管壳式换热器设计计算软件
- 格式:xls
- 大小:32.50 KB
- 文档页数:5
管壳式换热器工艺计算软件(THecal Ver 1.3)绿色版无需安装解压后启动 Thecal.exe该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。
尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。
硬件环境:Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。
请将显示卡的分辨率设置为800×600或以上。
软件环境:该软件运行在中文Windows 9X环境下。
推荐使用中文Windows 98。
软件安装:运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。
运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。
当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。
输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。
正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。
该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。
<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。
首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。
ASPEN PLUS软件在管壳式换热器设计中的应用摘要:文章介绍了ASPEN PLUS软件在管壳式换热器设计中的应用。
通过与必要的手工计算相结合,便捷高效地设计出符合中国相关标准管壳式换热器的步骤和方法。
并以一个实例来演示所提方法的简单性和有效性,所得的换热面积相比节省了 66. 7%。
关键词:换热器设计 ASPEN PLUS引言ASPEN PLUS软件是一款功能强大的化工软件、动态模拟及各类计算的软件,它几乎能满足大多数化工设计及计算的要求,其计算结果得到许多同行的认可,该软件也和其他软件一样在不断的升级。
换热器是一种实现物料之间热量传递的设备,广泛应用于化工、冶金、电力、食品等行业。
在化工装置中换热设备占设备数量的40%左右,占总投资的 35% ~46%。
目前,在换热设备中,使用量最大的是管壳式换热器,尤其在高温、高压和大型换热设备中占有绝对优势。
换热器的设计主要包括传热和阻力计算两个方面。
由于换热器的设计方法比较烦杂,且需要迭代计算,故借助于日益普及的计算机软件进行优化设计则可以极大地提高工作效率。
目前,工程上已大量使用商业软件进行换热器的计算。
最著名的专业换热器计算软件主要有成立于 1962 年的美国传热研究公司 ( HTRI)开发的 XchangerSuite 软件;成立于 1967 年的英国传热及流体服务(HTFS)开发的 HTFS 系列软件和 B-JAC 软件。
为了便于组织工业生产,换热器的设计要尽可能符合相关的行业标准。
对于管壳式换热器,国外主要标准有TEMA(TubularExchangersManu-facturersAssociation)和 ASME (American SocietyofMechanical Engineers);国内主要标准有国标 GB151-1999(管壳式换热器标准),行业标准 JB/T 4715-92(固定管板式换热器形式与基本参数)和 HG 21503-92(钢制固定式薄管板换热器)。
管壳式换热器工艺计算软件(THecal Ver 1.3)绿色版无需安装解压后启动 Thecal.exe该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。
尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。
硬件环境:Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。
请将显示卡的分辨率设置为800×600或以上。
软件环境:该软件运行在中文Windows 9X环境下。
推荐使用中文Windows 98。
软件安装:运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。
运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。
当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。
输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。
正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。
该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。
<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。
首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
再放送专业小工具管壳式换热器换热面积计算软件
再放送专业小工具——管壳式换热器换热面积计算软件是一款由再放
送开发的专业小工具软件,主要用于帮助工程师进行管壳式换热器换
热面积计算。
它可以让使用者以图形方式了解换热器结构,以及计算
换热器管壳式换热面积。
该软件基于管壳式换热器换热面积的规律,采用相应的模型和算法,
运用计算机图形技术,在保证计算精度的同时,实现了较为自然的图
形界面,从而提高了实际应用中的便捷性。
而且该软件还提供了换热
器换热面积的报表和图形输出,可以方便的让使用者查看管壳式换热
