【步步高】2017版高考物理(全国通用)考前三个月配套课件+配套文档专题8 磁场对电流和运动电荷的作用
- 格式:doc
- 大小:1.51 MB
- 文档页数:20
倒数第6天 电路与电磁感应考点要求重温 考点45 欧姆定律(Ⅱ) 考点46 电阻定律(Ⅰ) 考点47 电阻的串联、并联(Ⅰ) 考点48 电源的电动势和内阻(Ⅱ) 考点49 闭合电路的欧姆定律(Ⅱ) 考点50 电功率、焦耳定律(Ⅰ) 考点51 电磁感应现象(Ⅰ) 考点52 磁通量(Ⅰ) 考点53 楞次定律(Ⅱ)考点54 法拉第电磁感应定律(Ⅱ) 考点55 自感、涡流(Ⅰ)考点56 交变电流、交变电流的图象(Ⅰ)考点57 正弦交变电流的函数表达式、峰值和有效值(Ⅰ) 考点58 理想变压器(Ⅱ) 考点59 远距离输电(Ⅰ) 要点方法回顾1.如果电路中电流为I ,用电器的电阻为R ,用电器两端电压为U .请你根据能量守恒定律就纯电阻和非纯电阻电路讨论U 与IR 的关系,由此总结I =UR 的适用条件.答案 纯电阻电路中,电能只转化为电热,则有 UIt =I 2Rt ,故I =UR非纯电阻电路中,电能转化为电热和其他形式的能,则 UIt =I 2Rt +E 其他,故U >IR由此可见,I =UR 只适用于把电能全部转化为电热的电器,即只适用于纯电阻电路.2.描述电源的功率有三个,它们分别是电源的总功率、电源内部消耗的功率和电源的输出功率,如何求解三个功率,它们之间的关系如何? 答案 (1)电源的总功率P 总=EI . (2)电源内部消耗的功率P 内=I 2r . (3)电源的输出功率P 出=P 总-P 内=UI .3.在如图1所示的U -I 图象中,图线a 、b 表示的含义有什么不同?图1答案 (1)对电源有:U =E -Ir ,如题图中a 线. (2)对定值电阻有:U =IR ,如题图中b 线.(3)说明:①图中a 线常用来分析测量电源电动势和内阻的实验数据.②图中矩形OABD 、OCPD 和ABPC 的“面积”分别表示电源的总功率、输出功率和内阻消耗的功率.4.比较下面的典型电路,并在表格空白处填上合适的文字或字母.答案 欧姆定律表达式自上而下为: I =E R +r ;E =U 内+U 外或E =Ir +U 外; 电流稳定后I =ER +r ;i =e R +r ,I =E R +r ,I m =E mR +r . 能量转化情况自上而下依次为: 电能→内能;电能→内能+其他能; 电能→内能+电场能;电能→内能.5.对电路中的特殊元件如何进行等效处理是简化电路的关键之一,请根据你的体会和所学的知识,完成下面的表格.答案①②③④所在支路视作断路;⑤⑥⑦⑧所在支路视作短路;⑨视作理想电压表与其内阻并联;⑩视作理想电流表与其内阻串联.6.你能叙述分析直流电路动态问题的程序法吗?电路动态分析的技巧有哪些?答案程序法:基本思路是“部分—整体—部分”,即R局(增大或减小)→R总(增大或减小)→I总(减小或增大)→U外(增大或减小)→I部分、U部分的变化.技巧:(1)任一电阻R阻值增大,与之串联(或并联)的电路的总电阻增大.(2)任一电阻R阻值增大,必将引起与之并联的支路中电流I并、电压U并的增大,与之串联的各电路电流I串、电压U串的减小.7.请你总结故障电路的特点与分析方法.答案用电器不能正常工作,断路的表现为电流为零,短路的表现为电流不为零而两点之间电压为零.用电压表测量电路两点间的电压,若电压表有读数,说明这两点与电源之间的连线是通路,断路故障点就在这两点之间;若电压表无读数,说明这两点与电源之间的连线是断路,断路故障就在这两点与电源的连线上.8.产生感应电流的条件是什么?感应电流的方向有哪几种判定方法?感应电流的大小如何表示?答案(1)产生感应电流的条件是穿过闭合电路的磁通量发生变化.(2)感应电流的方向判断①从“阻碍磁通量变化”的角度来看,表现出“增反减同”,即若磁通量增加时,感应电流的磁场方向与原磁场方向相反;若磁通量减少时,感应电流的磁场方向与原磁场方向相同.②从“阻碍相对运动”的角度来看,表现出“来拒去留”,即“阻碍”相对运动.③从“阻碍自身电流变化”角度来看,就是自感现象.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”.。
电磁感应中的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看做电学对象(因为它相当于电源),又可看做力学对象(因为有感应电流而受到安培力),而感应电流I 和导体棒的速度v 是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路 (1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I =Bl v R +r. (2)受力分析:导体棒受到安培力及其他力,安培力F 安=BIl =B 2l 2v R +r,根据牛顿第二定律列动力学方程:F 合=ma . (3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F 合=0.例1 如图1甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略,让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.图1(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及加速度的大小;(3)求在下滑过程中,ab 杆可以达到的最大速度.答案 (1)见解析图 (2)BL v R g sin θ-B 2L 2v mR(3)mgR sin θB 2L 2解析 (1)如图所示,ab 杆受重力mg ,竖直向下;支持力F N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =BL v , 此时电路中电流I =E R =BL v R, ab 杆受到的安培力F 安=BIL =B 2L 2v R, 根据牛顿第二定律,有ma =mg sin θ-F 安=mg sin θ-B 2L 2v Ra =g sin θ-B 2L 2v mR(3)当a =0时,ab 杆有最大速度 v m =mgR sin θB 2L 2.用“四步法”分析电磁感应中的动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:(1)进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源的参数E 和r .(2)进行“路”的分析——分析电路结构,明确串、并联的关系,求出相关部分的电流大小,以便求解安培力.(3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力.(4)进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.变式题组1.(2015·浙江10月选考·22)如图2甲所示,质量m =3.0×10-3 kg 的“”形金属细框竖直放置在两水银槽中,“”形框的水平细杆CD 长l =0.20 m ,处于磁感应强度大小B 1=1.0 T ,方向水平向右的匀强磁场中.有一匝数n =300匝,面积S =0.01 m 2的线圈通过开关K 与两水银槽相连.线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B 2的大小随时间t 变化的关系如图乙所示.(g 取10 m/s 2)图2(1)求0~0.10 s 线圈中的感应电动势大小.(2)t =0.22 s 时闭合开关K ,若细杆CD 所受安培力方向竖直向上,判断CD 中的电流方向及磁感应强度B 2的方向.(3)t =0.22 s 时闭合开关K ,若安培力远大于重力,细框跳起的最大高度h =0.20 m ,求通过细杆CD 的电荷量.答案 (1)30 V (2)C →D 向上 (3)0.03 C解析 (1)由电磁感应定律E =n ΔΦΔt 得E =nS ΔB 2Δt=30 V (2)电流方向C →D ,B 2方向向上(3)由牛顿第二定律F =ma =m v -0Δt(或由动量定理F Δt =m v -0),安培力F =IB 1l ,ΔQ =I Δt ,v 2=2gh ,得ΔQ =m 2gh B 1l=0.03 C. 2.(2016·浙江10月学考·22)为了探究电动机转速与弹簧伸长量之间的关系,小明设计了如图所示的装置.半径为l 的圆形金属导轨固定在水平面上,一根长也为l 、电阻为R 的金属棒ab 一端与导轨接触良好,另一端固定在圆心处的导电转轴OO ′上,由电动机A 带动旋转.在金属导轨区域内存在垂直于导轨平面,大小为B 1、方向竖直向下的匀强磁场.另有。
选择题专练(五)1.物体由静止开始做直线运动,以图中F表示物体所受的合力,a表示物体的加速度,v表示物体的速度,x表示物体的位移,那么上下两图对应关系正确的是()答案 B解析图A中,由牛顿运动定律可知,加速度与合外力成正比,图A错误.图B中前半段时间,加速度是恒定的正值,速度均匀增大;后半段,加速度是恒定的负值,速度均匀减小,图B正确.图C中速度图象与时间轴所围的面积表示位移,前半段时间内位移应该一直增加,而下面对应的位移图象位移先增大后减小,图C错误.图D中前半段时间,速度均匀增大,对应的位移图象斜率逐渐增大,图D错误.2.如图1所示,开口向下的“∏”形框架,两侧竖直杆光滑固定,上面水平横杆中点固定一定滑轮,两侧杆上套着的两滑块用轻绳绕过定滑轮相连,并处于静止状态,此时连接滑块A 的绳与水平方向夹角为θ,连接滑块B的绳与水平方向的夹角为2θ,则A、B两滑块的质量之比为()图1A.2sin θ∶1B.2cos θ∶1C.1∶2cos θD.1∶2sin θ答案 C解析绳绕过定滑轮,绳中张力相等,对A :F T sin θ=m A g① 对B :F T sin 2θ=m B g②由①②得:m A m B =12cos θ,C 对. 3.如图2所示,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁距离L =1.4 m 、距窗子上沿h =0.2 m 处的P 点,将可视为质点的小物体以v 的速度水平抛出,小物体直接穿过窗口并落在水平地面上,取g =10 m/s 2.则v 的取值范围是( )图2A.v >7 m /sB.v <2.3 m/sC.3 m /s<v <7 m/sD.2.3 m /s<v <3 m/s答案 C解析 小物体做平抛运动,恰好擦着窗子上沿右侧穿过时v 最大.此时有L =v max t ,h =12gt 2,代入解得 v max =7 m/s ,恰好擦着窗口下沿左侧时速度v 最小,则有L +d =v min t ′,H +h =12gt ′2,解得v min =3 m /s ,故v 的取值范围是3 m/s<v <7 m/s ,C 正确. 4.(多选)美国航天局与欧洲航天局合作,发射的火星探测器已经成功登录火星.荷兰企业家巴斯兰斯多普发起的“火星一号”计划打算将总共24人送上火星,创建一块长期殖民地.若已知万有引力常量为G ,那么在下列给出的各种情景中,能根据测量的数据求出火星密度的是( )A.在火星表面使一个小球作自由落体运动,测出落下的高度H 和时间tB.火星探测器贴近火星表面做匀速圆周运动,测出运行周期TC.火星探测器在高空绕火星做匀速圆周运动,测出距火星表面的高度h 、运行周期T 和火星的半径D.观察火星绕太阳的匀速圆周运动,测出火星的直径D 和运行周期T答案 BC解析 设火星的质量为M ,半径为R ,则火星的质量M =43ρπR 3.在火星表面使一个小球做自由落体运动,测出下落的高度H 和时间t ,根据H =12gt 2,可知算出火星的重力加速度,根据G Mm R 2=mg ,可以算得M R 2的值,但无法算出密度,故A 错误;根据GMm R 2=m 4π2T 2R ,M =43ρπR 3,得:ρ=3πGT 2,已知T 就可算出密度,故B 正确;根据GMm (R +h )2=m 4π2T 2(R +h ),M =43ρπR 3,得M =4π2(R +h )3GT 2,已知h ,T ,R 就可算出密度,故C 正确;观察火星绕太阳的圆周运动,只能算出太阳的质量,无法算出火星质量,也就无法算出火星密度,故D 错误.5.(多选)(2015·山东理综·39(1))14C 发生放射性衰变成为14N ,半衰期约5 700年.已知植物存活期间,其体内14C 与12C 的比例不变;生命活动结束后,14C 的比例持续减小.现通过测量得知,某古木样品中14C 的比例正好是现代植物所制样品的二分之一.下列说法正确的是( )A.该古木的年代距今约5 700年B.12C 、13C 、14C 具有相同的中子数C.14C 衰变为14N 的过程中放出β射线D.增加样品测量环境的压强将加速14C 的衰变答案 AC解析 因古木样品中14C 的比例正好是现代植物所制样品的二分之一,则可知经过的时间为一个半衰期,即该古木的年代距今约为5 700年,选项A 正确;12C 、13C 、14C 具有相同的质子数,由于质量数不同,故中子数不同,选项B 错误;根据核反应方程可知,14C 衰变为14N 的过程中放出电子,即放出β射线,选项C 正确;外界环境不影响放射性元素的半衰期,选项D 错误.6.(多选)如图3所示,将圆柱形强磁铁吸在干电池负极,金属导线折成上端有一支点、下端开口的导线框,使导线框的顶端支点和底端分别与电源正极和磁铁都接触良好但不固定,这样整个线框就可以绕电池轴心旋转起来.下列判断中正确的是( )图3A.线框能旋转起来,是因为电磁感应B.俯视观察,线框沿逆时针方向旋转C.电池输出的电功率大于线框旋转的机械功率D.旋转达到稳定时,线框中电流比刚开始转动时的大答案 BC 7.(多选)如图4所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为20 2 cm ,电阻不计,其左端连接一阻值为10 Ω的定值电阻.两导轨之间存在着磁感应强度为1 T 的匀。
