相对于1n )的消耗为单位数量乙(相对于2n )消耗的2s 倍。
种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。
为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。
本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。
一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。
种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。
1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。
令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。
查1700年至1961年共260年的人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。
2013年06月05日 15:31:35在地中海中每平方米就有30至40只水母,种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。
为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。
本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。
一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。
种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。
1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。
令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。
几类生物种群模型的定性研究
生物种群模型是研究生物种群数量动态变化的数学模型。
根据物种的
特点和研究的重点不同,生物种群模型可以分为多类。
1.多样性维持模型:
多样性维持模型关注的是物种之间的相互作用对物种多样性的影响。
其中,竞争-排除模型认为物种之间存在强烈的竞争关系,导致了物种数
量的稳定状态;互补-促进模型则认为物种之间存在互补关系,相互促进
物种的数量增加。
2.捕食者-猎物模型:
捕食者-猎物模型研究的是捕食者与猎物之间的相互作用对种群数量
的影响。
最经典的模型是Lotka-Volterra模型,它描述了捕食者和猎物
之间的动态关系,可以观察到周期性的数量变动。
3.分散子模型:
分散子模型主要研究的是物种的生殖与迁移对种群数量的影响。
例如,在孤立岛上的物种会受限于资源的有限性以及个体迁移的难度,因此种群
数量可能会下降。
4.生态位模型:
生态位模型主要研究的是一个物种在特定环境中的占据与竞争策略对
物种数量的影响。
生态位模型可以通过计算物种的竞争优势指数来推断物
种数量的变化。
总的来说,生物种群模型是研究生物种群数量动态变化的重要工具。
不同类型的模型从不同角度切入,揭示了生物种群数量变化的机制和规律,对于理解和保护生物多样性具有重要意义。
种内竞争与种间竞争数学模型实例分析1.1问题提出问题一:甲和乙两类群均能独立生存,比方将鲤鱼群放生,其在水中和卿鱼间的相互作用。
问题二:甲可以独自存活,但乙却只能依存甲而生活,这两者在一起能相互促进,令甲乙都得到存活,比方,植物能独自存活,但以花粉为食的昆虫却放须依靠其生存,而昆虫同时会帮助植物授粉推动其繁殖。
问题三:甲乙双方都无法独立生存,只能依靠彼此获得共生。
1.2问题分析(1)在某自然环境下只存在单类生物群体(即生态学中的种群)生存的情况下,人们往往通过Logistic 模型描述该种群数量产生的演变,公式为:)1()(N x rx t x -=')(t x 为种群为时刻t 的数量,r 代表固有增长率,N 代表环境资源下所能接受的最大种群量。
其中)1(N x -反应了一些种群对有限资源的消耗造成的影响其自身增长的作用,N x 代表着相对于N 来讲,单位数量中某个种群所消耗的食量(假设总量=1)(2)若同一自然环境内存在2个或多个种群,即其会产生竞争或依存关系,又或是供应链的关系,以下我们会由稳定转态角度展开对其依存关系的探讨。
1.3模型假设甲乙两种群各种独立于某个环境生存时,其数量产生的演变将遵守Logisti 规律。
设)(),(21t x t x 为两个种群数量,21,r r 为其固有增长率,21,N N 是它们的最大容量。
于是对于甲种群有:)1()(11111N x x r t x -=' 同理对于乙种群有 )1()(22221N x x r t x -=' 1.4模型建立与稳定性分析对于问题一:1、建立模型:)1()(22111111N x N x x r t x σ+-=' ④ )1()(11222222N x N x x r t x σ+-=' ⑤ 1σ的含义:单位数量乙(相对于2N )提供给甲的食量为单位数量(相对于1N )消耗食量的1σ2σ的含义:单位数量甲(相对于1N )提供给乙的食量为单位数量乙(相对于2N )消耗食量的1σ2、稳定性分析:3、数学建模过程与结果:根据数学实验以及数学建模的相关知识,利用数学软件Matlab 分别求解微分方程的图形和相轨线图形:Matlab 模型:function xdot=sheir(t ,x)n1=16;n2=1;r1=25;r2=18;q1=05;q2=16;xdot=[r1*x(1)*(1-(x(1)/n1)+q1*(x(2)/n2));r2*x(2)*(1-(x(2)/n2)+q2*(x(1)/n1))];>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode45('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x(t)'),gtext('y(t)'),>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode23('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),相轨线:4、由上图可知:甲乙可以彼此立生存。