种群相互竞争模型
- 格式:doc
- 大小:37.00 KB
- 文档页数:7
种间竞争模型概念种间竞争模型是描述群体内成员们互相竞争冲突,而不关注单个成员本身的内部群体模型。
它侧重于investigating种群中的某种竞争作用。
模型背景种间竞争模型的重要背景是正如科学家约瑟夫科尔劳克所指出的,植物的物种组成受限于个体成长环境中各种竞争,如氮摩尔定理在实证植物组成中的应用。
竞争的概念这启发研究者们思考种间竞争模型和它的竞争重要性。
种间竞争可分为有害竞争和无害竞争,有害竞争表明有某一物种成长会影响另一物种的生长,而无害竞争则是某物种增长时,影响其他物种生长的能力有限,两种竞争都可以改变群体结构。
竞争的结果种间竞争的结果可以是相互抵抗或相对平衡,有害竞争的结果往往是一种物种占优势,同时另一物种会面临消失,而无害竞争则可以形成一种轮回现象,每个物种都会持续在一定水平附近反复循环。
实证研究种间竞争模型已经在多个实证研究当中被应用,很多研究表明种间竞争参与者,不限于植物,对群体动态和多样性具有重要影响。
营养限制学习实验表明种间竞争会增强植物的营养效应和限制,同时也能增强植物在固氮料素和总碳水化合物累积方面的能力。
另外,也有研究表明,种间竞争能影响植物的立足力,而影响植物的立足力又会改变植物群落的多样性和数量。
结论总之,种间竞争模型是用于描述群体内其他成员展现出的竞争行为,及其结果。
它可能会影响人们最关心的生态系统,从而影响群体动态和多样性,还可能影响植物耐受性,生物多样性和群落结构。
因此,种间竞争模型可以帮助我们控制自然环境中的营养平衡,促进生物多样性平衡,抑制病原植物的发展,并防止种间竞争中的突变。
几类生物竞争模型的解全文共四篇示例,供读者参考第一篇示例:生物竞争是生态系统中普遍存在的现象,不同生物种群之间为了获取有限的资源或生存空间而展开斗争的过程。
生物竞争模型是对这种竞争过程进行数学建模和研究的方法,通过模型可以更好地理解和预测种群之间的相互作用及演化规律。
在生物学研究中,主要有几类生物竞争模型,包括物种竞争模型、资源竞争模型、捕食者-猎物模型等。
一、物种竞争模型:物种竞争模型用于描述不同种群之间的竞争关系,其中最著名的模型之一是Lotka-Volterra竞争模型。
该模型是由意大利数学家阿尔弗雷多·洛特卡和美国生物学家维托尔·沃尔泰拉于20世纪初提出的,它基于如下假设:1)只有两个物种竞争;2)竞争对个体出生和死亡的速率有影响。
Lotka-Volterra竞争模型可以用以下微分方程表示:\begin{cases}\frac{dx}{dt} = ax - bx^2 - cxy \\\frac{dy}{dt} = -fy + exy\end{cases}x和y分别表示两个竞争物种的种群数量,a、b、c、d为相关参数。
该模型可以描述两个种群在共享资源时的竞争关系,通过数值计算可以得到不同种群数量随时间的演化规律。
资源竞争模型用于研究不同种群对有限资源的竞争过程,其中最典型的模型是Rosenzweig-MacArthur资源竞争模型。
该模型基于几个基本假设:1)资源是有限的;2)种群的增长受到资源的限制;3)不同种群对资源的利用有差异。
Rosenzweig-MacArthur资源竞争模型可以用以下微分方程表示:三、捕食者-猎物模型:捕食者-猎物模型用于描述捕食者和猎物之间的相互作用,其中最著名的模型是Lotka-Volterra捕食者-猎物模型。
该模型基于捕食者和猎物种群数量之间的相互依赖关系,可以用以下微分方程表示:x表示猎物种群数量,y表示捕食者种群数量,a、b、c、d为相关参数。
两种群间的相互竞争摘要本文针对两种群间的竞争问题作了详细的论述,主体分为两部分,第一部分主要通过理论分析的方法来阐述模型,第二部分主要利用MATLAB通过数值分析的方法从另一个角度来阐述模型,两个部分相辅相成,从不同的角度对同一个模型进行分析,并在最后得到一致的结果。
另外本文在第一部分主要以理论的方式对模型进行数学上的描述,在第二部分主要以生物间的角度对模型进行描述,与此同时对第一部分作一个总结。
关键词:稳定性平面动力系统增广相空间轨线一、问题提出两种群竞争模型很好的描述了种群间的各种关系,而如果从发展的眼光来看待问题,我们不禁对两种群在未来很长一段时间内的状态产生兴趣,换句话说,我们要研究的是在无穷远的将来,两个种群的数量变化关系,这对我们进一步研究生物学的各种问题是有意义的。
