u x y
状态空间模型--系统的内部描述。
第1章 控制系统的状态空间模型
一些特殊的模型
f ( x , u, t ) = A(t ) x + B (t )u
线性系统模型
& = A(t ) x + B (t )u x
g ( x , u, t ) = C (t ) x + D(t )u
y = C (t ) x + D(t )u
¾ 线性系统是实际非线性对象的线性化近似; ¾ 线性系统的处理方法可以为非线性系统问题的解决 提供思路
例子:倒立摆装置
用小车的位移和速度及摆杆 偏离垂线的角度和角速度来 描述系统的动态特性 小车的水平位移:y 小球中心位置:y + l sin θ
&& cos θ − mlθ & 2 sin θ = u & + mlθ y 水平方向: (M + m) &
u y l m mg
θ
M
&& = mg sin θ & cos θ + mlθ y 垂直方向: m&
g:重力加速度
非线性模型
例子:倒立摆装置
考虑在垂直位置附近的线性化模型
sin θ ≈ θ , cos θ ≈ 1
由
&& cos θ − mlθ & 2 sin θ = u & + mlθ ( M + m) & y && = mg sin θ & cos θ + mlθ m& y
是否可能? 如何得到?
传递函数到状态空间模型
传递函数的一般形式: