数列的极限
- 格式:ppt
- 大小:1.56 MB
- 文档页数:29
数列极限知识点归纳总结数列极限是高等数学中非常重要的一部分内容,它在微积分、数学分析和实数理论等领域有着广泛的应用。
数列极限可以用来描述数列中的数值趋于无穷大或趋于某个确定值的性质。
本文将对数列极限的概念、性质及相关定理进行归纳总结。
一、数列极限的概念数列极限是指当数列的项趋于无穷大或趋于某个确定值时,数列中的数值会有怎样的变化规律。
数列极限可以分为两种情况:当数列的项趋于无穷大时,称为正无穷大极限;当数列的项趋于某个确定值时,称为有限极限。
二、正无穷大极限正无穷大极限是指当数列的项趋于正无穷大时,数列中的数值也趋于正无穷大。
对于正无穷大极限的数列,常常使用符号∞表示。
正无穷大极限的数列具有以下特点:1. 当数列的项趋于正无穷大时,数列中的每一项都大于任意给定的正数。
2. 正无穷大极限的数列不存在有限极限,即数列中的数值不会趋于某个确定值。
三、有限极限有限极限是指当数列的项趋于某个确定值时,数列中的数值也趋于该确定值。
有限极限的数列具有以下特点:1. 当数列的项趋于某个确定值时,数列中的每一项都无限接近于该确定值。
2. 有限极限的数列不一定是递增或递减的,它可以在趋近确定值的过程中有往复波动的情况。
四、数列极限的性质数列极限具有一些重要的性质,这些性质对于研究数列的收敛性和发散性非常有帮助。
下面列举了一些常见的数列极限性质:1. 数列极限的唯一性:如果数列的极限存在,那么它是唯一的,也就是说数列的极限值不会有多个。
2. 数列极限的保序性:如果一个数列的所有项都大于(或小于)另一个数列的所有项,并且这两个数列都有极限,那么它们的极限值也满足同样的大小关系。
3. 数列极限的有界性:如果一个数列的极限存在,那么该数列是有界的,即存在一个正数M,使得数列的所有项的绝对值都不大于M。
4. 数列极限与四则运算的关系:如果两个数列都有极限,那么它们的和、差、积和商(除数不为零)也都有极限,并且极限值满足相应的运算规律。
数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim(a n ·b n )=a ·b ; ∞→n limnnb a =ba (b ≠0).●点击双基1.下列极限正确的个数是 ①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0③∞→n limnnn n 3232+-=-1 ④∞→n lim C =C (C 为常数)D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]等于 解析: ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim22+n n=2. 答案:C ●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (nn +2-n );(3)∞→n lim (22n +24n +…+22nn ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因nn +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nn n +++=52.(2)∞→n lim (nn +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21.(3)原式=∞→n lim22642n n++++ =∞→n lim2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误: ①∞→n lim (nn +2-n )=∞→n limnn +2-∞→n lim n =∞-∞=0;②原式=∞→n limnn +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim 22n +∞→n lim24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ; (2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim nnn n c c 323211+---.①当c =2时,原式=-41;②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim11)2(32)2(31--⋅+-n n cc c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim22||||CD AB .剖析:要求∞→n lim22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218n n +.设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1.∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-nx 2)2=414nn +,∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41n (4n +1)(n 2+1).∴∞→n lim22||||CD AB =∞→n lim225)1)(14(8++n n n =∞→n lim2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =nn a a 2+=nn cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴nn b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c ,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3.解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0.故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础 1.已知a 、b 、c是实常数,且∞→n lim cbn can ++=2, ∞→n lim bcn cbn --22=3,则∞→n limacn can ++22的值是 C.21解析:由∞→n limcbn c an ++=2,得a =2b .由∞→n lim bcn cbn --22=3,得b =3c ,∴c =31b .∴ca =6.∴∞→n lim a cn c an ++22=∞→n lim 22nac n ca ++=ca =6.答案:D 2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411B.2417C.2419D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…). ∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得na -1-n a =3 (n ≥2).∴{n a }是公差为3的等差数列,1a =3.∴na =3+(n -1)·3=3n .∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_________________.