第2讲 闭合电路欧姆定律一、串、并联电路的特点 1.特点对比2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大.自测1 教材P66第2题改编 一个量程为0~150 V 的电压表,内阻为20 kΩ,把它与一个大电阻串联后接在110 V 电路的两端,电压表的读数是5 V.这个外接电阻是( ) A.240 Ω B.420 kΩ C.240 kΩ D.420 Ω 答案 B二、电源 闭合电路的欧姆定律 1.电源 (1)电动势①计算:非静电力搬运电荷所做的功与搬运的电荷量的比值,E =Wq;②物理含义:电动势表示电源把其他形式的能转化成电能本领的大小,在数值上等于电源没有接入电路时两极间的电压. (2)内阻:电源内部导体的电阻. 2.闭合电路欧姆定律(1)内容:闭合电路中的电流跟电源的电动势成正比,跟内、外电阻之和成反比; (2)公式:I =E R +r (只适用于纯电阻电路);(3)其他表达形式①电势降落表达式:E =U 外+U 内或E =U 外+Ir ; ②能量表达式:EI =UI +I 2r . 3.路端电压与外电阻的关系(1)一般情况:U =IR =E R +r·R =E1+r R ,当R 增大时,U 增大;(2)特殊情况:①当外电路断路时,I =0,U =E ; ②当外电路短路时,I 短=Er,U =0.自测2 教材P63第4题改编 电源的电动势为4.5 V 、外电阻为4.0 Ω时,路端电压为4.0 V,若在外电路中分别并联一个6.0 Ω的电阻和串联一个6.0 Ω的电阻,则两种情况下的路端电压分别约为( ) A.4.3 V 3.72 V B.3.73 V 4.3 V C.3.72 V 4.3 V D.4.2 V 3.73 V答案 C三、电路中的功率 1.电源的总功率(1)任意电路:P 总=IE =IU 外+IU 内=P 出+P 内. (2)纯电阻电路:P 总=I 2(R +r )=E 2R +r.2.电源内部消耗的功率 P 内=I 2r =IU 内=P 总-P 出.3.电源的输出功率(1)任意电路:P 出=IU =IE -I 2r =P 总-P 内. (2)纯电阻电路:P 出=I 2R =E 2R (R +r )2=E 2(R -r )2R+4r .(3)纯电阻电路中输出功率随R 的变化关系 ①当R =r 时,电源的输出功率最大为P m =E 24r .②当R >r 时,随着R 的增大输出功率越来越小. ③当R <r 时,随着R 的增大输出功率越来越大.自测3 (多选)如图1所示,一直流电动机与阻值R =9 Ω的电阻串联在电源上,电源的电动势E =30 V,内阻r =1 Ω,闭合开关,用理想电压表测出电动机两端电压U =10 V,已知电动机线圈的电阻R M =1 Ω,则下列说法中正确的是( )图1A.通过电动机的电流为10 AB.电动机的输入功率为20 WC.电源的输出功率为4 WD.电动机的输出功率为16 W 答案 BD解析 根据闭合电路欧姆定律得回路中电流I =E -U R +r =30-109+1 A =2 A,故A 错误;电动机的输入功率为P 入=UI =10×2 W =20 W,故B 正确;电源的输出功率P 出=EI -I 2r =(30×2-22×1) W =56 W,故C 错误;电动机的输出功率P 出′=UI -I 2R M =(10×2-22×1) W =16 W,故D 正确.命题点一 电路的动态分析1.动态电路的特点断开或闭合开关、滑动变阻器的滑片移动、电阻增大或减小,导致电路电压、电流、功率等的变化.2.电路动态分析的两种方法(1)程序法:电路结构的变化→R 的变化→R总的变化→I总的变化→U端的变化→固定支路⎩⎪⎨⎪⎧并联分流I串联分压U→变化支路. (2)极限法:即因滑动变阻器滑片滑动引起的电路变化问题,可将滑动变阻器的滑片分别滑至两个极端去讨论.例1 (多选)(2018·天津市部分区上学期期末)如图2所示的电路中,电源电动势为E ,内阻为r ,电表均为理想电表.闭合开关S 后,若减小R 的阻值,则下列说法正确的是( )图2A.电流表的示数一定增大B.电压表的示数一定增大C.电源的输出功率一定增大D.R1上的电压一定减小答案AD解析减小R的阻值,电路的总电阻减小,电路中总电流I增大,由U=E-Ir得路端电压减小,所以电流表的示数一定增大,电压表的示数一定减小,故A正确,B错误;当电源的外电阻与内电阻相等时,电源的输出功率最大,由于不知外电阻与内电阻的大小关系,所以当电源的负载电阻减小时,电源的输出功率不一定增大,故C错误;电路中总电流I增大,R2的两端电压增大,又因为路端电压减小,由串联分压得R1上的电压减小,故D正确.变式1在校园冬季安全大检查中,某学习小组发现学校宿舍楼的火警报警装置的电路如图3所示,R1为热敏电阻,温度升高时,R1急剧减小,当电铃两端电压达到一定值时,电铃会响,则下列说法正确的是()图3A.若报警器的电池老化(内阻变大,电动势不变),不会影响报警器的安全性能B.若试验时发现当有火时装置不响,应把R2的滑片P向下移C.若试验时发现当有火时装置不响,应把R2的滑片P向上移D.增大电源的电动势,会使报警的临界温度升高答案 C解析设电铃工作电压为U,当IR2=U时报警,若电池内阻较大,同一温度时,R2上电压较小,可能不会报警,选项A错误;R2减小时,R1上电压增大,R2上电压减小,可能不报警,选项B错误;反之,R2上电压增大,易报警,选项C正确;电源电动势增大时,报警温度应降低,选项D错误. 变式2(2018·山东省济宁市上学期期末)如图4所示,E为电源,其内阻为r,L为小灯泡(其灯丝电阻可视为不变),R1、R2为定值电阻,R1>r,R3为光敏电阻,其阻值随光照强度的增加而减小,闭合开关S后,若照射R3的光照强度减弱,则()图4A.R1两端的电压变大B.通过R2的电流变大C.电源的输出功率变大D.小灯泡消耗的功率变大 答案 B解析 光照强度减弱,光敏电阻的阻值增大,电路中的总电阻增大,由闭合电路欧姆定律可得,电路中干路电流减小,故R 1两端的电压减小,故A 错误;因干路电流减小,电源的内电压减小,路端电压增大,同时R 1两端的电压减小,故并联电路部分电压增大,则流过R 2的电流增大,由并联电路的电流规律可知,流过灯泡的电流减小,由P L =I 2R L 可知,小灯泡消耗的功率变小,故B 正确,D 错误;因R 1>r ,外电路总电阻R 外>r ,又R 外增大,故电源的输出功率变小,故C 错误.命题点二 电路中的功率及效率问题1.电源的效率η=IU IE ×100%=UE ×100%.2.纯电阻电路 P 总=EI =E 2R +r ,P 出=E 2(R +r )2R ,η=P 出P 总×100%=R R +r ×100%. 3.电源的最大输出功率P 出=UI =I 2R =E 2(R +r )2R =E 2R (R -r )2+4Rr =E 2(R -r )2R+4rP 出与外电阻R 的函数关系可用如图5所示图象表示,由图象可以看出:图5(1)当R =r 时,输出功率最大,P m =E 24r.(2)当R “接近”r 时,P 出增大,当R “远离”r 时,P 出减小.(3)当P 出<P m 时,每个输出功率对应两个可能的外电阻R 1和R 2,且R 1R 2=r 2.例2 如图6所示,E =8 V,r =2 Ω,R 1=8 Ω,R 2为变阻器接入电路中的有效阻值,问:图6(1)要使变阻器获得的电功率最大,则R 2的取值应是多大?这时R 2的功率是多大?(2)要使R 1得到的电功率最大,则R 2的取值应是多大?R 1的最大功率是多少?这时电源的效率是多大?(3)调节R 2的阻值,能否使电源以最大的功率E 24r 输出?为什么?答案 (1)10 Ω 1.6 W (2)0 5.12 W 80% (3)不能 理由见解析解析 (1)将R 1和电源等效为一新电源,则新电源的电动势E ′=E =8 V,内阻r ′=r +R 1=10 Ω,且为定值.利用电源的输出功率随外电阻变化的结论知,当R 2=r ′=10 Ω时,R 2有最大功率,即P 2max =E ′24r ′=824×10W =1.6 W.(2)因R 1是定值电阻,所以流过R 1的电流越大,R 1的功率就越大.当R 2=0时,电路中有最大电流,即I max =ER 1+r =0.8 A,R 1的最大功率P 1max =I max 2R 1=5.12 W这时电源的效率η=R 1R 1+r×100%=80%.(3)不能.因为即使R 2=0,外电阻R 1也大于r ,不可能有E 24r的最大输出功率.变式3 (2018·天津市实验中学模拟)如图7所示为一玩具起重机的电路示意图.电源电动势为6 V,内阻为0.5 Ω,电阻R =2.5 Ω,当电动机以0.5 m/s 的速度匀速向上提升一质量为320 g 的物体时(不计一切摩擦阻力,g =10 m/s 2),标有“3 V ,0.6 W ”的灯泡恰好正常发光.则电动机的内阻为( )图7A.1.25 ΩB.3.75 ΩC.5.625 ΩD.1 Ω答案 A解析 由电路图可知,灯泡与电动机并联,灯泡正常发光,电压为U L =3 V,电流为I L =P L U L =0.63A =0.2 A,故电动机两端的电压为U M =U L =3 V ;R 和电源内阻r 两端的总电压为U 1=3 V,由欧姆定律可得,总电流为:I =U 1R +r =32.5+0.5 A =1 A ; 电动机的电流为:I M =I -I L =1 A -0.2 A =0.8 A ; 电动机的输出功率为: P =mg v =U M I M -I M 2r M 代入数据解得:r M =1.25 Ω.命题点三 对电源U -I 图线的理解和应用1.截距纵轴上的截距等于电源的电动势;横轴上的截距等于外电路短路时的电流,即I 短=Er (如图8所示).图82.斜率图线斜率的绝对值等于电源的内阻,即r =|ΔU ΔI |=EI 短,斜率的绝对值越大,电源的内阻越大.3.图线上的点图线上任一点对应的U 、I 的比值为此时外电路的电阻,即R =UI .4.面积面积UI 为电源的输出功率,而电源的总功率P 总=EI ,P 总-P 出=EI -UI 为电源的发热功率. 例3 (多选)如图9所示,图中直线①表示某电源的路端电压与电流的关系图线,图中曲线②表示该电源的输出功率与电流的关系图线,则下列说法正确的是( )图9A.电源的电动势为50 VB.电源的内阻为253ΩC.电流为2.5 A 时,外电路的电阻为15 ΩD.输出功率为120 W 时,输出电压是30 V 答案 ACD解析 电源的路端电压和电流的关系为:U =E -Ir ,显然直线①的斜率的绝对值等于r ,纵轴的截距为电源的电动势,从题图中看出E =50 V,r =50-206-0 Ω=5 Ω,A 正确,B 错误;当电流为I 1=2.5 A 时,由回路中电流I 1=Er +R 外,解得外电路的电阻R 外=15 Ω,C 正确;当输出功率为120 W 时,由题图中P -I 关系图线看出对应干路电流为4 A,再从U -I 图线读取对应的输出电压为30 V,D 正确.变式4 (多选)如图10所示,直线A 是电源的路端电压和电流的关系图线,直线B 、C 分别是电阻R 1、R 2的两端电压与电流的关系图线,若将这两个电阻分别接到该电源上,则( )图10A.R 1接在电源上时,电源的效率高B.R 2接在电源上时,电源的效率高C.R 2接在电源上时,电源的输出功率大D.电源的输出功率一样大 答案 AC解析 电源的效率η=P 出P 总×100%=UI EI ×100%=UE ×100%,当R 1与R 2分别接到电源上时,U R 1>U R 2,故R 1接在电源上时,电源的效率高,A 正确,B 错误;由题图可知,R 2与电源的内阻相等,R 1>R 2,所以R 2接在电源上时,电源的输出功率大,C 正确,D 错误.命题点四 含电容器电路的分析1.电路简化把电容器所处的支路视为断路,简化电路时可以去掉,求电荷量时再在相应位置补上. 2.电容器的电压(1)电容器两端的电压等于与之并联的电阻两端的电压.(2)电容器所在的支路中没有电流,与之串联的电阻无电压,相当于导线.3.电容器的电荷量及变化(1)利用Q =UC 计算电容器初、末状态所带的电荷量Q 1和Q 2;(2)如果变化前后极板带电的电性相同,通过所连导线的电荷量为|Q 1-Q 2|; (3)如果变化前后极板带电的电性相反,通过所连导线的电荷量为Q 1+Q 2.例4 (2016·全国卷Ⅱ·17)阻值相等的四个电阻、电容器C 及电池E (内阻可忽略)连接成如图11所示电路.开关S 断开且电流稳定时,C 所带的电荷量为Q 1;闭合开关S,电流再次稳定后,C 所带的电荷量为Q 2.Q 1与Q 2的比值为( )图11A.25B.12C.35D.23 答案 C解析 S 断开时等效电路图如图甲所示.甲电容器两端电压为U 1=E R +23R×23R ×12=15E ;S 闭合时等效电路图如图乙所示.乙电容器两端电压为U 2=E R +12R×12R =13E ,由Q =CU 得Q 1Q 2=U 1U 2=35,故选项C 正确.变式5 (2018·河北省定州中学承智班月考)阻值相等的四个电阻R 、电容器C 及电池E (内阻可忽略)接成如图12所示的电路.保持S 1闭合,开关S 2断开且电流稳定时,C 所带的电荷量为Q 1;闭合开关S 2,电流再次稳定后,C 所带的电荷量为Q 2.Q 1与Q 2的比值为( )图12A.5∶3B.2∶1C.1∶2D.1∶3 答案 A解析 电池E 的内阻可忽略,保持开关S 1闭合、S 2断开且电流稳定时,电容器两端的电压为:U 1=E 3R ×2R =2E 3;闭合开关S 2,电流再次稳定后,电容器两端的电压为:U 2=E 52R ×R =2E5,由Q=CU 得,Q 1∶Q 2=U 1∶U 2=5∶3.变式6 (2018·吉林省长春市八中模拟)如图13所示,平行金属板中带电质点P 处于静止状态,不考虑电流表和电压表对电路的影响,当滑动变阻器R 4的滑片向b 端移动时,则( )图13A.质点P 将向上运动B.电流表读数减小C.电压表读数减小D.R 3上消耗的功率逐渐增大 答案 C解析 由题图可知,R 2与滑动变阻器R 4串联后与R 3并联,再与R 1串联接在电源两端,电容器与R 3并联,当滑片向b 移动时,滑动变阻器接入电阻减小,则电路中总电阻减小,电路中电流增大,路端电压减小,R 1两端的电压增大,故并联部分的电压减小.由欧姆定律可知流过R 3的电流减小,而流过并联部分的电流增大,故电流表示数增大,故B 错误;因并联部分电压减小,而R 2中电压增大,故电压表示数减小,故C 正确;因R 3两端的电压减小,由公式P =U 2R 可知,R 3上消耗的功率减小,故D 错误;因电容器两端电压减小,故质点P 受到的向上电场力减小,则重力大于电场力,质点P 将向下运动,故A 错误.命题点五 电路故障分析1.故障特点(1)断路特点:表现为路端电压不为零而电流为零;(2)短路特点:用电器或电阻发生短路,表现为有电流通过电路但用电器或电阻两端电压为零.(1)电压表检测:如果电压表示数为零,则说明可能在并联路段之外有断路,或并联路段短路;(2)电流表检测:当电路中接有电源时,可用电流表测量各部分电路上的电流,通过对电流值的分析,可以确定故障的位置.在运用电流表检测时,一定要注意电流表的极性和量程;(3)欧姆表检测:当测量值很大时,表示该处断路;当测量值很小或为零时,表示该处短路.在运用欧姆表检测时,被检测元件应从电路中拆下来;(4)假设法:将整个电路划分为若干部分,然后逐一假设某部分电路发生某种故障,运用闭合电路或部分电路的欧姆定律进行推理.例5如图14所示电路中,由于某处出现了故障,导致电路中的A、B两灯变亮,C、D两灯变暗,故障的原因可能是()图14A.R1短路B.R2断路C.R2短路D.R3短路答案 D解析A灯在干路上,A灯变亮,说明电路中总电流变大,由闭合电路欧姆定律可知电路的外电阻减小,这就说明电路中只会出现短路而不会出现断路,选项B错误.因为短路部分的电阻变小,分压作用减小,与其并联的用电器两端的电压减小,C、D两灯变暗,A、B两灯变亮,这说明发生短路的电阻与C、D两灯是并联的,而与A、B两灯是串联的.观察电路中电阻的连接形式,只有R3短路符合条件,故选项D正确.变式7(多选)如图15所示的电路中,电源电压保持不变,闭合开关S,电路正常工作,过了一会儿,电流表的示数变为零.若电路中故障发生在灯L、电阻R上,用一根导线来判断电路故障,则下列判断正确的是()图15A.将导线并联在R两端,电流表无示数,一定是L断路B.将导线并联在L两端,电流表无示数,一定是R断路C.将导线并联在R两端,电流表有示数,一定是R断路D.将导线并联在L两端,电流表有示数,一定是L断路解析 电流表的示数变为零,说明电路故障为断路.将导线与用电器并联进行检测时,若电流表有示数,说明与导线并联的用电器断路;若电流表无示数,说明另一个用电器断路或两个用电器都断路.若将导线并联在R 两端,电流表无示数,则可能是L 断路,也可能是R 、L 都断路,故选项A 错误;若将导线并联在L 两端,电流表无示数,则可能是R 断路,也可能是R 、L 都断路,故选项B 错误;若将导线并联在R 两端,电流表有示数,则一定是R 断路,选项C 正确;若将导线并联在L 两端,电流表有示数,则一定是L 断路,选项D 正确.1.(多选)在如图1所示的U -I 图象中,直线Ⅰ为某一电源的路端电压与电流的关系图线,直线Ⅱ为某一电阻R 的U -I 图线.用该电源直接与电阻R 相连组成闭合电路,由图象可知( )图1A.电源的电动势为3 V,内阻为0.5 ΩB.电阻R 的阻值为1 ΩC.电源的输出功率为4 WD.电源的效率为50%答案 ABC解析 由图线Ⅰ可知,电源的电动势为3 V,内阻为r =E I 短=0.5 Ω;由图线Ⅱ可知,电阻R 的阻值为1 Ω,该电源与电阻R 直接相连组成的闭合电路的电流为I =E r +R=2 A,路端电压U =IR =2 V(可由题图读出),电源的输出功率为P =UI =4 W,电源的效率为η=UI EI×100%≈66.7%,故选项A 、B 、C 正确,D 错误.2.(2019·贵州省遵义市调研)如图2所示电路,电源内阻不可忽略,电表均为理想电表.开关S 闭合后,在变阻器R 0的滑动端向下滑动的过程中( )图2A.电压表与电流表的示数都减小B.电压表与电流表的示数都增大C.电压表的示数增大,电流表的示数减小D.电压表的示数减小,电流表的示数增大答案 A解析由变阻器R0的滑动端向下滑动可知,R0接入电路的有效电阻减小,R总减小,由I=ER总+r 可知I增大,由U内=Ir可知U内增大,由E=U内+U外可知U外减小,故电压表示数减小.由U1=IR1可知U1增大,由U外=U1+U2可知U2减小,由I2=U2R2可知电流表示数减小,故A正确.3.(多选)已知磁敏电阻在没有磁场时电阻很小,有磁场时电阻变大,并且磁场越强电阻越大.为探测有无磁场,利用磁敏电阻作为传感器设计了如图3所示电路,电源的电动势E和内阻r不变,在没有磁场时调节变阻器R使电灯L正常发光.若探测装置从无磁场区进入强磁场区,则()图3A.电灯L变亮B.电灯L变暗C.电流表的示数减小D.电流表的示数增大答案AC解析探测装置从无磁场区进入强磁场区时,磁敏电阻阻值变大,则电路的总电阻变大,根据I=ER总可知总电流变小,所以电流表的示数减小,根据U=E-Ir,可知I减小,U增大,所以电灯两端的电压增大,电灯L变亮,故A、C正确,B、D错误.4.(2017·宁夏银川2月模拟)如图4甲所示为某一小灯泡的U-I图线,现将两盏这样的小灯泡并联后再与一个4 Ω的定值电阻R串联,接在内阻为1 Ω、电动势为3 V的电源两端,如图乙所示,则()图4A.通过每盏小灯泡的电流约为0.2 A,此时每盏小灯泡的电功率约为0.6 WB.通过每盏小灯泡的电流约为0.3 A,此时每盏小灯泡的电功率约为0.6 WC.通过每盏小灯泡的电流约为0.2 A,此时每盏小灯泡的电功率约为0.2 WD.通过每盏小灯泡的电流约为0.3 A,此时每盏小灯泡的电功率约为0.4 W答案 C解析 由题图甲可以看出,当通过小灯泡的电流为0.2 A 时,对应灯泡两端的电压为1 V,此时小灯泡的电阻为1 V 0.2 A =5 Ω,两小灯泡并联后的电阻R 并=2.5 Ω,灯泡两端电压U 并=R 并R 总E =2.57.5×3 V =1 V,恰好符合串联电路电压关系,则每盏小灯泡的功率P L =0.2 W,则A 项错误,C 项正确.同理,可知B 、D 项错误.5.如图5所示的电路中,两平行金属板之间的带电液滴处于静止状态,电流表和电压表均为理想电表,由于某种原因灯泡L 的灯丝突然烧断,其余用电器均不会损坏,则下列说法正确的是( )图5A.电流表、电压表的读数均变小B.电源内阻消耗的功率变大C.液滴将向上运动D.电源的输出功率变大答案 C解析 当L 的灯丝突然烧断时电路中总电阻增大,则总电流减小,电源的内电压和R 1两端的电压减小,由闭合电路的欧姆定律可知,路端电压增大,故电容器C 两端的电压增大,板间场强增大,带电液滴所受的电场力增大,则该液滴将向上运动,C 正确;由于C 两端的电压增大,R 2、R 3中的电流增大,则电流表、电压表的读数均变大,A 错误;因干路电流减小,则电源内阻消耗的功率变小,B 错误;由于电源的内、外电阻的关系未知,不能判断电源的输出功率如何变化,D 错误.6.如图6所示的电路中,闭合开关S,灯L 1、L 2正常发光.由于电路突然出现故障,发现灯L 1变亮,灯L 2变暗,电流表的读数变小,根据分析,发生的故障可能是(电源内阻不计)( )图6A.R 1断路B.R 2断路C.R 3短路D.R 4短路答案 A解析等效电路图如图所示,出现故障后,发现灯L1变亮,灯L2变暗,说明L1两端的电压变大,L2两端的电压变小,可能是R1断路,此时示数减小,故A正确;如果R2断路,则灯L2变亮,灯L1变暗,与条件不符,B错误;若R3短路或R4短路,电流表示数变大,C、D错误.7.(多选)如图7所示,R1为定值电阻,R2为可变电阻,E为电源电动势,r为电源内电阻,以下说法中正确的是()图7A.当R2=R1+r时,R2获得最大功率B.当R1=R2+r时,R1获得最大功率C.当R2=0时,R1获得最大功率D.当R2=0时,电源的输出功率最大答案AC解析在讨论R2的电功率时,可将R1视为电源内阻的一部分,即将原电路等效为外电阻R2与电动势为E、内阻为R1+r的电源(等效电源)连成的闭合电路(如图所示),R2的电功率是等效电源的输出功率.显然当R2=R1+r时,R2获得的电功率最大,A项正确;讨论R1的电功率时,由于R1为定值,根据P=I2R知,电路中电流越大,R1上的电功率就越大(P1=I2R1),所以,当R2=0时,R1获得的电功率最大,故B项错误,C项正确;讨论电源的输出功率时,R1+R2为外电阻,内电阻r恒定,由于题目没有给出R1和r的具体数值,所以当R2=0时,电源输出功率不一定最大,故D项错误.8.如图8,直线A为某电源的U-I图线,曲线B为某小灯泡L1的U-I图线的一部分,用该电源和小灯泡L 1串联起来组成闭合回路时灯泡L 1恰能正常发光,则下列说法中正确的是( )图8A.此电源的内电阻为23Ω B.灯泡L 1的额定电压为3 V,额定功率为6 WC.把灯泡L 1换成阻值恒为1 Ω的纯电阻,电源的输出功率将变小D.由于小灯泡L 1的U -I 图线是一条曲线,所以灯泡发光过程中欧姆定律不适用答案 B解析 由题图知,电源的内阻为r =⎪⎪⎪⎪ΔU ΔI =4-16 Ω=0.5 Ω,A 错误;因为灯L 1正常发光,故灯L 1的额定电压为3 V,额定功率为P =UI =3×2 W =6 W,B 正确;正常工作时,灯L 1的电阻为R 1=U I=1.5 Ω,换成R 2=1 Ω的纯电阻后,该电阻更接近电源内阻r ,故电源的输出功率将变大,C 错误;小灯泡是纯电阻,适用欧姆定律,其U -I 图线是一条曲线的原因是灯泡的电阻随温度的变化而发生变化,故D 错误.9.