二、基本假设假设1: 有甲乙两个种群,它们独自生存时的数量变化服从Logistic 规律。
假设2: 两种群一起生存时,乙种群对甲种群增长的阻滞作用与乙种群的数量成正比,甲种群对乙种群增长的阻滞作用与甲种群的数量也成正比。
三、问题分析根据“假设1”,我们容易得到方程组如下1122()(1)()(1)dx t x r x dt n dy t y r y dtn ⎧=-⎪⎪⎨⎪=-⎪⎩ (1) 其中()x t ,()y t 分别为甲乙两种群随时间变化的数量;1r ,2r 为它们的固有增长率;1n 和2n 为环境允许条件下,甲乙两种群的最大数量。
再由“假设2”,对方程组(1)变形,我们得到方程组如下11122212()(1)()(1)dx t x y r x s dt n n dy t x y r y s dt n n ⎧=--⎪⎪⎨⎪=--⎪⎩(2) 其中1s 的含义是,对于供养甲种群的资源而言,单位数量乙(相对于2n )的消耗为单位数量甲(相对于1n )消耗的1s 倍;2s 的含义是,对于供养乙种群的资源而言,单位数量甲(相对于1n )的消耗为单位数量乙(相对于2n )消耗的2s 倍。
种内竞争与种间竞争数学模型实例分析1.1问题提出问题一:甲和乙两类群均能独立生存,比方将鲤鱼群放生,其在水中和卿鱼间的相互作用。
问题二:甲可以独自存活,但乙却只能依存甲而生活,这两者在一起能相互促进,令甲乙都得到存活,比方,植物能独自存活,但以花粉为食的昆虫却放须依靠其生存,而昆虫同时会帮助植物授粉推动其繁殖。
问题三:甲乙双方都无法独立生存,只能依靠彼此获得共生。
1.2问题分析(1)在某自然环境下只存在单类生物群体(即生态学中的种群)生存的情况下,人们往往通过Logistic 模型描述该种群数量产生的演变,公式为:)1()(N x rx t x -=')(t x 为种群为时刻t 的数量,r 代表固有增长率,N 代表环境资源下所能接受的最大种群量。
其中)1(N x -反应了一些种群对有限资源的消耗造成的影响其自身增长的作用,N x 代表着相对于N 来讲,单位数量中某个种群所消耗的食量(假设总量=1)(2)若同一自然环境内存在2个或多个种群,即其会产生竞争或依存关系,又或是供应链的关系,以下我们会由稳定转态角度展开对其依存关系的探讨。
1.3模型假设甲乙两种群各种独立于某个环境生存时,其数量产生的演变将遵守Logisti 规律。
设)(),(21t x t x 为两个种群数量,21,r r 为其固有增长率,21,N N 是它们的最大容量。
于是对于甲种群有:)1()(11111N x x r t x -=' 同理对于乙种群有 )1()(22221N x x r t x -=' 1.4模型建立与稳定性分析对于问题一:1、建立模型:)1()(22111111N x N x x r t x σ+-=' ④ )1()(11222222N x N x x r t x σ+-=' ⑤ 1σ的含义:单位数量乙(相对于2N )提供给甲的食量为单位数量(相对于1N )消耗食量的1σ2σ的含义:单位数量甲(相对于1N )提供给乙的食量为单位数量乙(相对于2N )消耗食量的1σ2、稳定性分析:3、数学建模过程与结果:根据数学实验以及数学建模的相关知识,利用数学软件Matlab 分别求解微分方程的图形和相轨线图形:Matlab 模型:function xdot=sheir(t ,x)n1=16;n2=1;r1=25;r2=18;q1=05;q2=16;xdot=[r1*x(1)*(1-(x(1)/n1)+q1*(x(2)/n2));r2*x(2)*(1-(x(2)/n2)+q2*(x(1)/n1))];>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode45('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x(t)'),gtext('y(t)'),>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode23('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),相轨线:4、由上图可知:甲乙可以彼此立生存。
