数列的极限及运算法则
- 格式:doc
- 大小:412.50 KB
- 文档页数:4
数列极限的定义与性质数列是由一系列按特定规律排列的数字组成的序列。
在数学中,了解数列的极限是非常重要的。
通过研究数列的极限,我们可以揭示数列的性质,并且可以应用到不同的领域中。
本文将探讨数列极限的定义与性质,帮助读者更好地理解和应用数列。
一、极限的定义数列的极限是指当数列中的项趋近于某个值时,数列的值也趋近于该值。
数列极限可以用以下方式进行定义:设有数列 {a_n},其中 n 表示数列中的项的索引(在数列中的位置)。
若对于任意给定的正实数ε,都存在正整数 N,使得当 n > N 时,有|a_n - A| < ε 成立,则称数列 {a_n} 的极限为 A,记作lim(n→∞) a_n = A。
其中,|a_n - A| 表示 a_n 与 A 之间的差的绝对值。
ε (epsilon) 是一个任意小的正实数,N 是一个正整数。
二、极限的性质数列极限具有以下性质:1. 极限的唯一性:设数列 {a_n} 的极限为 A,则数列的极限是唯一的,即不存在另外的极限值。
2. 极限的有界性:若数列 {a_n} 的极限为 A,则对于任意给定的正实数ε,存在正整数 N,使得当 n > N 时,有|a_n| < |A|+ε 成立。
换句话说,当 n 足够大时,数列的值都在 A 的某个邻域内。
3. 极限的保号性:若数列 {a_n} 的极限为 A,且 A > 0 (或 A < 0),则存在正整数 N,使得当 n > N 时,有 a_n > 0 (或 a_n < 0) 成立。
也就是说,当 n 足够大时,数列的值与其极限符号一致。
4. 极限的四则运算:设数列 {a_n} 和 {b_n} 的极限分别为 A 和 B,则有以下四则运算定理:- 两个数列的和的极限等于两个数列的极限的和,即lim(n→∞) (a_n + b_n) = A + B。
- 两个数列的差的极限等于两个数列的极限的差,即lim(n→∞) (a_n - b_n) = A - B。
数列极限四则运算法则的证明work Information Technology Company.2020YEAR数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对ε>0,正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次) =(limAn)的k次方=A的k次方.。
数列极限名词解释数列极限是数学中重要的概念之一,它在分析、微积分以及实际问题的建模与求解中扮演着关键角色。
本文将对数列极限进行解释,并介绍其基本概念和性质。
一、数列的定义数列是一系列按照特定规律排列的数字的集合。
通常用{an}或{a1, a2,a3,...}表示,其中每个数an称为数列的项,n表示项的位置或索引。
二、数列的极限定义对于数列{an},当n逐渐增大时,如果数列的项趋向于某个确定的值L,即对于任意给定的正数ε,存在正整数N,当n>N时,满足|an-L|<ε,那么我们说数列的极限存在,记为lim(n→∞)an= L。
这里,L称为数列的极限,n→∞表示当n趋向于无穷大时。
三、极限的直观理解数列的极限可以被理解为当n趋近于无穷大时,数列的项逐渐接近于某个值。
直观上,我们可以将数列的项画在数轴上,随着n增大,数列的项逐渐靠近极限值L。
例如,考虑数列{1/n},当n取不断增大的正整数时,数列的项会逐渐接近0,因此该数列的极限为0。
四、数列极限的性质1.数列的极限是唯一的:如果数列{an}的极限存在,那么它的极限是唯一的,即极限值L唯一确定。
2.有界性:如果数列{an}的极限存在,那么数列必定是有界的,即存在正数M,使得对于任意的n,|an|≤M。
3.极限运算法则:设{an}和{bn}是两个数列,并且它们的极限都存在,则有以下运算法则:a)lim(n→∞)(an±bn)=lim(n→∞)an±lim(n→∞)bnb)lim(n→∞)(k*an)=k*lim(n→∞)an,其中k是常数c)lim(n→∞)(an*bn)=lim(n→∞)an*lim(n→∞)bnd)lim(n→∞)(an/bn)=lim(n→∞)an/lim(n→∞)bn,其中bn≠0五、常见数列极限1.常数数列:对于数列{an},如果an=c,其中c为常数,则该数列的极限为lim(n→∞)an=c。
数列求极限的方法总结数列求极限的方法有那些?极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。
极限分为一般极限,还有个数列极限,下面是为大家总结的数列求极限的方法总结。
数列求极限的方法总结1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
数列的极限及运算法则
1.数列极限的定义
(1)描述性定义:对于数列{a n},如果存在一个常数A,当n无限增大时,数列{a n}中的项无限趋近于常数A(即a n无限趋近于A),则称常数A为数列{a n}的极限.
