5.3 现代控制理论系统镇定解析
- 格式:ppt
- 大小:592.00 KB
- 文档页数:26
现代控制理论(浓缩版)绪论1.经典控制理论与现代控制理论的比较。
经典控制理论也称为古典控制理论,多半是用来解决单输入-单输出的问题,所涉及的系统大多是线性定常系统,非线性系统中的相平面法也只含两个变量。
经典控制理论是以传递函数为基础、在频率域对单输入单输出控制系统进行分析和设计的理论。
它明显具有依靠手工进行分析和综合的特点,这个特点是与20世纪40~50年代生产发展的状况,以及电子计算机的发展水平尚处于初级阶段密切相关的。
在对精度要求不高的场合是完全可用的。
最大成果之一就是PID 控制规律的产生,PID 控制原理简单,易于实现,具有一定的自适应性与鲁棒性,对于无时间延时的单回路控制系统很有效,在工业过程控制中仍被广泛采用。
现代控制理论主要用来解决多输入多输出系统的问题,系统可以是线性或非线性的、定常或时变的。
确认了控制系统的状态方程描述法的实用性,是与状态方程有关的控制理论。
现代控制理论基于时域内的状态空间分析法,着重实现系统最优控制的研究。
从数学角度而言,是把系统描述为四个具有适当阶次的矩阵,从而将控制系统的一些问题转化为数学问题,尤其是线性代数问题。
而且,现代控制理论是以庞得亚金的极大值原理、别尔曼的动态规划和卡尔曼的滤波理论为其发展里程碑,揭示了一些极为深刻的理论结果。
面对现代控制理论的快速发展及成就,人们对这种理论应用于工业过程寄于乐期望。
但现代控制在工业实践中遇到的理论、经济和技术上的一些困难。
所以说,现代控制理论还存在许多问题,并不是“完整无缺”,这是事物存在矛盾的客观反应,并将推动现代控制理论向更深、更广方向发展。
如大系统理论和智能控制理论的出现,使控制理论发展到一个新阶段。
2.控制一个动态系统的几个基本步骤有四个基本步骤:建模,基于物理规律建立数学模型;系统辨识,基于输入输出实测数据建立数学模型;信号处理,用滤波、预报、状态估计等方法处理输出;综合控制输入,用各种控制规律综合输入。
现代控制理论稳定性的判定优秀详解现代控制理论是工程控制科学的重要组成部分,它主要研究动态系统的稳定性问题。
在工程实践中,通过判定系统的稳定性,可以评估控制系统的性能和可靠性,为系统设计和运营提供重要依据。
本文将详细介绍现代控制理论中稳定性的判定方法和优点。
一、稳定性判定方法1. 传递函数法传递函数法是现代控制理论中最常用的一种稳定性判定方法。
它通过分析系统的传递函数,确定系统的极点位置,从而判断系统是否稳定。
对于一般系统,只需要确定传递函数的分母多项式的根的位置即可。
如果所有根的实部均小于零,则系统是稳定的;如果存在一个或多个根的实部大于零,则系统是不稳定的。
2. 状态方程法状态方程法是另一种常用的稳定性判定方法。
它将系统的动态行为表示为一组状态方程,通过求解状态方程的特征根来判断系统的稳定性。
如果所有特征根的实部均小于零,则系统是稳定的;如果存在一个或多个特征根的实部大于零,则系统是不稳定的。
3. 极点分布法极点分布法是一种图形法,通过绘制系统的极点在复平面上的分布图,可以直观地判断系统的稳定性。
如果所有极点都位于左半平面,则系统是稳定的;如果存在极点位于右半平面,则系统是不稳定的。
此外,如果存在虚轴上的极点,系统可能是临界稳定或者边界稳定。
二、稳定性判定方法的优点1. 灵活性现代控制理论中的稳定性判定方法具有很高的灵活性。
不同方法可以根据具体问题的特点选择使用,如传递函数法适合分析线性时不变系统,而状态方程法适合分析非线性或时变系统。
这样,工程师可以根据实际情况选择最合适的稳定性判定方法,保证判定结果的准确性。
2. 准确性现代控制理论中的稳定性判定方法基于严格的数学推导和分析,具有很高的准确性。
通过这些方法所得到的稳定性判定结果经过验证,在工程实践中得到了广泛应用。
3. 直观性极点分布法是现代控制理论中一种直观的稳定性判定方法。
通过绘制极点的分布图,可以直观地了解系统的稳定性状况。
这种直观性可以帮助工程师更好地理解和分析系统的动态行为,为控制系统的设计和调试提供有价值的参考。
考研现代控制理论知识点剖析现代控制理论作为控制工程的重要分支,是在传统控制理论的基础上发展起来的。
它以数学模型为基础,利用系统分析和设计方法,实现对各类复杂系统的控制与优化。
本文将从控制系统的基本概念、控制器设计、状态空间分析等方面,对考研现代控制理论的核心知识点进行剖析。
一、控制系统的基本概念控制系统是指通过对被控对象进行操作,使其输出符合预期要求的系统。
它由被控对象、传感器、执行器和控制器四个基本部分构成。
被控对象是指需要进行控制的物理系统,如机械系统、电气系统等。
传感器用于对被控对象的各种状态或性能进行测量与检测,并将其转化为电信号。
执行器则根据控制器输出的信号,将其转化为能够直接或间接影响被控对象的物理量或信号。
控制器是整个控制系统的核心部分,它接收传感器的反馈信号,并根据预先设定的控制策略产生相应的控制信号。
二、控制器设计控制器设计是指通过对控制器参数的选择和调节,使得控制系统能够达到预期的控制目标。
常见的控制器设计方法主要有比例控制、积分控制、微分控制以及PID控制等。
比例控制是根据被控对象输出与期望输出之间的差异,按比例调节控制器输出信号。
积分控制在比例控制的基础上,增加对积分项的调节,使系统具有更好的稳定性和鲁棒性。
微分控制则通过对被控对象输出的变化率进行反馈调节,进一步提高系统响应速度和抗扰性。
PID控制则是综合了比例、积分和微分控制的优点,具有更广泛的应用范围和更好的控制性能。
三、状态空间分析状态空间分析是现代控制理论中的重要内容,它基于被控对象的状态变量,利用状态方程和输出方程描述系统的动态行为和输出特性。
状态方程是由被控对象的状态变量和外部输入所构成的一组常微分方程。
输出方程则将被控对象的状态变量与输出变量之间的关系表示出来。
通过状态空间分析,可以对系统的稳定性、可控性和可观测性等性质进行评估,并为控制器设计提供依据。
四、鲁棒控制鲁棒控制是现代控制理论中的另一个重要概念,它是指在系统参数变化或外部扰动存在的情况下,保持控制系统性能的一种控制策略。
现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题什么是最小实现说明实现存在的条件。