⎪⎪⎭⎫ ⎝⎛--=221111111)(N x N x x r t x σ&实验3 种群的竞争与依存实验目的1. 研究两个种群相互竞争模型中的平衡点的稳定性,利用常微分方程的方法求出其平衡点,并运用常微分的知识判断平衡点的稳定性;2. 用常微分方程中的数值解法和Matlab 程序对平衡点的稳定性作出验证和分析,运用数形结合的方法,直观地从种群数量曲线图和种群相轨线图中观察、分析并验证两种群平衡点的稳定性。
实验内容及结果一、有甲乙两个种群,它们生存时数量变化均服从如下规律:1. 根据微分方程稳定性理论,计算微分方程的平衡点,并给出平衡点稳定的条件;答:根据微分方程解代数方程组:g(x1,x2)=r1x1(1-x1/N1-a1x2/N2)=0h(x1,x2)=r2x2(1-a2x1/N1-x2/N2)=0可得到四个平衡点:P1(N1,0),P2(0,N2),P3(N1(1-a1)/(1-a1a2),N2(1-a2)/(1-a1a2)),P4(0,0) 根据判断平衡点的稳定性准则:若p>0,q<0,则平衡点稳定。
若p<0或q>-,则平衡点不稳定2. 设1,8.1,6.1,6.1,5.2,5.0112111======N r N r σσ,时:(1)画出甲乙两个种群的数量21,x x 随时间t 的变化曲线;⎪⎪⎭⎫ ⎝⎛--=221122221)(N x N x x r t x σ&(2)并在相平面分析图上给出21,x x 初始数量为),1,1(),1,6.0(),1.0,1.0()5.1,5.1(时两个种群数量变化的相轨线。
3. 设4.1,8.1,6.0,1,5.2,3/4112111======N r N r σσ,时:(1)画出甲乙两个种群的数量21,x x 随时间t 的变化曲线;(2)并在相平面分析图上给出21,x x 初始数量为),1,1(),1.0,1.0()5.1,5.2(时两个种群数量变化的相轨线。
种群相互竞争模型种群相互竞争模型是一种描述不同物种之间相互作用的模型。
在这个模型中,物种之间存在着竞争关系,它们彼此争夺有限的资源,如食物、空间、水等。
这种竞争关系是一种自然选择,只有适应环境的物种才能生存下来。
本文将介绍种群相互竞争模型的基本概念和模型类型。
一、基本概念种群:指在一个生态系统中,属于同一物种的个体集合。
相互作用:指不同种群之间在一个生态系统中进行的各种生物和非生物之间的相互作用。
竞争:指不同物种之间为获得生存所需的资源而进行的相互斗争。
资源:指能够提供生存所需的物质和能量,如食物、水、空间等。
竞争系数:指物种之间通过竞争所占据的位置和利用资源的能力。
二、模型类型1. Lotka-Volterra 模型Lotka-Volterra 模型是经典的种群相互竞争模型,它假设两个物种之间的竞争是无限的。
该模型有两个方程,包括一个描述一种物种的增长率和一个描述两种物种之间的交互作用。
该模型的形式为:dN1/dt = r1N1 - a12N2N1dN2/dt = r2N2 - a21N1N2其中,N1 和 N2 分别是种群1和2的数量,r1和r2是它们的增长率,a12和a21 是它们之间的交互作用。
2. Gause 模型其中,Ntotal=N1+N2是两种物种的总数量,r1和r2分别是它们的增长率,K1和K2是种群1和2的最大容量。
c1和c2 是两个物种之间的竞争系数,它们表示在某个条件下,一个物种的存在要比另一个物种更具有竞争力。
3. Ricker模型Ricker模型是一种离散的种群相互竞争模型,它包含了两个方程,描述了一种物种的数量随时间变化的规律。
Ricker模型的形式为:Nt+1 = Nt*exp(r(1-Nt/K)-a*Nc)其中,Nt是种群数量,r是增长率,K是种群的最大容量,a是物种之间的竞争系数,Nc是与物种竞争的物种数。
dN/dt = rN/(1 + aN)总结:种群相互竞争模型是描述不同物种之间相互作用的模型,包括竞争、相互作用、竞争系数、资源等基本概念。
物种竞争模型-概述说明以及解释1.引言1.1 概述在物种竞争模型研究领域,物种之间的相互作用和竞争关系一直是一个重要的研究方向。
物种竞争模型可以帮助我们理解生态系统中的物种相互作用和资源分配,并且对于预测和管理生态系统的稳定性和多样性也具有重要意义。
物种竞争是指同一生态位上的不同物种为获得有限资源而相互斗争的过程。
竞争可以是直接的,例如争夺食物和栖息地,也可以是间接的,例如通过影响环境条件或其他生物的生存和繁殖。