(2)ε-N定义:对于数列{a n},如果存在一个常数A,无论预先给定一个多么小的正数ε,都能在数列中找到一项a N,使得这一项以后的所有项与A的差的绝对值都小于ε(即当n>N时,|a n-A|<ε恒成立),就称常数A为数列{a n}的极限,
2.只有无穷数列才能讨论它的极限.
3.若数列{a n}的极限是A,数列{a n}中的项在趋近A的过程中,可能始终大于
6.在运用数列极限的四则运算法则时,应注意,只有在数列{a n}、{b n}的极限存在的前提下,才能运用,否则会产生错误.
7.常用的几个极限:
8.数列{a n}的前n项和S n的极限如果存在,则称这个极限值为数列{a n}的所有
加所得的和的概念,而是一个极限值.。
极限四则运算:
定义:所谓的极限四则运算法则:需要具有两个极限同时存在,如果有一个极限自身不存在的时候,四则运算法则无法成立。
性质:唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
保不等式性:设数列{xₙ} 与{yₙ}均收敛。
若存在正数N ,使得当n>N时有xₙ≥yₙ,则(若条件换为xₙ>yₙ,结论不变)。
和实数运算的相容性:如果两个数列{xₙ} ,{yₙ} 都收敛,那么数列{x ₙ+yₙ}也收敛,而且它的极限等于{xₙ} 的极限和{yₙ} 的极限的和。
其中我们可以设:limf(x)和limg(x)存在
令:limf(x)=A,limg(x)=B,其中,B≠0;c是一个常数
备注:四则运算可以相互带入数值进行互算,第四带入数值B不能为0不然等式不能成立。
学习要求:1.理解数列极限的概念。
正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞=,读作“当n 趋向于无穷大时,n a 的极限等于a ”“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞=有时也记作:当n →∞时,n a →a .理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01lim=∞→n n (2)C C n =∞→lim (C 是常数) (3)lim 0nn a →∞= (a 为常数1a <),当1a =时,lim 1nn a →∞=;当1a =-或1a >时,lim nn a →∞不存在。
3. 数列极限的运算法则:与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→ )0(lim≠=∞→B B Ab a nn n特别:若C 为常数,则lim()lim n n n n C a c a CA →∞→∞==推广:上面法则可以推广到有限..多个数列的情况如,若{}na ,{}nb ,{}nc 有极限,则n n n n n n n n n n c b a c b a ∞→∞→∞→∞→++=++lim lim lim )(lim二、基本题目1.判断下列数列是否有极限,若有,写出极限;若没有,说明理由(1)1,21,31,…,n 1,… ; (2)3452,,,,234--…,1(1)n n n+-,…; (3)1010100(10)1(10)n n a n n ⎧≤⎪=⎨>⎪⎩2.(1)若1lim()02nn a a→∞-=,则a 的取值范围是 。
(2)数列}{n a 的前n 项和为n S ,且213n n S a =-,求lim n n a →∞的值。
3. 已知,5lim =∞→n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞→解:因为,5lim =∞→n n a 3lim =∞→n n b ,所以 lim(34)lim3lim43lim 4lim 15123n n n n n n n n n n n a b a b a b →∞→∞→∞→∞→∞-=-=-=-=4. 求下列极限:(1))45(lim n n +∞→;(2)2)11(lim -∞→n n 解:(1)44lim(5)lim5lim 505n n n n n →∞→∞→∞+=+=+=;(2)22211lim(1)(lim lim1)(01)1n n n n n →∞→∞→∞-=-=-=5. 求下列极限:(1))21(lim 2n n n +∞→. (2)nn n 23lim -∞→. (3)232lim 22++∞→n n n n . (4)24323lim n n n n n -+∞→.