(2018·广东省韶关市模拟)如图9所示,电源的电动势为30 V,内电阻为1 Ω,一个标有“6 V,12 W ”的电灯与一个绕线电阻为2 Ω的电动机串联.开关闭合后,电路中的电灯正常发光,则电动机输出的机械功率为( )图9A.36 WB.44 WC.48 WD.60 W答案 A解析 电路中电灯正常发光,所以U L =6 V,则电路中电流为I =P L U L =126A =2 A,电动机两端的电压U M =E -Ir -U L =30 V -2×1 V -6 V =22 V,则电动机输出的机械功率P 出=P 电-P 热=U M I -I 2R M =22×2 W -4×2 W =36 W.10.(2018·河南省开封市质检)硅光电池是一种太阳能电池,具有低碳环保的优点.如图10所示,图线a 是该电池在某光照强度下路端电压U 和电流I 的关系图线(电池内阻不是常数),图线b 是某电阻R 的U -I 图线.在该光照强度下将它们组成闭合回路时,硅光电池的内阻为( )图10A.8.0 ΩB.10 ΩC.12 ΩD.12.5 Ω答案 A解析 由闭合电路欧姆定律得U =E -Ir ,当I =0时,U =E ,由图线a 与纵轴的交点读出电动势为E =3.6 V.根据两图线交点可知,电阻R 两端的电压为2 V,则内阻r =3.6-20.2Ω=8.0 Ω,故A 正确.11.(多选)如图11所示,C 1=6 μF ,C 2=3 μF ,R 1=3 Ω,R 2=6 Ω,电源电动势E =18 V,内阻不计,下列说法正确的是( )图11A.开关S 断开时,a 、b 两点电势相等B.开关S 闭合后,a 、b 两点间的电流是2 AC.开关S 断开时C 1带的电荷量比开关S 闭合后C 1带的电荷量大D.不论开关S 断开还是闭合,C 1带的电荷量总比C 2带的电荷量大答案 BC解析 S 断开时外电路处于断路状态,两电阻中均无电流通过,电阻两端电势相等,由题图知a 点电势与电源负极电势相等,而b 点电势与电源正极电势相等,A 错误.S 断开时两电容器两端电压都等于电源电动势,而C 1>C 2,由Q =CU 知此时Q 1>Q 2.当S 闭合时,稳定状态下C 1与R 1并联,C 2与R 2并联,电路中电流I =E R 1+R 2=2 A,此时两电阻两端电压分别为U 1=IR 1=6 V 、U 2=IR 2=12 V,则此时两电容器所带的电荷量分别为Q 1′=C 1U 1=3.6×10-5 C 、Q 2′=C 2U 2=3.6×10-5 C,对电容器C 1来说,S 闭合后其两端电压减小,所带的电荷量也减小,故B 、C 正确,D 错误.12.(2018·陕西省西安一中一模)电路如图12所示,电源的电动势为E 、内阻为r ,与定值电阻R 1、R 2及滑动变阻器R 连接,当滑动变阻器的滑片由中点滑向b 端时,下列说法正确的是( )图12A.电压表读数增大、电流表读数减小B.电压表读数减小、电流表读数增大C.R 1的电功率减小D.电源的输出功率增大答案 C解析 当滑片由中点向b 端滑动时,R 接入电路中的电阻增大,电路中的总电阻增大,由闭合电路的欧姆定律可知电路中总电流减小,所以定值电阻R 1的电功率减小,选项C 正确;电路中总电流减小,由U =E -Ir 可知路端电压增大,即电压表示数增大;因路端电压增大,R 1两端的电压减小,故并联部分电压增大,由欧姆定律可知电流表示数增大,选项A 、B 错误;因不知内、外电阻的大小,所以不能确定电源的输出功率如何变化,选项D 错误.13.(多选)如图13所示,D 是一只理想二极管,水平放置的平行板电容器AB 内部原有带电微粒P 处于静止状态.下列措施下,关于P 的运动情况的说法正确的是( )图13A.保持S 闭合,增大A 、B 板间距离,P 仍静止B.保持S 闭合,减小A 、B 板间距离,P 向上运动C.断开S 后,增大A 、B 板间距离,P 向下运动D.断开S 后,减小A 、B 板间距离,P 仍静止答案 ABD解析 保持S 闭合,电源的路端电压不变,增大A 、B 板间距离,电容减小,由于二极管的单向导电性,电容器不能放电,其电荷量不变,由E =4πkQ εr S得,板间场强不变,微粒所受电场力不变,仍处于静止状态,故A 正确;保持S 闭合,电源的路端电压不变,电容器两端的电压不变,减小A 、B板间距离,由E =U d可知,板间场强增大,微粒所受电场力增大,微粒将向上运动,故B 正确;断开S 后,电容器的电荷量Q 不变,由E =4πkQ εr S得,板间场强不变,微粒所受电场力不变,仍处于静止状态,故C 错误,D 正确.。
第1讲牛顿三定律的理解一、牛顿第一定律惯性1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律;②揭示了力与运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关. 自测1(2018·山东省济南一中阶段检测)下列说法中正确的是()A.物体只有在不受外力作用时,才会有保持原有运动状态不变的性质,这个性质叫惯性,故牛顿第一定律又叫惯性定律B.牛顿第一定律不仅适用于宏观低速物体,也可用于解决微观物体的高速运动问题C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去答案 D解析物体在任何情况下都具有惯性,惯性与物体的运动状态无关,故A错误;牛顿第一定律是宏观低速情况得出的,只可用于解决宏观物体的低速运动问题,故B错误;牛顿第一定律描述的是物体不受外力时的运动状态,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当作牛顿第二定律的特例,故C错误;伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去,故D正确.二、牛顿第二定律力学单位制1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.(3)适用范围①牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.②牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.2.力学单位制(1)单位制:由基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.自测2(多选)关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力的方向可能相同答案BD自测3(2018·山东省临沂市上学期期中)下列各物理量中,其国际单位属于基本单位,同时也属于矢量的是()A.时间B.位移C.质量D.力答案 B解析时间、质量的单位属于国际单位制中的基本单位,但都不属于矢量,力是矢量,但力的单位是导出单位,位移是矢量,且它的国际单位m属于基本单位,B正确.三、牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F=-F′.自测4(2018·河北省定州中学承智班月考)某物体静止在水平桌面上,下列对它的描述正确的是()A.桌面对物体的支持力的大小等于物体的重力大小,这两个力是一对平衡力B.物体所受的重力和桌面对它的支持力是一对作用力和反作用力C.物体对桌面的压力就是物体的重力,这两个力是同一种性质的力D.物体对桌面的压力和桌面对物体的支持力是一对平衡力答案 A解析桌面对物体的支持力的大小等于物体的重力大小,作用在同一物体上,这两个力是一对平衡力,故A正确,B错误;物体对桌面的压力不是重力,它们的施力物体、受力物体、作用点都不相同,故C错误;物体对桌面的压力和桌面对物体的支持力是一对作用力与反作用力,故D错误.命题点一牛顿第一定律的理解1.明确了惯性的概念牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性,即物体保持原来的匀速直线运动状态或静止状态的性质.2.揭示了力的本质力是改变物体运动状态的原因,而不是维持物体运动状态的原因.3.理想化状态牛顿第一定律描述的是物体不受外力时的状态,而物体不受外力的情形是不存在的.如果物体所受的合外力等于零,其运动效果跟不受外力作用时相同,物体保持静止状态或匀速直线运动状态.4.与牛顿第二定律的关系牛顿第一定律和牛顿第二定律是相互独立的.力是如何改变物体运动状态的问题由牛顿第二定律来回答.牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.例1(2018·福建省三明一中模拟)科学思维和科学方法是我们认识世界的基本手段.在研究和解决问题的过程中,不仅需要相应的知识,还需要运用科学的方法.理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图1所示.以下为他的设想步骤:①两个对接的斜面,静止的小球沿一个斜面滚下,小球将滚上另一个斜面;②如果没有摩擦,小球将上升到原来释放的高度;③减小第二个斜面的倾角,小球在这个斜面上仍然会达到原来的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球会沿水平面做持续的匀速运动.通过对这个实验的分析,我们可以得到的最直接的结论是()图1A.自然界的一切物体都具有惯性B.光滑水平面上运动的小球,运动状态的维持并不需要外力C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小答案 B解析伽利略的理想斜面实验只能说明小球具有惯性,推广到一切物体的是牛顿,A错误;伽利略通过“理想斜面实验”和科学推理,得出的结论是:力不是维持物体运动的原因,光滑水平面上运动的小球,运动状态的维持并不需要外力,B正确;如果小球受到力的作用,它的运动状态将发生改变,这是牛顿得出的,C错误;小球受到的力一定时,质量越大,它的加速度越小,这是牛顿第二定律内容,D错误.变式1伽利略对自由落体运动及运动和力的关系的研究,开创了科学实验和逻辑推理相结合的重要科学研究方法.图2(a)、(b)分别表示这两项研究中实验和逻辑推理的过程,对这两项研究,下列说法正确的是()图2A.图(a)通过对自由落体运动的研究,合理外推得出小球在斜面上做匀变速运动B.图(a)中先在倾角较小的斜面上进行实验,可“冲淡”重力,使时间测量更容易C.图(b)中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成D.图(b)的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持答案 B解析伽利略设想物体下落的速度与时间成正比,因为当时无法测量物体的瞬时速度,所以伽利略通过数学推导证明,如果速度与时间成正比,那么位移与时间的二次方就成正比.由于当时用滴水法计时,无法记录自由落体的较短时间,伽利略设计了让铜球沿阻力很小的斜面滚下,来“冲淡”重力的作用效果,而小球在斜面上运动的加速度要比它竖直下落的加速度小得多,运动相同位移所用时间长得多,所以容易测量.伽利略做了上百次实验,并通过抽象思维在实验结果上做了合理外推,得出了正确结论,故A错误,B正确;完全没有摩擦阻力的斜面是不存在的,故C错误;伽利略用抽象思维、数学推导和科学实验相结合的方法得到物体的运动不需要力来维持的结论,故D错误.变式2某同学为了取出如图3所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()图3A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性答案 D解析羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D正确.命题点二牛顿第二定律的理解例2(多选)(2016·全国卷Ⅰ·18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变答案BC解析质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A错误;若恒力的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C正确;根据加速度的定义知,单位时间内速度变化量相同,而速率变化量不一定相同,故D错误.