在一个生态系统中,物种之间的竞争关系既可以是对抗性的,也可以是互惠互利的。
物种竞争模型的研究,涉及到许多重要的概念和理论,例如生态位、资源分配、种群增长和演替等。
通过建立数学模型来描述物种竞争的过程,我们可以定量地分析不同物种之间的竞争关系,并研究这些关系对生态系统动态和稳定性的影响。
物种竞争模型在生态学、进化生物学和环境保护等领域中都有广泛的应用。
它们可以用于解释物种多样性的形成和维持机制,预测物种的分布和演变,评估物种对环境变化的响应能力,以及制定生物多样性保护和生态系统恢复的策略。
本篇文章将详细介绍物种竞争模型的基本概念和理论,并探讨物种竞争的影响因素。
同时,我们还将总结现有的竞争模型应用案例,并展望未来物种竞争模型研究的发展方向。
在接下来的章节中,我们将逐步展开讨论,希望通过本文的阐述,能够增进对物种竞争模型的理解,促进相关领域的研究和应用的发展。
1.2 文章结构:本文将按照以下结构进行叙述和讨论。
第一部分是引言,包括对物种竞争模型的概述、文章结构和目的的介绍。
通过引言,读者可以了解本文的主要内容和研究目的,为后续的正文部分做好铺垫。
第二部分是正文,主要分为两个小节。
首先,将介绍物种竞争模型的基本概念和背景知识,包括不同竞争模型的定义、应用范围和研究方法等。
在这一节中,将重点讨论各种竞争模型的特点和适用性,以及它们在实际生态系统中的应用情况。
接下来,将介绍物种竞争的影响因素。
物种之间的竞争关系受到多种因素的影响,包括资源可利用性、环境条件、种群密度和物种间的相互作用等。
Lotk1-V olterr1模型逻辑斯谛模型为:dN/dt=rN(1-N/K)上式是对于单物种而言,对于两个互相竞争的物种1、2,我们引入竞争系数α、β,其中α是物种2对物种2的竞争系数,可理解为每个物种2个体所占的空间相当于α个物种1个体,同理得到β。
则逻辑斯谛模型可变为:对于物种1:dN 1/dt=r 1N 1(1-N 1/K 1-αN 2/K 1)……① 对于物种2:dN 2/dt=r 2N 2(1-N 2/K 2-βN 1/K 2)……② 方程式①和②即为Lotk1-V olterr1的种间竞争模型。
任何生态系统都是趋向于平衡的,同理两个物种竞争也会趋向于平衡。
当物种1与物种2达到平衡时,物种1与物种2的种群增长率为0,即dN 1/dt=0,dN 2/dt=0,方程式①和②变为:r 1N 1(1-N 1/K 1-αN 2/K 1)=0−−−→−≠≠01,01N r 1-N 1/K 1-αN 2/K 1=0……③ r 2N 2(1-N 2/K 2-βN 1/K 2)=0−−−→−≠≠02,02N r 1-N 2/K 2-βN 1/K 2=0……④方程式③和④中K 1、K 2、α、β对于一个确定的系统都是已知的,因此为了方便观察理解,对于方程式③和④以N 1为横坐标,N 2为纵坐标做图得:图1 Lotk1-V olterr1竞争模型所产生的物种1和物种2的平衡线(a)物种1的平衡线(b)物种2的平衡线因为坐标横轴上K1与K2/β有两种大小关系,纵轴上也有两种情况,所以将(a)、(b)两图相互叠合起来,就可以得到2×2四种结果:图2 Lotk1-V olterr1竞争模型的行为所产生的4种可能结局现以图(a)为例,说明物种1与物种2的数量变动情况:同理可得到图(b)(c)(d):从图中可以得出结论:(a) 当K1>K2/β,K2<K1/α时,物种1取胜,物种2被排除。
直观地说,在K2-K2/β线右边物种2已经超过环境容纳量而停止生长,而物种1能继续生长因此结果是物种1取胜。
⎪y(t)=r2y(1-s2x-y)⎪⎪n1n2⎩数学实验设计课题:两种群相互竞争模型如下:⎧x yx(t)=r1x(1--s1)⎨⎪n1n2其中x(t),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。
s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。
分析:这里用x(t)表示甲种群在时刻t的数量,即一定区域内的数量。
y(t)表示乙种群在时刻t的数量。
假设甲种群独立生活时的增长率(固有增长率)为r1,则x(t)/x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。
这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。