解:(1)0001lim 202lim 1lim )21(lim 22=+=+=+=+∞→∞→∞→∞→n n n n n n n n n . (2) (方法一)3031lim 232lim 3lim )23(lim 23lim=-=-=-=-=-∞→∞→∞→∞→∞→n nn n n n n n n n .(方法二)∵n →∞,∴0n ≠.分子、分母同除n 的最高次幂.3131lim )23(lim 123lim23lim==-=-=-∞→∞→∞→∞→n n n n n n nn . 第二个题目不能体现“分子、分母同除n 的最高次幂”这个方法的优势.这道题目就可以.使用上述方法就简单多了.因为分母上是232n +,有常数项,所以 (2)的方法一就不能用了.(3)3203022lim 3lim 1lim2lim )23(lim )12(lim 2312lim 232lim22222=++=++=++=++=++∞→∞→∞→∞→∞→∞→∞→∞→n n nn n n n n n n n n n n n n n . 规律一:一般地,当分子与分母是关于n 的次数相同的多项式时,这个公式在n →∞时的极限是分子与分母中最高次项的系数之比.(4)分子、分母同除n 的最高次幂即4n ,得.002001lim 2lim 1lim 3lim 1213lim 23lim 2323243=-+=-+=-+=-+∞→∞→∞→∞→∞→∞→n n n nn n n n n n n n n n n n . 规律二:一般地,当分子、分母都是关于n 的多项式时,且分母的次数高于分子的次数时,当n →∞时,这个分式极限为0. 6.求下列极限.(1))13(lim 2n n n n -+-∞→. (2)21323lim -++-∞→n n n . (3)1513lim ++-∞→n n n .解:(1)11131lim 13lim 13lim )13(lim 222=+--=+--=+---=-+-∞→∞→∞→∞→nn n n n n n n n n n n n n n . (2)30103211323lim21323lim =-+=-++-=-++-∞→∞→nnn nn n n n .(3)001001lim1lim 5lim13lim 11513lim 1513lim 22=++=++-=++-=++-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n n n n n .说明:当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的极限不一定不存在7. 求下列极限:(1) )112171513(lim 2222+++++++++∞→n n n n n n ;(2))39312421(lim 11--∞→++++++++n n n 解:先求和再求极限 (1) )112171513(lim 2222+++++++++∞→n n n n n n 222222[3(21)]1357(21)22lim lim lim lim 111111n n n n n n n n n n n n n n→∞→∞→∞→∞+++++++++=====++++(2)11212[()]1242212(21)33lim()lim lim lim 011139331(31)123n n nnn n n n n n n n n--→∞→∞→∞→∞-++++--====++++--- 8. 公比绝对值小于1的无穷等比数列前n 项和的极限公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和.设无穷等比数列 ,,,,,112111-n qa q a q a a 的公比q 的绝对值小于1,则其各项的和S 为qa S -=11)1(<q (1) 求无穷等比数列, , ,… 各项的和.解:, , ,…的首项10.3a =,公比0.1q =所以 s=+ + +…=0.3110.13=-(2)将无限循环小数。
92.0化为分数.解:0.290.290.00290.000029=+++=224621111291029()29110101099110+++==- 练习:如图,在边长为l 的等边ABC ∆中,圆1O 为ABC ∆的内切圆,圆2O 与圆1O 外切,且与,AB BC 相切,…,圆1n O +与圆n O 外切,且与,AB BC 相切,如此无限继续下去,记圆n O 的面积为*()n a n N ∈.(Ⅰ)证明{}n a 是等比数列; (Ⅱ)求12lim()n n a a a →∞+++的值.。