变式3关于速度、加速度和合外力之间的关系,下述说法正确的是()A.做匀变速直线运动的物体,它所受合外力是恒定不变的B.做匀变速直线运动的物体,它的速度、加速度、合外力三者总是在同一方向上C.物体受到的合外力增大时,物体的运动速度一定加快D.物体所受合外力为零时,一定处于静止状态答案 A解析做匀变速直线运动的物体,加速度恒定不变,由牛顿第二定律知,它所受合外力是恒定不变的,故A正确;由牛顿第二定律可知,加速度与合外力方向相同,与速度不一定在同一方向上,故B错误;物体受到的合外力增大时,加速度一定增大,物体的运动速度变化一定加快,而速度不一定加快,故C错误;物体所受合外力为零时,物体的加速度一定等于零,速度不一定为零,故D错误.例3(2018·全国卷Ⅰ·15)如图4,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态.现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动.用x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是()图4答案 A解析设物块P静止时,弹簧的长度为x0,原长为l,则k(l-x0)=mg,物块P做匀加速直线运动时受重力mg、弹簧弹力k(l-x0-x)及力F,根据牛顿第二定律,得F+k(l-x0-x)-mg=ma故F=kx+ma.根据数学知识知F-x图象是纵轴截距为ma的一次函数图象.变式4(2018·安徽省江南十校冲刺联考)一个质量m=2 kg的物体放置在光滑水平桌面上,受到三个沿水平方向共点力F1、F2、F3的作用,且这三个力的大小和方向构成如图5所示的三角形,已知F2=0.5 N,则下列说法正确的是()图5A.这个物体共受到四个力的作用B.这个物体的合力大小为0C.这个物体的加速度大小为1 m/s 2D.这个物体的加速度与F 2方向相同 答案 C解析 物体共受到五个力的作用:重力、支持力、F 1、F 2、F 3,A 错误;竖直方向上的重力和支持力平衡,合力为零,根据几何知识可知F 3=1 N,故水平方向上的三力的合力F 合=2F 3=2 N,方向沿F 3方向,B 错误;根据牛顿第二定律可知a =F 合m=1 m/s 2,方向沿F 3方向,C 正确,D 错误.命题点三 牛顿第三定律的理解与应用1.相互作用力的特点(1)三同⎩⎪⎨⎪⎧同大小同时产生、变化、消失同性质(2)三异⎩⎪⎨⎪⎧反向异体,即作用力、反作用力作用在不同物体上不同效果(3)二无关⎩⎪⎨⎪⎧与相互作用的两物体的运动状态无关与是否和其他物体相互作用无关2.一对平衡力与作用力、反作用力的比较例4 (2018·广东省深圳市上学期模拟)如图6所示,手推车的篮子里装有一篮球,女孩把手推车沿斜面向上匀速推动,篮子的底面平行于斜面,靠近女孩的一侧面垂直于底面,下列说法正确的有( )图6A.篮子底面受到的压力大于篮球的重力B.篮子对篮球的作用力小于篮球的重力C.人对篮球的作用力等于篮球的重力D.篮子右侧面受到的压力小于篮球的重力答案 D解析对篮球受力分析,并运用合成法如图所示:设斜面倾角为θ,根据几何知识可知,篮子底部对篮球的支持力F N1=mg cos θ,根据牛顿第三定律,则篮子底面受到的压力为mg cos θ<mg,A错误;篮子右侧面对篮球的支持力F N2=mg sin θ,根据牛顿第三定律,则篮子右侧面受到的压力为mg sin θ<mg,篮子对篮球的作用力为F N1、F N2的合力,大小等于篮球的重力,B错误,D正确;人对篮球没有作用力,C错误.变式5(多选)(2018·天津市南开中学月考) 跳高运动员蹬地后上跳,在起跳过程中()A.运动员蹬地的作用力大小大于地面对他的支持力大小B.运动员蹬地的作用力大小等于地面对他的支持力大小C.运动员所受的支持力和重力相平衡D.运动员所受的合力一定向上答案BD解析人在地面上跳起,是因为人受到的支持力大于人的重力,人受到的合力向上;但人蹬地的作用力与地面对人的支持力为作用力与反作用力,二者大小相等,故A、C错误,B、D正确.变式6(多选)如图7所示,用水平力F把一个物体紧压在竖直墙壁上静止,下列说法中正确的是()图7A.水平力F跟墙壁对物体的弹力是一对作用力与反作用力B.物体的重力跟墙壁对物体的静摩擦力是一对平衡力C.水平力F与物体对墙壁的压力是一对作用力与反作用力D.物体对墙壁的压力与墙壁对物体的弹力是一对作用力与反作用力答案BD解析水平力F跟墙壁对物体的弹力作用在同一物体上,大小相等、方向相反,且作用在同一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,故这两个力是一对平衡力,选项B正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的弹力是两个物体间的相互作用力,是一对作用力与反作用力,选项D正确.拓展点牛顿第三定律在受力分析中的应用由于作用力与反作用力的关系,当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.例5(2019·河北省邢台市质检)一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图8所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为F f,则此时箱子对地面的压力大小为()图8A.Mg+F fB.Mg-F fC.Mg+mgD.Mg-mg答案 A解析环在竖直方向上受重力及箱子内的杆给它的竖直向上的摩擦力F f,受力情况如图甲所示,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力F f′,故箱子竖直方向上受重力Mg、地面对它的支持力F N及环给它的摩擦力F f′,受力情况如图乙所示,由于箱子处于平衡状态,可得F N=F f′+Mg=F f+Mg.根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力,即F N′=Mg+F f,故选项A正确.变式7如图9所示,质量为m的木块在质量为M的长木板上以加速度a水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,若长木板仍处于静止状态,则长木板对地面摩擦力的大小和方向一定为()图9A.μ1(m+M)g,向左B.μ2mg,向右C.μ2mg+ma,向右D.μ1mg+μ2Mg,向左答案 B解析对木块分析可知受长木板对它水平向左的摩擦力F f1=μ2mg,由牛顿第三定律可知,木块对长木板的摩擦力向右,大小为F f1;由于长木板仍处于静止状态,对长木板受力分析可知,受地面对它的静摩擦力F f2,方向向左,F f2=F f1=μ2mg,由牛顿第三定律可知,长木板对地面的摩擦力大小为μ2mg,方向向右,故B正确.变式8(2019·辽宁省沈阳市模拟)如图10所示,质量为m的物体放在质量为M、倾角为θ的斜面体上,斜面体置于粗糙的水平地面上,用平行于斜面的力F拉物体使其沿斜面向下匀速运动,斜面体始终静止,则下列说法正确的是()图10A.斜面体对地面的摩擦力大小为F cos θB.斜面体对地面的支持力为(M+m)gC.物体对斜面体的摩擦力的大小为FD.斜面体对物体的作用力竖直向上答案 A解析由于斜面体和物体都处于平衡状态,将斜面体和物体看成一个整体,由受力情况可得:地面对斜面体的摩擦力大小为F cos θ,地面对斜面体的支持力大小为(M+m)g+F sin θ,由牛顿第三定律可知A对,B错;隔离物体进行受力分析,斜面体对物体的摩擦力大小为F+mg sin θ,由牛顿第三定律可知C错;斜面体对物体的作用力即为物体受到的支持力与摩擦力的合力,由力的合成可知斜面体对物体的作用力与物体的重力和F的合力大小相等、方向相反,故斜面体对物体的作用力不在竖直方向上,D错.1.(2018·四川省德阳市高考物理一诊)下列说法正确的是()A.力是维持物体运动的原因B.物体的速度方向改变,则加速度方向一定改变C.物体运动状态的改变是指其加速度在变化D.物体运动状态的改变是指其速度在变化答案 D解析力是改变物体运动状态的原因,不是维持物体运动的原因,故A错误;速度方向改变,但加速度方向不一定改变,如物体加速度不变,但先做减速运动,再做反向的加速运动,故B错误;运动状态是指物体的速度,故运动状态的改变即为速度的改变,故C错误,D正确.2.(多选)(2019·甘肃省天水市质检)我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,下列说法正确的是()A.系好安全带可以减小惯性B.是否系好安全带对人和车的惯性没有影响C.系好安全带可以减小因车的惯性而造成的伤害D.系好安全带可以减小因人的惯性而造成的伤害答案BD3.(2018·安徽省巢湖市模拟)在某次交通事故中一辆载有30吨“工”字形钢材的载重汽车由于避让横穿马路的电动车而紧急制动,结果车厢上的钢材向前冲出,压扁驾驶室.关于这起事故原因的物理分析正确的是()A.由于车厢上的钢材有惯性,在汽车制动时,继续向前运动,压扁驾驶室B.由于汽车紧急制动,使其惯性减小,而钢材惯性较大,所以继续向前运动C.由于车厢上的钢材所受阻力太小,不足以克服其惯性,所以继续向前运动D.由于汽车制动前的速度太大,汽车的惯性比钢材的惯性大,在汽车制动后,钢材继续向前运动答案 A4.“严禁超载,严禁超速,严禁疲劳驾驶”是预防车祸的有效办法.下列说法正确的是()A.汽车超速会增大汽车的惯性B.汽车超载会减小汽车的刹车距离C.疲劳驾驶会缩短司机的反应时间D.汽车超载会增大汽车的惯性 答案 D5.(2018·河南省洛阳市上学期期中)夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r ,式中r 是正、反顶夸克之间的距离,αs是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( ) A.N·m B.N C.J/m D.J·m答案 D解析 由题意有k =-3E p r 4αs ,αs 是无单位的常量,E p 的国际单位是J,r 的国际单位是m,在国际单位制中常数k 的单位是J·m,D 正确,A 、B 、C 错误.6.(2018·陕西省榆林市第三次模拟)如图1所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则( )图1A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力 答案 C解析 运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A 错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B 错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C 正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D 错误.7.(2019·陕西省黄陵中学模拟)我国首台新型墙壁清洁机器人“蜘蛛侠”是由青岛大学学生自主研制开发的,“蜘蛛侠”利用8只“爪子”上的吸盘吸附在接触面上,通过“爪子”交替伸缩,就能在墙壁或玻璃上自由移动.如图2所示,假设“蜘蛛侠”在竖直玻璃墙面上由A 点沿直线匀加速“爬行”到右上方B 点,在这一过程中,关于“蜘蛛侠”在竖直面内的受力分析正确的是( )图2答案 C解析 根据牛顿第二定律可知,在竖直平面内蜘蛛侠所受合力方向应该是从A 点指向B 点,故C 正确,A 、B 、D 错误.8.(2018·福建省永安一中、德化一中、漳平一中联考)如图3所示,运动员手持网球拍托球沿水平面匀加速运动,设球拍和球的质量分别为M 、m ,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们之间的摩擦及空气阻力不计,则( )图3A.运动员的加速度大小为g sin θB.运动员对球拍的作用力为mgcos θ C.运动员对球拍的作用力为(M +m )gcos θD.若运动员的加速度大于g sin θ,则球一定沿球拍向上运动 答案 C。