另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。
则我们可以得到如下模型:x(t)=r1*x*(1-x/n1-s1*y/n2)同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2)如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。
对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB软件求其数值解;问题一:设r1=r2=1,n1=n1=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。
编写如下M文件:function xdot=jingzhong(t,x)r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x;然后运行以下程序:ts=0:0.1:10;x0=[10,10];[t,x]=ode45(@jingzhong,ts,x0);[t,x]plot(t,x),grid,gtext('\fontsize{12}x(t)'),gtext('\fontsize {12}y(t)'),pause,plot(x(:,1),x(:,2)),grid,xlabel('x'),ylabel('y')得到10年间甲、乙两种群数量变化的图象为:100908070 60 50 40 30 20 10 0x(t)01234y(t)5678910相图为:252015y105102030405060708090100x结论:当t充分大时,x和y的数量悬殊变大,最终是一方灭绝,一方繁荣。
大学《数学模型》实验实验报告一、实验目的1.学会编写程序段。
2.能根据m文件的结果进行分析。
3.根据图像进行比较和分析。
二、实验要求8-1捕鱼业的持续收获运行下面的m文件,并把相应结果填空,即填入“_________”。
clear;clc;%无捕捞条件下单位时间的增长量:f(x)=rx(1-x/N)%捕捞条件下单位时间的捕捞量:h(x)=Ex%F(x)=f(x)-h(x)=rx(1-x/N)-Ex%捕捞情况下渔场鱼量满足的方程:x'(t)=F(x)%满足F(x)=0的点x为方程的平衡点%求方程的平衡点syms r x N E; %定义符号变量Fx=r*x*(1-x/N)-E*x; %创建符号表达式x=solve(Fx,x) %求解F(x)=0(求根)%得到两个平衡点,记为:% x0=______________ , x1=___________x0=x(2);x1=x(1);%符号变量x的结构类型成为<2×1sym>%求F(x)的微分F'(x)syms x; %定义符号变量x的结构类型为<1×1sym>dF=diff(Fx,'x');dF=simple(dF) %简化符号表达式%得F'(x)=________________%求F'(x0)并简化dFx0=subs(dF,x,x0); %将x=x0代入符号表达式dFdFx0=simple(dFx0)%得F’(x0)=_______%求F’(x1)dFx1=subs(dF,x,x1)%得F’(x1)=________%若E<r,有F'(x0)<0,F'(x1)>0,故x0点稳定,x1点不稳定(根据平衡点稳定性的准则);%若E>r,则结果正好相反。
%在渔场鱼量稳定在x0的前提下(E<r),求E使持续产量h(x0)达到最大hm。
数学建模平时作业班级:0820862 学号:09姓名:武彩霞一、 Maltlhus 模型: 模型假设:记t 时刻人口的数量为)(t x ,假设人口是连续发生变化的,人口的增长率是常数 r ,如果不考虑环境资源和社会因素对人口的限制,和人口的迁入、迁出,试建立人口数量的变化规律。
已知;150)100(;100)0(==x x 求)150(x ,并图示模型曲线。
建立模型::rx dtdx= , 100)0(=x 由Matlab 软件容易解出这个方程:>> % Malthus 模型 syms x x0 rdsolve('Dx=r * x','x(0)=100') ans =100*exp(r*t) 即: rt e t x 100)(=由已知条件,利用Matlab 软件可以求出r ,>> syms rsolve('150=100*exp(r*100)') ans =1/100*log(3/2)然后 t=150 ,可以计算出 )150(x 。