解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim(a 1+a 2+…+a n )等于 A.52 B.72 C.41D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n . ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0. 答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *).(1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1).∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim[311⨯+421⨯+…+)1)(1(1+-n n ]=41∞→n lim[1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limnn b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limnn b a =∞→n lim21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1,∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴nn b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S .解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n n S S =p .当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qbp a q bp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2. ∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点:(1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算.2.熟练掌握如下几个常用极限:(1) ∞→n lim C =C (C 为常数); (2) ∞→n lim (n1)p =0(p >0); (3) ∞→n lim dcn b an k k ++=c a (k ∈N *,a 、b 、c 、d ∈R 且c ≠0); (4) ∞→n lim q n =0(|q |<1).●教师下载中心教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围. 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1. 当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。
数列的极限
一,数列极限定义
简单来讲就是:一个数列随着序数的增加最终会趋于或等于一个数,这个数就是数列的极限。
证明题要结合书上的公式
二,收敛数列的性质
1唯一性:收敛数列只有一个极限
2有界性:收敛数列一定有界。
(收敛数列最终都会趋于或等于一个数,所以有界)但有界数列不一定就是收敛数列,如-1,1,-1,1……,这个数列就是发散的,因为它同时趋于-1和1。
(有界是因为它的绝对值小于等于1,可参考上节所讲如何判定数列有界)这个数列同时说明了发散数列不一定无界。
3保号性:就是有一个数列,当其中一个数从它开始大于零,那么它之后的数都大于零。
推论:当一个数列存在某一个数大于零,那么这个数列的极限也大于零
4收敛数列与其子数列间的关系:如果一个数列收敛于A,那么它的任意子数列也收敛于A,但子数列收敛,原数列不一定收敛;子数列收敛于A,原数列不一定收敛于A,有可能原数列不收敛,可参考我在有界性中提到的例子,同时这个例子也说明一个发散的数列也可能有收敛的子数列。
数列的极限及运算法则
1.数列极限的定义
(1)描述性定义:对于数列{a n},如果存在一个常数A,当n无限增大时,数列{a n}中的项无限趋近于常数A(即a n无限趋近于A),则称常数A为数列{a n}的极限.
(2)ε-N定义:对于数列{a n},如果存在一个常数A,无论预先给定一个多么小的正数ε,都能在数列中找到一项a N,使得这一项以后的所有项与A的差的绝对值都小于ε(即当n>N时,|a n-A|<ε恒成立),就称常数A为数列{a n}的极限,
2.只有无穷数列才能讨论它的极限.
3.若数列{a n}的极限是A,数列{a n}中的项在趋近A的过程中,可能始终大于
6.在运用数列极限的四则运算法则时,应注意,只有在数列{a n}、{b n}的极限存在的前提下,才能运用,否则会产生错误.
7.常用的几个极限:
8.数列{a n}的前n项和S n的极限如果存在,则称这个极限值为数列{a n}的所有
加所得的和的概念,而是一个极限值.。
高中数学中的数列极限定义及其求解法则数列极限是高中数学课程中的一个重要内容,也是大学数学中的基础概念之一。
在高中阶段,我们需要学习数列极限的定义、判定和求解法则,理解其本质和应用,为进一步深入学习数学打好基础。
一、数列的极限定义在数学中,数列是按照一定规律排列的数的序列,表示为{an},其中an表示数列中第n个数。
如1,2,3,4……即为一个自然数数列。
当数列中的数逐渐趋向于一个确定的数L时,我们称L为该数列的极限,也称数列的极限存在。
数学上表示为:lim(n→∞)an = L其中lim表示“当n无限趋近于正无穷时的极限值”,an表示数列中的第n个数,L为数列的极限值。
二、常用的数列极限判定法则1. 夹逼准则夹逼准则是求解数列极限的常用方法,其核心思路是通过夹逼使得数列趋近于某个范围内的值。
具体来说,对于数列{an},如果有:an ≤ bn ≤ cn,且lim(n→∞)an = lim(n→∞)cn = L,则有lim(n→∞)bn= L。
其中,an和cn是分别代表着L的下限和上限的数列。
该方法的原理是利用如果一个数列逼近L,同时另外两个数列且夹在中间,则这两个数列同样逼近L。
例如:求解数列an =(n+2)/(2n+1)的极限。
将分子分母同时除以n,得到an = 1/2+3/(4n+2)。
由于lim(n→∞)3/(4n+2)= 0,所以an的极限等于lim(n→∞)1/2=1/2。
2. 单调有界准则单调有界准则是指如果数列{an}单调递增(或递减),且有一个数M使得|an|≤ M对于所有n成立,则该数列有极限。
此时,数列的极限就是其单调递增(或递减)的极限。
例如:求解数列an =(n+1)/n²的极限。
由于当n≥1时,有an ≤(n+1)/n,所以an为单调递减的数列。
同时,1/n是单调递减的有界数列,其最小值为0,所以an也是单调有界的。
因此,数列an有极限,其极限值等于an的单调递减极限:lim(n→∞)an=lim(n→∞)(n+1)/n²=0。
数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。
②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。
、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。