力与物体的直线运动1.多过程问题很多动力学问题中涉及物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的运动情况和受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题.2.解题策略(1)任何多过程的复杂物理问题都是由很多简单的小过程构成,有些是承上启下,上一过程的结果是下一过程的已知,这种情况,一步一步完成即可.(2)有些是树枝型,告诉的只是旁支,要求的是主干(或另一旁支),这就要求仔细审题,找出各过程的关联,按顺序逐个分析;对于每一个研究过程,选择什么规律,应用哪一个公式要明确.(3)注意两个过程的连接处,加速度可能突变,但速度不会突变,速度是联系前后两个阶段的桥梁.例1 (2016·浙江10月学考·19)在某段平直的铁路上,一列以324 km /h 高速行驶的列车在某时刻开始匀减速行驶,5 min 后恰好停在某车站,并在该站停留4 min ,随后匀加速驶离车站,经8.1 km 后恢复到原速324 km/h.(g 取10 m/s 2)图1(1)求列车减速时的加速度大小;(2)若该列车总质量为8.0×105 kg ,所受阻力恒为车重的0.1倍,求列车驶离车站加速过程中牵引力的大小;(3)求列车从开始减速到恢复原速这段时间内的平均速度大小.答案 见解析解析 (1)列车的速度为324 km /h =90 m/s ,经过5 min =300 s 停下,所以加速度为a =Δv t =0-90300m /s 2=-0.3 m/s 2(2)F f =0.1mg ,根据牛顿第二定律,F -0.1mg =ma ′v 2=2a ′x ′解得a ′=0.5 m/s 2 ,则F =1.2×106 N (3)根据(2)可知,重新加速时间为t ′=v a ′=900.5s =180 s 减速过程中通过的位移x =v 2t =45×300 m =13 500 m 所以整个过程的平均速度v =x +x ′t 总=13 500+8 100300+240+180m /s =30 m/s.本题考查对牛顿运动学知识的掌握和对动力学综合问题的处理能力.对物体受力分析和运动分析并结合v -t 图象分析是解决这类题目的关键.要求能从文字叙述和v -t 图象中获取信息.构建相应的物理模型,列出相应的方程解答.变式题组1.(2015·浙江9月选考·19)在平直公路上有A 、B 两辆汽车,质量均为6.0×103 kg ,运动时所受阻力均为车重的115.它们的v -t 图象分别如图2中a 、b 所示.求:(g =10 m/s 2)图2(1)A 车的加速度a A 和牵引力F A ;(2)0~3 s 内B 车的位移x B 和牵引力F B .答案 见解析解析 (1)由图可得A 车匀加速运动的加速度为a A =Δv Δt =148m /s 2=1.75 m/s 2 由牛顿第二定律得F A -kmg =ma A可得F A =kmg +ma A代入数据可得F A =1.45×104 N(2)0~3 s 内B 车的位移等于B 车图线与坐标轴围成的面积x B =9 m 由图可得B 车匀减速的加速度为a B =Δv Δt =-23m/s 2 由牛顿第二定律F B -kmg =ma B可得F B =kmg +ma B代入数据可得F B =0.2.(2016·浙江瑞安中学高一期末)某运动员做跳伞训练,他从悬停在空中的直升飞机上由静止落下,如图3所示,经过8 s 后打开降落伞,运动员做匀减速直线运动,再经过16 s 后刚好到达地面,且速度恰好为零.忽略打开降落伞前的空气阻力和打开降落伞的时间.已知人和伞的总质量m =60 kg.(g 取10 m/s 2)求:图3(1)打开降落伞时运动员的速度大小;(2)打开降落伞后运动员的加速度大小;(3)打开降落伞后运动员和伞受到的阻力大小.答案 (1)80 m /s (2)5 m/s 2 (3)900 N解析 (1)打开降落伞前,人和伞做自由落体运动v =gtv =80 m/s(2)打开降落伞后,人和伞一起做匀减速直线运动a 2=|Δv |Δta 2=5 m/s 2(3)根据牛顿第二定律得。
电场与磁场【考点要求重温】考点24物质的电结构、电荷守恒(I)考点25静电现象的解释(I)考点26点电荷(I)考点27库仑定律(II)考点28静电场(I)考点29电场强度、点电荷的场强(II)考点30电场线(I)考点31电势能、电势(I)考点32电势差(II)考点33匀强电场中电势差与电场强度的关系(1【)考点34带电粒子在匀强电场屮的运动(II)考点35示波管(I)考点36常见电容器,电容器的电压、电荷最和电容的关系(I)考点37磁场、磁感应强度、磁感线(I )考点38通电直导线和通电线圈周围磁场的方向(I)考点39安培力、安培力的方向(I)考点40匀强磁场111的安培力(II)考点41洛伦兹力、洛伦兹力的方向(I )考点42洛伦兹力公式(1【)考点43帯电粒了在匀强磁场屮的运动(II)考点44质谱仪和回旋加速器(I)【要点方法回顾】1•请回答库仑定律的内容、公式和适用条件分别是什么?答案⑴内容:真空中两个静止的点电荷之间的札I互作用力,与它们的电荷罐的乘积成正比, 跟它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)公式:F=^,式中的^=9.0X109N m2/C2,叫静电力常量.(3)适用条件:①点电荷;②真空中.2.电场强度是描述电场力的性质的物理量,它有三个表达式:E气,E=^W这三个公式有何区别?如果空间某点存在多个电场,如何求该点的场强?电场的方向如何确定?答案⑴区别F①电场强度的定义式E=:,适用于任何电场,E由场源电荷和点的位置决定,与F、q无关.②真空中点电荷所形成的电场£=弓,其屮0为场源电荷,尸为菜点到场源电荷的距离.③匀强电场中场强和电势差的关系式号,其屮d为两点沿电场方向的距离.(2)川叠加原理求该点的场强若空间的电场是由几个“场源”共同激发的,则空间中某点的电场强度等于每个“场源”单独存在时所激发的电场在该点的场强的矢最和——叠加原理.(3)电场方向是正电荷的受力方向、负电荷受力的反方向、电场线的切线方向、电势降低最快的方向.3 .比鮫电势高低的方法有哪些?答案(1)顺着电场线方向,电势逐渐降低.(2)越靠近」E场源电荷处电势越高;越靠近负场源电荷处电势越低.(3)根据电场力做功与电势能的变化比较①移动正电荷,电场力做正功,电势能减少,电势降低;电场力做负功,电势能增加,电势升高.②移动负电荷,电场力做正功,电势能减少,电势升高;电场力做负功,电势能增加,电势降低.4•比较电势能大小最常用的方法是彳I-么?答案不管是正电荷还是负电荷,只要电场力对电荷做正功,该电荷的电势能就减少;只要电场力对电荷做负功,该电荷的电势能就增加•5.电场力做功有什么特点?如何求解电场力的功?答案⑴电场力做功的特点电荷在电场屮任意两点间移动时,它的电势能的变化竝是确定的,因而电场力对移动电荷所做的功的值也是确定的,所以,电场力对移动电荷所做的功,与电荷移动的路径无关,仅与初、末位置的电势差有关,这与重力做功十分相似.(2)电场力做功的计算及应川①W=Flcosa,常用丁•匀强电场,即F=qE®定.②W AB=qU AB,适用于任何电场,q、匕仏可带正负号运算,结果的止负可反映功的正负,也可带数值运算,但功的正负需结合移动电荷的正负以及力、B两点电势的髙低另行判断.③功能关系:电场力做功的过程就是电势能和具他形式的能相互转化的过程,如图,且"=—A£其他炉>0W z<0其他形式的能E其他6•带电粒子在匀强电场川分别满足什么条件可以做加速直线运动和偏转运动?处理带电粒子 在电场屮运动的方法有哪些?答案 ⑴加速——匀强电场中,带电粒子的受力方向与运动方向共线、同向.处理方法:①牛顿运动定律和运动学方程相结合.⑵偏转——带电粒子以初速度%垂直于电场线方向进入匀强电场.处理方法:类似平抛运动的分析方法.沿初速度方向的匀速直线运动:/=%/沿电场力方向的初速度为零的匀加速肓线运动:偏转角ta 吩斜专於 7.电容的两个表达式和平行板电容器的两类问题是什么? 答案⑴①电容:C=£ ⑵平行板电容器的两类问题:①电键K 保持闭合,则电容器两端的电压恒定(等于电源电动势),这种情况下带电荷量0= …「 U \CSC,而 C=^oc-, Em②充电后断开K,则电容器带电荷量0恒定,这利叶靑况下C*孚 g 隹占.8.磁场的基本性质是什么?安培定则和左手定则有何区别? 答案(1)磁场是一•种物质,存在于磁体、电流和运动电荷周围,产生于电荷的运动,磁体、 电流和运动电荷之间通过磁场而和互作用.(2)两个定则:①安培定则:判断电流周围的磁场方向.②左手定则:判断电流或运动电荷在磁场屮的受力方向.9•通电导线在磁场屮一定受到力的作用吗?磁场对电流的力的作用有什么特点?答案 当通电导线放置方向与磁场平行时,磁场对通电导线无力的作用.除此以外,磁场对通 电导线有力的作用.当/丄3时,磁场对电流的作用为安培力F=BIL,其中厶为导线的有效长 度,安培力的方向用左手定则判断,且安培力垂直于〃和/确定的平面.10.带电粒了在磁场屮的受力情况有何特点?洛伦兹力的人小与哪些物理最有关,它的方向如 何判②功能观点: qU=^nv?—②平行板电容器的电容决定式:C=CpS £r S --------- o c ------ Ankd clqU”ImdvQ定?洛伦兹力为什么不做功?答案(1)磁场只对运动电荷有力的作用,对静止电荷无力的作用.磁场对运动电荷的作用力叫洛伦兹力.⑵洛伦兹力的大小和方向:其大小为F洛=qoBsbe,注意:。
专题强化八带电粒子(带电体)在电场中运动的综合问题专题解读 1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现.2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题.3.用到的知识:受力分析、运动分析、能量观点.一、带电粒子在电场中的运动1.分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题.2.受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略.一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用.二、用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理.即使都是恒力作用的问题,用能量观点处理也常常更简捷.具体方法常有两种:1.用动能定理处理思维顺序一般为:(1)弄清研究对象,明确所研究的物理过程.(2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功.(3)弄清所研究过程的始、末状态(主要指动能).(4)根据W=ΔE k列出方程求解.2.用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:(1)利用初、末状态的能量相等(即E1=E2)列方程.(2)利用某些能量的减少等于另一些能量的增加列方程.3.两个结论(1)若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变.(2)若带电粒子只在重力和电场力作用下运动,其机械能和电势能之和保持不变.命题点一 带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.思维方法(1)注重全面分析(分析受力特点和运动规律):抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件. (2)从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.例1 (2018·山东省日照市二模)图1甲为两水平金属板,在两板间加上周期为T 的交变电压u ,电压u 随时间t 变化的图线如图乙所示.质量为m 、重力不计的带电粒子以初速度v 0沿中线射入两板间,经时间T 从两板间飞出.下列关于粒子运动的描述错误的是( )图1A.t =0时入射的粒子,离开电场时偏离中线的距离最大B.t =14T 时入射的粒子,离开电场时偏离中线的距离最大C.无论哪个时刻入射的粒子,离开电场时的速度方向都水平D.