利用Matlab 软件可以求出解: >> syms t f y>> f=100*exp(1/100*log(3/2)*t); >> subs(f,t,150)ans =183.7117即: )150(x =183.7117。
用Matlab 软件中的“plot ”命令画出图形:>> x=[0:1:100];>> y=100*exp(1/100*log(3/2)*x); >> plot(x,y,'-b')01002003004005006007008009001000100020003000400050006000xy指数增长模型拟合图形Logistic 模型: 模型假设:如果考虑环境资源和社会因素对人口的限制,考虑人口的迁入、迁出,试建立人口数量的变化规律。
种内竞争与种间竞争相互作用的Lotka-Volterra 模型Lotka-Volterra 模型(Lotka-Volterra 种间竞争模型)是logistic 模型(阻滞增长模型)的延伸。
现设定如下参数:N 1、N 2:分别为两个物种的种群数量 K 1、K 2:分别为两个物种的环境容纳量 r 1、r 2:分别为两个物种的种群增长率 从逻辑斯蒂模型可以得知: dN 1/dt=r 1N 1(1-N 1/K 1)上式中:N/K 表示在某区域内的种群生活空间(即已利用空间项),那么(1-N/K )就表示在该区域内种群生活没有涉及到的空间(即未利用空间项)。
如果不同物种的已利用空间项出现了重叠,那么“已利用空间项”还要将N2种群占用的空间计算在内,那么可以得到:dN 1/dt=r 1N 1(1-N 1/K 1-αN 2/K 1) (7)上式中,α代表物种2对物种1的竞争系数,也就是α个N 1个体所需要的生存空间和一个N2个体所需要的生存空间是相等的。
那么,β代表物种1对物种2的竞争系数,也就是β个N 2个体所需要的生存空间和一个N1个体所需要的生存空间是相等的。
则另有:dN 2/dt=r 2N 2(1-N 2/K 2-βN 1/K 2) (8) 如我们所知:如果在某一区域能够容纳K 1个N 1种群数量时,那么该种群每个个体给种群数量上升产生的负面作用即为1/K 1;同样的道理,N2种群内各个体对自身种群的增长抑制作用是21/K 。
同时,由(1)、(2)方程和α、β的定义中可知: N2种群内各个体对N1种群的影响:1α/K N1种群内各个体对N2种群的影响:2β/K由此可见,当物种2可用于抑制物种1时,可得出,物种2对物种1的影响超过了物种2对本身的影响,也就是211/K >α/K 。
整理后得:K 2>K 1/α,同理有: 物种2不能抑制物种1:K 2<K 1/α 物种1可以抑制物种2:K 1>K 2/β 物种1不能抑制物种2:K 1<K 2/β如此一来,竞争时,K1、K2、α以及β存在不同数值,便会造成下列四在N2种群达到怎样的密度之下,令N1种群能维持超过0水平,也就是说,各种群需要达到何种密度才将阻上止其他种群的增长?结论是,N2种群达到K1/α,N1就再也不能增长换言之,N1种群达到/βK2,N2便不再增长可以得到两个物种的各自的平衡线如下:叠合两平衡线,会得到四类结局:平衡指的是N1与N2的种群数量不会产生改变,也就是:N 1/dt=r1N1(1-N1/K1-αN2/K1)=0 (9)N 2/dt=r2N2(1-N2/K2-βN1/K2)=0 (10)合乎上述两个方程时,则种群之间达到平衡,焦点也就是平衡点。
§ 7 种 群 的 相 互 竞 争*[问题的提出] 当某个自然环境中只有一种生物的群体(生态学上称为种群)生存时,人们常用Logisdc 模型来描述这个种群数量的演变过程,即)(t x 是种群在时刻t 的数量,r 是固有增长率,N 是环境资源容许的种群最大数量,在1.5节和6.1节我们曾应用过这种模型.由方程(1)可以直接得到,0x =N 是稳定平衡点,即r ∞→时)(t x →N .从模型本身的意义看这是明显的结果.如果一个自然环境中有两个或两个以上种群生存,那么它们之间就要存在着或是相互竞争,或是相互依存,或是弱肉强食(食饵与捕食者)的关系.本节和下面两节将从稳定状态的角度分别讨论这些关系. 当两个种群为了争夺有限的同一种食物来源和生活空间而进行生存竞争时,最常见的结局是竞争力较弱的种群灭绝,竞争力较强的种群达到环境容许的最大数量.