器换热面积的计算结果,方便快捷。
此外,这款小工具还包含管壳式换热器参数校核模块,涵盖了管壳式
换热器有关的参数校核,包括管壳式换热器的容积流量、管壳式换热
器的温差穿透系数、管壳式换热器的换热系数、管壳式换热器的换热
面积等,可以帮助使用者校核管壳式换热器的相关参数,更有利于提
高换热器的工作效率。
总之,再放送专业小工具——管壳式换热器换热面积计算软件是一款
非常有用的工具,能够帮助工程师快速准确的计算出换热器换热面积,为换热器的设计和应用提供可靠的计算和分析,大大降低开发成本和
提高工作效率。
参数名称符号数据单位参数名称一、操作/介质参数管程低温介质液体高温介质进口温度32.00℃进口温度出口温度38.00℃出口温度流量64939.00Kg/hr 流量平均温度35.00℃比热 4.18KJ/kg.C 比热热量6944.06kw 热量流体主体粘度0.80cP 密度1030.00kg/m3热导率 K 0.50W/(m)(K)近壁面粘度0.80cP二、传热参数计算总传热功率5939.97kw实际总传热系数1541.24W/(m)(K)污垢损失传热计算总传热系数(无污垢)382.86W/(m)(K)对数平均温差(LMTD)16.70℃三、对数平均温差计算对数平均温差(LMTD)12.219.84℃预定换热器型式2管程1壳程修正后对数平均温差P49.00M四、总传热系数计算1/U0.00五、列管换热器结构参数参数名称符号数据单位管壳式换热器设计计算软件工况选外壳直径Ds0.50m流向形式列管数nt500.00根列管外径Do0.03m换热器型式列管内径Di0.02m列管长度L 5.88m高温流体走管内管间距s0.03m列管排列方式 1.00交错排列挡板间距B0.28m直线排列列管材质及导热系数kt17.00W/(m)(K)计算换热面积929.07m2设计换热面积230.79m2换热裕度 %六、校核计算管程流通面积0.17m2流通面积质量流量103.98kg/s/(m2)质量流量雷诺数2599.45/雷诺数hi/(Cp.G) (Re>8,000)0.00/Re>200K hi/(Cp.G)hi/(Cp.G) (Re<2,100)0.00/Re=300~200K hi/(Cp.G) hi/(Cp.G) Re=2,100-8,0000.00/Re<300 hi/(Cp.G)预定雷诺数382.85W/(m2)/K预定雷诺数校正因子 F1管壁传热系数校正因子 Fr管壁传热系数6800.00W/(m2)/K修正 hi4数据单位壳程液体80.00℃39.00℃39000.00Kg/hr59.50℃4.18KJ/kg.C4935.88kw0.90cP1000.00kg/m30.50W/(m)(K)0.90cP1158.38W/(m)(K)16.70℃9.84℃16.70℃41.44382.86W/(m2)/K 工况选择2.002.00Y并流逆流单管程单壳程双管程单壳程698.28壳程0.03m2353.74kg/s/(m2)9826.15/0.00/0.00/0.00/3668.40W/(m2)/K0.73/1.00/2664.39W/(m2)/K m a0.300.170.370.270.64 1.31。
用ANSYS和FLUENT进行管壳式换热器整体分析作者:郭崇志林长青利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。
而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。
有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。
目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT 软件进行换热器流体流动与传热的工艺状况数值模拟。
然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。
从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。
1 CFD数值模拟本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。
管壳式换热器设计计算软件管壳式换热器是目前工业中最常见的换热设备之一,其结构简单,易于维护,同时可以满足各种不同流体之间的换热需求。
为了更加高效地完成管壳式换热器的设计计算工作,我们可以开发一款专门的软件来支持这一过程。
接下来,本文将详细介绍如何设计一款高效的管壳式换热器设计计算软件,并就此进行3000字的阐述。
一、软件开发背景在每个行业中,对于不同领域或不同参数的管壳式换热器都有着不同的需求。
设计软件的开发目的是为了更好地满足这些需求。
软件开发可以使设计人员更好地掌握和了解换热器的相关知识,同时提高换热器设计的工作效率和质量。
二、需求分析(一)功能需求1. 可以完成理想换热器的设计,计算出合适的传热面积和流体流量;2. 可以对已有的换热器进行参数修改和设计,以满足不同的需求;3. 可以计算换热器的热传导性能,根据计算结果调整换热器结构参数。
(二)性能需求1. 处理大规模数据快速响应,能够提高工作效率和设计效果;2. 具有较高的数据精度和稳定性,以达到高质量的计算结果;3. 软件应该具备较好的可拓展性,支持后续功能的增加和升级。
(三)安全性需求软件应具有一些安全措施,可以避免不必要的误操作,保护用户的利益和数据安全。
例如:1. 设计者需要填写一部分基本参数的值才能开始设计,以避免错误输入和计算出错;2. 设计者需要输入账户和密码才可以使用软件;三、设计思路(一)应用框架设计应用框架是指软件的总体结构,包括各个模块的组织方式、应用模式和数据交互方式。
为了使得软件具有良好的可扩展性和升级性,我们可以采用以下的应用框架:1. Model-View-Controller(MVC)架构:设计模型和视图分开,视图呈现在界面上,模型对视图做数据处理。
同时采用MVP模式,Presenter中进行业务处理,更新View界面。
基于这种结构,我们可以轻松扩展和优化功能。