无论哪个时刻入射的粒子,离开电场时的速度大小都相等 答案 B解析 粒子在电场中运动的时间是相同的;t =0时入射的粒子,在竖直方向先加速,然后减速,最后离开电场区域,故t =0时入射的粒子离开电场时偏离中线的距离最大,选项A 正确;t =14T时入射的粒子,在竖直方向先加速,然后减速,再反向加速,最后反向减速离开电场区域,故此时刻射入的粒子离开电场时速度方向和中线在同一直线上,选项B 错误;因粒子在电场中运动的时间等于电场变化的周期T ,根据动量定理,竖直方向电场力的冲量的矢量和为零,故所有粒子离开电场时的竖直方向分速度为零,即最终都垂直电场方向射出电场,离开电场时的速度大小都等于初速度,选项C 、D 正确.变式1 (多选)(2018·河北省衡水中学二调)如图2甲所示,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T 3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )图2A.末速度大小为2v 0B.末速度沿水平方向C.重力势能减少了12mgdD.克服电场力做功为mgd 答案 BC解析 因0~T 3时间内微粒匀速运动,故E 0q =mg ;在T 3~2T3时间内,微粒只受重力作用,做平抛运动,在t =2T 3时刻的竖直速度为v y 1=gT 3,水平速度为v 0;在2T3~T 时间内,由牛顿第二定律得2E 0q -mg =ma ,解得a =g ,方向向上,则在t =T 时刻,v y 2=v y 1-g T3=0,粒子的竖直速度减小到零,水平速度为v 0,选项A 错误,B 正确;微粒的重力势能减小了ΔE p =mg ·d 2=12mgd ,选项C 正确;从射入到射出,由动能定理得12mgd -W 电=0,可知克服电场力做功为12mgd ,选项D 错误.命题点二 用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图3所示,图3则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.例2 (2018·闽粤期末大联考)如图4所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度为L =0.4 m 的绝缘细线把质量为m =0.20 kg,带有q =6.0×10-4 C 正电荷的金属小球悬挂在O 点,小球静止在B 点时细线与竖直方向的夹角为θ=37°.已知A 、C 两点分别为细线悬挂小球的水平位置和竖直位置,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)图4(1)A 、B 两点间的电势差U AB .(2)将小球拉至位置A 使细线水平后由静止释放,小球通过最低点C 时细线对小球的拉力F 的大小.(3)如果要使小球能绕O 点做完整的圆周运动,则小球在A 点时沿垂直于OA 方向运动的初速度v 0的大小.答案 (1)-400 V (2)3 N (3)21 m/s解析 (1)带电小球在B 点静止受力平衡,根据平衡条件得:qE =mg tan θ, 得:E =mg tan θq =0.20×10×tan 37°6.0×10-4V/m =2.5×103 V/m 由U =Ed 有:U AB =-EL (1-sin θ)=-2.5×103×0.4×(1-sin 37°) V =-400 V . (2)设小球运动至C 点时速度为v C ,则: mgL -qEL =12m v C 2解得:v C = 2 m/s在C 点,小球所受重力和细线的合力提供向心力: F -mg =m v C 2L ,联立解得:F =3 N.(3)分析可知小球做完整圆周运动时必须通过B 点关于O 点的对称点,设在该点时小球的最小速度为v ,则:mg cos θ+qE sin θ=m v 2L-mgL cos θ-qEL (1+sin θ)=12m v 2-12m v 02联立解得:v 0=21 m/s.变式2 (2018·安徽省皖南八校第二次联考)如图5,一质量为m 1=1 kg,带电荷量为q =+0.5 C 的小球以速度v 0=3 m /s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A 点沿切线落入竖直光滑圆弧轨道ABC ,圆弧轨道ABC 的形状为半径R <3 m 的圆截去了左上角127°的圆弧,CB 为其竖直直径,在过A 点竖直线OO ′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g =10 m/s 2)求:图5(1)两极板间的电势差大小U ;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R 的取值应满足的条件. 答案 (1)10 V (2)3 m>R ≥2518 m 或R ≤2563 m解析 (1)在A 点,竖直分速度v y = v 0tan 53°=4 m/s带电粒子在平行板中运动时间t =Lv 0=0.2 sv y =at ,得a =20 m/s 2 又mg +E ′q =ma E ′=Ud,得U =10 V(2)在A 点速度v A =v 0cos 53°=5 m/s①若小球不超过圆心等高处,则有 12m v A 2≤(mg +qE )R cos 53° 得R ≥2518m故3 m>R ≥2518m②若小球能到达最高点C ,则有 12m v 2A =(mg +qE )R ·(1+cos 53°)+12m v C 2 在C 点:mg +Eq ≤m v C 2R可得v C ≥(mg +qE )Rm联立解得:R ≤2563m故圆弧轨道半径R 的取值条件为: 3 m>R ≥2518 m 或R ≤2563m命题点三 电场中的力电综合问题1.力学规律(1)动力学规律:牛顿运动定律结合运动学公式. (2)能量规律:动能定理或能量守恒定律. 2.电场规律(1)电场力的特点:F =Eq ,正电荷受到的电场力与场强方向相同. (2)电场力做功的特点:W AB =FL AB cos θ=qU AB =E p A -E p B . 3.多阶段运动在多阶段运动过程中,当物体所受外力突变时,物体由于惯性而速度不发生突变,故物体在前一阶段的末速度即为物体在后一阶段的初速度.对于多阶段运动过程中物体在各阶段中发生的位移之间的联系,可以通过作运动过程草图来获得.例3 (2018·四川省乐山市第一次调研)如图6所示,AB 是位于竖直平面内、半径R =0.5 m 的14圆弧形的光滑绝缘轨道,其下端点B 与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E =5×103 N/C.今有一质量为m =0.1 kg 、带电荷量q =+8×10-5 C 的小滑块(可视为质点)从A 点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g =10 m/s 2,求:图6(1)小滑块第一次经过圆弧形轨道最低点B 时对B 点的压力; (2)小滑块在水平轨道上向右滑过的最大距离;(3)小滑块最终运动情况.答案 (1)2.2 N,方向竖直向下 (2)23m (3)在圆弧轨道上往复运动解析 (1)设小滑块第一次到达B 点时的速度为v B ,对圆弧轨道最低点B 的压力为F N ,则由A →B ,有mgR -qER =12m v B 2F N ′-mg =m v B 2R由牛顿第三定律F N ′=F N故F N =3mg -2qE =2.2 N,方向竖直向下,(2)设小滑块在水平轨道上向右滑行的最大距离为x , 对全程由动能定理有mgR -qE (R +x )-μmgx =0 得x =23m(3)由题意知qE =8×10-5×5×103 N =0.4 Nμmg =0.05×0.1×10 N =0.05 N 因此有qE >μmg所以小滑块最终在圆弧轨道上往复运动.变式3 (2018·江西省南昌二中第四次模拟)如图7所示,在E =103 V/m 的水平向左的匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R =40 cm,一带正电荷q =10-4 C 的小滑块质量为m =40 g,与水平轨道间的动摩擦因数μ=0.2,取g =10 m/s 2,问:图7(1)要使小滑块恰好运动到圆轨道的最高点C ,滑块应在水平轨道上离N 点多远处释放? (2)这样释放的滑块通过P 点时对轨道压力是多大?(P 为半圆轨道中点) 答案 (1)20 m (2)1.5 N解析 (1)设滑块与N 点的距离为L ,由动能定理可得,qEL -μmgL -mg ·2R =12m v 2-0小滑块在C 点时,mg =m v 2R解得v =2 m/s,L =20 m(2)滑块到达P 点时,对全过程应用动能定理得,qE (L +R )-μmgL -mgR =12m v P 2-0在P 点,F N -qE =m v P 2R,解得F N =1.5 N由牛顿第三定律可得,滑块通过P 点时对轨道压力大小是1.5 N.变式4 (2019·山东省青岛市模拟)如图8所示,水平地面上方存在水平向左的匀强电场,一质量为m 的带电小球(大小可忽略)用轻质绝缘细线悬挂于O 点,小球带电荷量为+q ,静止时距地面的高度为h ,细线与竖直方向的夹角为α=37°,重力加速度为g .(sin 37°=0.6,cos 37°=0.8) 求:图8(1)匀强电场的场强大小E ;(2)现将细线剪断,小球落地过程中小球水平位移的大小; (3)现将细线剪断,带电小球落地前瞬间的动能. 答案 (1)3mg 4q (2)34h (3)2516mgh解析 (1)小球静止时,对小球受力分析如图所示,由F T cos 37°=mg F T sin 37°=qE 解得:E =3mg4q(2)剪断细线,小球在竖直方向做自由落体运动,水平方向做加速度为a 的匀加速运动, 由Eq =ma x =12at 2 h =12gt 2 联立解得:x =34h(3)从剪断细线到落地瞬间,由动能定理得:E k =mgh +qEx =2516mgh .1.(2018·河南省中原名校第二次联考)如图1所示,在两平行金属板中央有一个静止的电子(不计重力),当两板间的电压分别如图2中甲、乙、丙、丁所示,电子在板间运动(假设不与板相碰),下列说法正确的是( )图1图2A.电压是甲图时,在0~T 时间内,电子的电势能一直减少B.电压是乙图时,在0~T2时间内,电子的电势能先增加后减少C.电压是丙图时,电子在板间做往复运动D.电压是丁图时,电子在板间做往复运动 答案 D解析 若电压是题图甲,0~T 时间内,电场力先向左后向右,则电子先向左做匀加速直线运动,后做匀减速直线运动,即电场力先做正功后做负功,电势能先减少后增加,故A 错误;电压是题图乙时,在0~T2时间内,电子向右先加速后减速,即电场力先做正功后做负功,电势能先减少后增加,故B 错误;电压是题图丙时,电子先向左做加速度先增大后减小的加速运动,过了T2后做加速度先增大后减小的减速运动,到T 时速度减为0,之后重复前面的运动,故电子一直朝同一方向运动,故C 错误;电压是题图丁时,电子先向左加速,到T 4后向左减速,T 2后向右加速,34T 后向右减速,T 时速度减为零,之后重复前面的运动,故电子做往复运动,故D 正确.2.将如图3所示的交变电压加在平行板电容器A 、B 两板上,开始B 板电势比A 板电势高,这时有一个原来静止的电子正处在两板的中间,它在电场力作用下开始运动,设A 、B 两极板间的距离足够大,下列说法正确的是( )图3A.电子一直向着A 板运动B.电子一直向着B 板运动C.电子先向A 板运动,然后返回向B 板运动,之后在A 、B 两板间做周期性往复运动D.电子先向B 板运动,然后返回向A 板运动,之后在A 、B 两板间做周期性往复运动 答案 D3.(2018·安徽省蚌埠市一质检)如图4甲为一对长度为L 的平行金属板,在两板之间加上如图乙所示的电压.现沿两板的中轴线从左端向右端连续不断射入初速度为v 0的相同带电粒子(重力不计),且所有粒子均能从平行金属板的右端飞出,若粒子在两板之间的运动时间均为T ,则粒子最大偏转位移与最小偏转位移的大小之比是( )图4A.1∶1B.2∶1C.3∶1D.4∶1 答案 C解析 设偏转电场电压不为零时,粒子在偏转电场中的加速度为a若粒子在t =nT 时刻进入偏转电场,则竖直方向上先加速后匀速然后飞出偏转电场,此时粒子偏转位移最大,y max =12a (T 2)2+a ×T 2×T 2=38aT 2若粒子在t =nT +T2时刻进入偏转电场,则竖直方向上先静止后加速然后飞出偏转电场,此时粒子偏转位移最小,y min =0+12a (T 2)2=18aT 2则粒子最大偏转位移与最小偏转位移的大小之比是3∶1,故C 项正确.4.