人们今天可以看到自然界长期演变成的这样的结局.例如一个小岛上虽然有四种燕子栖息,但是它们的食物来源各不相同,一种只在陆地上觅食,另两种分别在浅水的海滩上和离岸稍远的海中捕鱼,第四种则飞越宽阔的海面到远方攫取海味,每一种燕子在它各自生存环境中的竞争力明显的强于其他几种.本节要建立一个模型解释类似的现象,并分析产生这种结局的条件.[模型建立] 有甲乙两个种群,当它们独自在一个自然环境中生存时,数量的演变均遵从logistic 规律.记)(1t x ,)(2t x 是两个种群的数量,1r ,2r 是它们的固有增长率,1N ,2N 是它们的最大容量.于是对于种群甲有 其中因子⎪⎪⎭⎫ ⎝⎛-111N x 反映由于甲对有限资源的消耗导致的对它本身增长的阻滞作用,11N x 可解释为相对于1N 而言单位数量的甲消耗的供养甲的食物量(设食物总量为1).当两个种群在同一自然环境中生存时,考察由于乙消耗同一种有限资源对甲的增长产生的影响,可以合理地在因子⎪⎪⎭⎫ ⎝⎛-111N x 中再减去一项,该项与种群乙的数量2x (相对于2N 而言)成正比,于是得到种群甲增长的方程为这里1σ的意义是:单位数量乙(相对2N 而言)消耗的供养甲的食物量为单位数量甲(相对1N )消耗的供养甲的食物量的1σ倍.类似地,甲的存在也影响了乙的增长,种群乙的方程应该是对2σ可作相应的解释.在两个种群的相互竞争中1σ,2σ是两个关键指标.从上面对它们的解释可知,1σ >l 表示在消耗供养甲的资源中,乙的消耗多于甲,因而对甲增长的阻滞作用乙大于甲,即乙的竞争力强于甲.对2σ>l 可作相应的理解.一般地说,1σ与2σ之间没有确定的关系,但是可以把这样一种特殊情况作为较常见的一类实际情况的典型代表,即两个种群在消耗资源中对甲增长的阻滞作用与对乙增长的阻滞作用相同.具体地说就是:因为单位数量的甲和乙消耗的供养甲的食物量之比是l :1σ,消耗的供养乙的食物量之比是2σ:l ,所谓阻滞作用相同即1:1σ =2σ:1,所以这种特殊情形可以定量地表示为即1σ,2σ互为倒数.可以简单地理解为,如果一个乙消耗的食物是一个甲的1σ=k 倍,则一个甲消耗的食物是一个乙的2σ=l /k .下面我们仍然讨论1σ,2σ相互独立的一般情况,而将条件(4)下对问题的分析留给读者(习题3).[稳定性分析] 为了研究两个种群相互竞争的结局,即r+oo 时11(f), J2(r)的趋向,不必要解方程(2),(3)*,只需对它的平衡点进行稳定性分析.首先根据微分方程(2),(3)解代数方程组得到4个平衡点:因为仅当平衡点位于平面坐标系的第一象限时(1x ,2x ≥0)才有实际意义,所以对3P 而言要求1σ,2σ同时小于1,或同时大于1.按照判断平衡点稳定性的方法(见6,6节(18),(19)式)计算将4个平衡点p ,q 的结果及稳定条件列入表2.注意:按照6.6节(15)式给出的p>0,q>0得到的1P 的稳定条件只有2σ>l ,表2中的1σ<1是根据以下用相轨线分析的结果添加的.2P 的稳定条件2σ<l 有类似的情况.对于由非线性方程(2),(3)描述的种群竞争,人们关心的是平衡点的全局稳定(即不论初始值如何,平衡点是稳定的),这需要在上面得到的局部稳定性的基础上辅之以相轨线分析.在代数方程组(5)中记对于1σ,2σ的不同取值范围,直线0=ϕ和0=φ在相平面上的相对位置不同,图4给出了它们的4种情况.下面分别对这4种情况进行分析.1.1σ<l ,2σ>1.图4(1)中0=ϕ和0=φ两条直线将相平面(1x ,2x ≥0)划分为3个区域: 可以证明,不论轨线从哪个区域的任一点出发,∞→t 时都将趋向)0,(11N P .若轨线从1S 的某点出发,由(6)可知随着t 的增加轨线向右上方运动,必然进入2S ;若轨线从2S 的某点出发,由(7)可知轨线向右下方运动,那么它或者趋向1P 点,或者进入但是进入3S 是不可能的,因为,如果设轨线在某时刻1t 经直线0=ϕ进入3S ,则)(11t x=0,由方程(2)不难算出 由(7),(8)知)(12t x<0,故)(11t x >0,表明)(1t x 在1t 达到极小值,而这是不可能的,因为在2S 中1x >0,即)(1t x 一直是增加的;若轨线从3S 的某点出发,由(8)可知轨线向左下方运动,那么它或者趋向1P 点,或者进入2S 。
数学实验设计
课题:
两种群相互竞争模型如下:
()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ⎧
=--⎪⎪⎨
⎪=--⎪⎩
其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。
s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。
分析:
这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。
y(t)表示乙种群在时刻t 的数量。
假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。
这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。
另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。
则我们可以得到如下模型:
x(t)=r1*x*(1-x/n1-s1*y/n2)
同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2)
如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。
对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解;
问题一:
设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。
编写如下M文件:
function xdot=jingzhong(t,x)
r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x;
然后运行以下程序:
ts=0:0.1:10;
x0=[10,10];
[t,x]=ode45(@jingzhong,ts,x0);
[t,x]
plot(t,x),grid,
gtext('\fontsize{12}x(t)'),gtext('\fontsize {12}y(t)'),
pause,plot(x(:,1),x(:,2)),grid, xlabel('x'),ylabel('y')
得到10年间甲、乙两种群数量变化的图象为:
1
2
3
4
5
6
7
8
9
10
0102030405060708090
100
相图为:
10
20304050
60708090100
05
10
1520
25
x
y
结论:当t 充分大时,x 和y 的数量悬殊变大,最终是一方灭绝,一方繁荣。
如上述模型中,甲种群繁荣下去,乙种群很快灭绝。
问题二:
改变r1,r2,n1,n2,x0,y0,但s1,s2不变,(或保持s1<1,s2>1),计算并分析所得结果;若s1=1.5(>1),s2=0.7(<1)再分析结果,由此你的得到什么结论,请用各参数生态学上的含义作出解释。
分析:当s1,s2不变(或保持s1<1,s2>1)时
1
2
3
4
5
6
7
8
9
10
051015202530354045
50
当s1=1.5(>1),s2=0.7(<1)时
1
2
3
4
5
6
7
8
9
10
0102030405060708090
100
当s1,s2不变(或保持s1<1,s2>1)时总有甲种
群繁荣,乙种群灭绝。
而当s1=1.5(>1),s2=0.7(<1)时,有乙种群繁荣,甲种群灭绝。
因此我们得到:在两个种群的相互竞争中s1,s2是两个关键指标.从上面对它们的解释可知,s1 >l ,s2<1表示在消耗供养甲的资源中,乙的消耗多于甲,因而对甲增长的阻滞作用乙大于甲,即乙的竞争力强于甲. 问题三:
实验当s1=0.8(<1),s2=0.7(<1)时会有什么样的结果:当s1=1.5(>1),s2=1.7(>1)时又会有什么样的结果。
能解释这些结果吗?
分析:当s1=0.8(<1),s2=0.7(<1)时有如图:
012345678910
10
20
30
40
50
60
70
即甲、乙竞争激烈程度加剧,没有一方有明显优势;
当s1=1.5(>1),s2=1.7(>1)时又会有如图:
012345678910
10
20
30
40
50
60
70
80
说明当s1、s2都大于1时,竞争中有一方具有绝对优势。
本题中为甲有绝对优势;。