现代控制理论:控制系统的状态空间模型
- 格式:ppt
- 大小:2.87 MB
- 文档页数:111
引言状态空间模型是应用状态空间分析法对动态系统所建立的一种数学模型, 它是应用现代控制理论对系统进行分析和综合的基础。
状态空间模型由描述系统的动态特性行为的状态方程和描述系统输出变量与状态变量间变换关系的输出方程组成。
在经典控制理论中,采用n 阶微分方程作为对控制系统输入量u(t )和输出量y( t)之间的时域描述,或者在零初始条件下,对n阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量U(s)=L[u(t)] 和输出量Y(s)=L[y(t)] 之间的关系。
传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。
现代控制理论是建立在“状态空间” 基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。
系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。
该算法是构建在数学支持的基础之上的。
标准四阶龙格——库塔法的基本思想龙格和库塔提出了一种间接地运用Taylor 公式的方法,即利用y(x) 在若干个待定点上的函数值和导数值做出线性组合式,选取适当系数使这个组合式进Taylor 展开后与y(xi+1) 的Taylor 展开式有较多的项达到一致,从而得出较高阶的数值公式,这就是龙格—库塔法的基本思想。
一、实验原理龙格——库塔法龙格—库塔法是仿真中应用最广泛的方法。
它以泰勒展开公式为基础,用函数f 的线性组合代替f 的高阶导数项,避免了高阶导数的运算,又提高了精度。
泰勒公式的阶次取得越高,龙格—库塔法所得的误差等级越低,精度越高。