(2019·广东省韶关市调研)如图5所示,在竖直向上的匀强电场中,一根不可伸长的轻质绝缘细绳,一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为 a ,最低点为 b .不计空气阻力,则( )图5A.小球带负电B.电场力跟重力是一对平衡力C.小球从 a 点运动到 b 点的过程中,电势能减小D.运动过程中小球的机械能守恒 答案 B解析 小球在竖直平面内做匀速圆周运动,受到重力、电场力和细绳的拉力,电场力与重力平衡,则知小球带正电,故A 错误,B 正确.小球在从a 点运动到b 点的过程中,电场力做负功,小球的电势能增大,故C 错误.由于电场力做功,所以小球在运动过程中机械能不守恒,故D 错误. 5.(多选)(2018·安徽省芜湖市上学期期末)如图6所示,在水平的匀强电场中,一个质量为m 、电荷量为+q 的小球,系在一根长为L 的绝缘细线一端,小球可以在竖直平面内绕O 点做圆周运动,AB 为圆周的水平直径,CD 为竖直直径.已知重力加速度为g ,电场强度E =mgq ,不计空气阻力,下列说法正确的是( )图6A.若小球在竖直平面内绕O 点做圆周运动,则小球运动到B 点时的机械能最大B.若将小球在A 点由静止开始释放,它将沿着ACBD 圆弧运动C.若小球在竖直平面内绕O 点做圆周运动,则它运动过程中的最小速度为 2gLD.若将小球在A 点以大小为gL 的速度竖直向上抛出,它将能够到达D 点 答案 AC6.(多选)(2018·山西省孝义市第一次模拟)如图7所示ABCD 为竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B 点.水平面内的M 、N 、B 三点连线构成边长为L 的等边三角形,M 、N 连线过C 点且垂直于BCD .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q .现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k ,重力加速度为g ,则( )图7A.小球运动到B 点时受到的电场力小于运动到C 点时受到的电场力B.小球在B 点时的电势能小于在C 点时的电势能C.小球在A 点时的电势能等于在C 点时的电势能D.小球运动到C 点时的速度为gR 答案 AC解析 根据等量异种点电荷的电场特征,B 点电场强度小于C 点,小球在B 点时受到的电场力小于运动到C 点时受到的电场力,故A 项正确.根据等量异种点电荷的电场特征可知A 、B 、C 三点处于同一个等势面上,所以三点的电势相等,小球在三点处的电势能是相等的,故B 项错误,C 项正确.从A 点到C 点的运动过程只有重力对小球做功,由动能定理可得:mgR =12m v C 2,所以小球在C 点时速度为2gR ,故D 项错误.7.(2018·河南省中原名校第四次模拟)水平放置的平行板电容器与某一电源相连接后,断开电键,重力不可忽略的小球由电容器的正中央沿水平向右的方向射入该电容器,如图8所示,小球先后经过虚线的A 、B 两点.则( )图8A.如果小球所带的电荷为正电荷,小球所受的电场力一定向下B.小球由A 到B 的过程中电场力一定做负功C.小球由A 到B 的过程中动能可能减小D.小球由A 到B 的过程中,小球的机械能可能减小 答案 D解析 由题图所示小球运动轨迹可知,小球向下运动,说明小球受到的合力竖直向下,重力与电场力的合力竖直向下;当小球带正电时,若上极板带正电荷,小球受到的合力向下,小球运动轨迹向下,若上极板带负电,且电场力小于重力,小球受到的合力向下,小球运动轨迹向下,A 错误;如果小球受到的电场力向下,小球从A 运动到B 点过程中电场力做正功,如果小球受到的电场力向上,则电场力做负功,B 错误;小球受到的合力向下,小球从A 点运动到B 点过程中合外力做正功,小球的动能增加,C 错误;小球从A 点运动到B 点过程若电场力做负功,则小球的机械能减少,D正确.8.(多选)(2018·河南省鹤壁市第二次段考)如图9所示为竖直平面内的直角坐标系,其中x轴沿水平方向,y轴沿竖直方向.质量为m、带电荷量为q的小球,在重力和恒定电场力F作用下,在竖直平面内沿与y轴方向成α角(90°>α>45°)斜向下方向做直线运动,重力加速度为g,则下列说法正确的是()图9A.若F=mg sin α,则小球的速度不变B.若F=mg sin α,则小球的速度可能减小C.若F=mg tan α,则小球的速度可能减小D.若F=mg tan α,则小球的电势能可能增大答案CD解析小球只受重力G和电场力F作用,小球做直线运动,则合力为零或合力方向与运动方向在同一直线上;若F=mg sin α,则F方向与运动方向垂直,如图,力F不做功,只有重力做功,所以小球的速度增大,A、B错误;若F=mg tan α,力F与小球运动方向可能成锐角,力对小球做正功,小球速度增大,电势能减小,力F也可能与运动方向成钝角,合力对小球做负功,小球速度减小,电势能增大,故C、D正确.9.(2018·辽宁省大连市第二次模拟)如图10甲所示,将一倾角θ=37°的粗糙绝缘斜面固定在地面上,空间存在一方向沿斜面向上的匀强电场.一质量m=0.2 kg,带电荷量q=2.0×10-3 C的小物块从斜面底端静止释放,运动0.1 s后撤去电场,小物块运动的v-t图象如图乙所示(取沿斜面向上为正方向),g=10 m/s2.(sin 37°=0.6,cos 37°=0.8),求:图10(1)电场强度E的大小;(2)小物块在0~0.3 s 运动过程中机械能增加量. 答案 (1)3×103 N/C (2)0.36 J 解析 (1)加速时:a 1=Δv 1Δt 1=20 m/s 2减速时:加速度大小a 2=⎪⎪⎪⎪Δv 2Δt 2=10 m/s 2由牛顿第二定律得:Eq -mg sin θ-F f =ma 1 mg sin θ+F f =ma 2 联立得E =3×103 N/C 摩擦力F f =0.8 N (2)方法一:ΔE k =0 ΔE p =mgx sin 37° x =0.3 m ΔE =ΔE p ΔE =0.36 J方法二:加速距离x 1=v2t 1=0.1 m减速距离x 2=v2t 2=0.2 m电场力做功W E =Eqx 1=0.6 J摩擦力做功W f =-F f (x 1+x 2)=-0.24 J 物块在0~0.3 s 运动过程中机械能增加量 ΔE =W E +W f =0.36 J.10.如图11所示,一质量为m 、电荷量为q (q >0)的液滴,在场强大小为3mgq、方向水平向右的匀强电场中运动,运动轨迹在竖直平面内.A 、B 为其运动轨迹上的两点,已知该液滴在A 点的速度大小为v 0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°.求A 、B 两点间的电势差.图11答案 3m v 028q解析 由题意知qE =3mg ,液滴重力不能忽略,把运动分解水平方向:v sin 60°=v 0sin 30°+qEmt 竖直方向:v cos 60°=v 0cos 30°-gt 联立可得:v =233v 0,t =3v 06g由牛顿第二定律得水平方向加速度a =qE m =3g ,水平位移:x =v 0sin 30°·t +12(3g )t 2=3v 028gU AB =E ·x =3m v 028q.11.(2018·四川省雅安市第三次诊断)如图12所示,光滑绝缘水平面上方存在电场强度大小为E 、方向水平向右的匀强电场.某时刻将质量为m 、带电荷量为-q 的小金属块从A 点由静止释放,经时间t 到达B 点,此时电场突然反向且增强为某恒定值,又经过时间t 小金属块回到A 点.小金属块在运动过程中电荷量保持不变.求:图12(1)A 、B 两点间的距离;(2)电场反向后匀强电场的电场强度大小. 答案 (1)Eq2mt 2 (2)3E解析 (1)设t 末和2t 末小金属块的速度大小分别为v 1和v 2,电场反向后匀强电场的电场强度大小为E 1,小金属块由A 点运动到B 点过程 a 1=Eq mx =12a 1t 2 联立解得x =Eq2m t 2(2)v 1=a 1t 解得v 1=Eqmt小金属块由B 点运动到A 点过程a 2=-E 1qm-x =v 1t +12a 2t 2联立解得E 1=3E .。
考题一磁场对通电导体的作用力
1.安培力大小的计算公式:F=BIL sin θ(其中θ为B与I之间的夹角).
(1)若磁场方向和电流方向垂直:F=BIL.
(2)若磁场方向和电流方向平行:F=0.
2.安培力方向的判断:左手定则.
方向特点:垂直于磁感线和通电导线确定的平面.
3.两个常用的等效模型
(1)变曲为直:图1甲所示通电导线,在计算安培力的大小和判断方向时均可等效为ac直线电流.
图1
(2)化电为磁:环形电流可等效为小磁针,通电螺线管可等效为条形磁铁,如图乙.
4.求解磁场中导体棒运动问题的方法
(1)分析:正确地对导体棒进行受力分析,应特别注意通电导体棒受到的安培力的方向,安培力与导体棒和磁感应强度组成的平面垂直.
(2)作图:必要时将立体图的受力分析图转化为平面受力分析图,即画出与导体棒垂直的平面内的受力分析图.
(3)求解:根据平衡条件或牛顿第二定律或动能定理列式分析求解.
例1如图2所示,某同学用玻璃皿在中心放一个圆柱形电极接电源的负极,沿边缘放一个圆环形电极接电源的正极做“旋转的液体的实验”,若蹄形磁铁两极间正对部分的磁场视为匀强磁场,磁感应强度为B=0.1 T,玻璃皿的横截面的半径为a=0.05 m,电源的电动势为E=3 V,内阻r=0.1 Ω,限流电阻R0=4.9 Ω,玻璃皿中两电极间液体的等效电阻为R=0.9 Ω,闭合开关后当液体旋转时电压表的示数恒为1.5 V,则()
图2
A.由上往下看,液体做顺时针旋转
B.液体所受的安培力大小为1.5×10-4 N
C.闭合开关10 s,液体具有的动能是4.5 J
D.闭合开关后,液体电热功率为0.081 W
解析由于中心圆柱形电极接电源的负极,边缘电极接电源的正极,在电源外部电流由正极流向负极,因此电流由边缘流向中心;玻璃皿所在处的磁场竖直向上,由左手定则可知,导电液体受到的磁场力沿逆时针方向,因此液体沿逆时针方向旋转;故A错误;此电路为非纯电阻电路,电压表的示数为1.5 V,则根据闭合电路欧姆定律:E=U+IR0+Ir,所以电路
中的电流值:I=E-U
R0+r
=
3-1.5
4.9+0.1
A=0.3 A,液体所受的安培力大小为:F=BIL=BIa=
0.1×0.3×0.05 N =1.5×10-3 N.故B 错误;玻璃皿中两电极间液体的等效电阻为R =0.9 Ω,则液体热功率为P 热=I 2R =0.32×0.9 W =0.081 W.故D 正确;10 s 末液体的动能等于安培力对液体做的功,通过玻璃皿的电流的功率:P =UI =1.5×0.3 W =0.45 W ,所以闭合开关10 s ,液体具有的动能是:E k =W 电流-W 热=(P -P 热)·t =(0.45-0.081)×10 J =3.69 J ,故C 错误. 答案 D
变式训练
1.(2016·海南单科·8)如图3(a)所示,扬声器中有一线圈处于磁场中,当音频电流信号通过线圈时,线圈带动纸盆振动,发出声音.俯视图(b)表示处于辐射状磁场中的线圈(线圈平面即纸面)磁场方向如图中箭头所示,在图(b)中( )
图3
A.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向里
B.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外
C.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里
D.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向外
答案 BC 解析 将环形导线分割成无限个小段,每一小段看成直导线,则根据左手定则,当电流顺时针时,导线的安培力垂直纸面向外,故选项A 错误,选项B 正确;当电流逆时针时,根据左手定则可以知道安培力垂直纸面向里,故选项C 正确,选项D 错误.
2.如图4所示,某区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B .一正方形刚性线圈,边长为L ,匝数为n ,线圈平面与磁场方向垂直,线圈一半在磁场内.某时刻,线圈中通过大小为I 的电流,则此线圈所受安培力的大小为( )
图4 A.2BIL B.12
nBIL C.nBIL D.2nBIL。