2. 流水线架构(Pipeline):将设计流程划分成不同的阶段,并按流程顺序一步步完成设计。
利用HTRI进行管壳式换热器的设计发布时间:2021-07-05T02:51:01.218Z 来源:《中国科技人才》2021年第10期作者:王建航[导读] 常用的管壳式换热器主要有固定管板式,浮头式及U型管式。
一般优先选用固定板式换热器。
对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。
对于高温高压流体应考虑选用U型管换热器。
空气产品(山东)工程设计有限公司山东省淄博市 255000摘要:管壳式换热器作为重要的换热设备,在石油石化行业应用广泛。
本文阐述了如何借助HTRI进行管壳式换热器的设计,以及在设计过程中需要注意的问题,从而设计出经济实用的换热器。
关键词:管壳式换热器;HTRI管壳式换热器又称列管式换热器,因其制造容易,生产成本低,适应性强,处理量大,工作可靠,维护方便,在石油,化工,能源等行业的应用中处于主导地位。
【1】相比于其他型式的换热器,其理论研究,设计技术及标准化和规范化也是最完善的。
【2】随着计算机技术的发展,专门的换热器计算软件HTRI,HTFS已经成为换热器计算的主要手段,并很好的符合实际的生产工况。
本文主要叙述如何利用HTRI进行管壳式换热器的设计。
1 设计前应确定的条件1.1明确两股流体的工艺参数及要求初步确定换热器的形式。
常用的管壳式换热器主要有固定管板式,浮头式及U型管式。
一般优先选用固定板式换热器。
对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。
对于高温高压流体应考虑选用U型管换热器。
1.2根据两股流体的物性确定冷热流体的流程。
1/易结垢的物料应走容易清洗的一侧;2/有毒,有腐蚀性或高压的物料应走管程;3/通常蒸汽为便于排凝,一般通入壳程;4/高粘度流体或在管程为层流的流体,可考虑其走壳程。
因为壳程中的挡板有利于流体达到湍流,提高换热系数;1.3根据流体物性确定合适的污垢系数流体的结垢会严重影响换热器的换热效果。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
HTRI 管壳式换热器Xist 设计目录01定义单位 (2)02工艺参数输入 (6)03冷热物性输入 (10)04物性生成器的使用 (14)05结构参数的输入 (21)06壳程参数输入 (32)07管子参数输入 (36)08折流板参数输入 (42)09再沸器参数输入 (50)10再沸器配管参数输入 (54)11管口参数输入 (59)12防冲设施的设置 (63)13管子排布设置 (66)14管束间隙的设置 (74)15设计选项的设置 (79)01定义单位HTRI换热器软件入门教程:设计一个管壳式换热器【Xist】,本节HTRI教程先进行软件界面的熟悉。
1、双击HTRI软件快捷图标HTRI Xchanger Suiter 7.1,打开程序界面:2、创建一个“新的管壳式换热器”3、设置自己熟悉的一套单位制,比如MKH公制,也可以通过<Edit…>来自定义。
(1) 如何自定义单位制,进入<Edit…>,选择<Modify…>设置自定义单位制的名称“My Units”;选择参照单位制(Reference set Nam e),程序默认有三套单位制1US美制,2SI国际标准值,3MKH公制。
国内选SI或MKH,将与你最常用的单位不一致的,可去掉勾选,然后选择你所需要的如下图:(2) 保存退出后,即可在单位制选项中出现“My Units”。
4. 接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据:(1)“Process”工艺条件:包括热流体侧和冷流体侧;(2) “Hot Fluid Properties”、“Cold Fluid Properties”热流体物性,冷流体物性;(3) “Geometry”机械结构:包括壳体结构尺寸、管子、折流板、管口、布管等。
5. 当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。
管壳式换热器设计计算软件管壳式换热器是一种常见的热交换器,用于在工业过程中实现热量传递。
设计一个管壳式换热器需要进行一系列的计算,以确保换热器能够满足工艺要求,并具有合适的换热效果。
为了简化这个过程,可以使用管壳式换热器设计计算软件。
下面将详细介绍这个软件的功能和计算步骤。
1.换热器类型选择:软件可以提供不同类型的管壳式换热器供用户选择,如固定管板式、浮动管板式、U型管式等。
用户可以根据具体的工艺要求选择适合的类型。
2.热工参数计算:软件可以根据用户提供的热工参数,如流体的温度、流量等数据,自动计算换热器的热传导率和传热系数。
这些参数是换热器设计和性能评估的基础。
3.结构设计:软件可以根据用户提供的设计参数,如管束长度、管板间距、管壳接头方式等,自动生成换热器的结构设计。
这些参数直接影响换热器的尺寸和重量。
4.管束优化:软件可以通过计算不同管束类型的传热性能指标,如换热面积、热损失等,为用户提供管束设计的优化方案。
用户可以根据具体的工艺要求选择最合适的管束类型。
5.材料选择:软件可以提供不同材料的换热器管束和壳体选项,并计算其耐压性能和传热性能。
用户可以根据具体的工艺要求选择最合适的材料。
以上功能只是管壳式换热器设计计算软件的一部分,不同的软件可能还具备其他附加功能,如换热器的模拟和仿真功能,用户可以在软件中进行各种操作和实验,以评估换热器不同工况下的性能。
下面将以一个具体的设计计算为例,介绍常见的管壳式换热器设计步骤:1.确定工艺要求:首先,需要明确工艺要求,包括流体的温度、流量、压力等参数。
这些参数将直接影响换热器的设计和性能。
2.确定传热参数:根据流体的温度和热传导性质,可以计算出换热器的热传导率和传热系数。
这些参数是换热器设计和性能评估的基础。
3.计算换热面积:根据传热参数和工艺要求,可以计算出所需的换热面积。
通常,换热面积与流体的温度差和流量成正比。
4.确定结构参数:根据所需的换热面积和设计要求,可以确定换热器的结构参数,如管束长度、管板间距、管壳接头方式等。