专题:平面的法向量
- 格式:ppt
- 大小:712.00 KB
- 文档页数:21
xoy平面的法向量
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。
法向量适用于解析几何。
由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
求曲面上一点的法向量方法如下:1、曲面由方程f(x,y,z)=0决定,相应的某一点m的法向量你只需要对应的求偏导数就可以了;2、由于法向量所在的是一条直线,所以方向来讲有两个,如果没有特别要求一般是可以随便选择的,如果是坐标的曲面积分什么的,需要注意一下和xyz正方向之间的夹角,因为这关系到面积投影的正负。
空间平面法向量求法一、法向量定义定义:如果,那么向量叫做平面的法向量。
平面的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法1、内积法在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)],在平面内任找两个不共线的向量,。
由,得·=0且·=0,由此得到关于x,y的方程组,解此方程组即可得到。
2、任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。
Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。
其法向量=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。
3、外积法设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两者交角,且0<θ<π,而与,, 皆垂直的向量。
通常我们采取“右手定则”,也就是右手四指由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。
设=(x1,y1,z1),=(x2,y2,z2),则×=(注:1、二阶行列式:;2、适合右手定则。
)Codepublic double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1,ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3){try{double a = 0, b = 0,c=0; //方程参数double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值double[] returnValue = new double[3];x1 = point1.X * 1000;y1 = point1.Y * 1000;z1 = point1.Z * 1000;x2 = point2.X * 1000;y2 = point2.Y * 1000;z2 = point2.Z * 1000;x3 = point3.X * 1000;y3 = point3.Y * 1000;z3 = point3.Z * 1000;//向量I1double[] I1 = new double[3];I1[0] = x2 - x1;I1[1] = y2 - y1;I1[2] = z2 - z1;//向量I2double[] I2 = new double[3];I2[0] = x3 - x1;I2[1] = y3 - y1;I2[2] = z3 - z1;double X1 = I1[0];double Y1 = I1[1];double Z1 = I1[2];double X2 = I2[0];double Y2 = I2[1];double Z2 = I2[2];a = Y1 * Z2 - Y2 * Z1;b = X2 * Z1 - X1 * Z2;c = X1 * Y2 - X2 * Y1;returnValue[0] = a;returnValue[1] = b;returnValue[2] = c;return returnValue;}catch (Exception e){throw e;}}OPENGL里面就这样实现void getNormal(GLfloat gx[3],GLfloat gy[3], GLfloat gz[3],GLfloat *ddnv){GLfloat w0,w1,w2,v0,v1,v2,nr,nx,ny,nz;w0=gx[0]-gx[1]; w1=gy[0]-gy[1];w2=gz[0]-gz[1];v0=gx[2]-gx[1]; v1=gy[2]-gy[1];v2=gz[2]-gz[1];nx=(w1*v2-w2*v1);ny=(w2*v0-w0*v2);nz=(w0*v1-w1*v0);nr=(GLfloat)sqrt(nx*nx+ny*ny+nz*nz); //向量单位化。
直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用1、直线的方向向量: 直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用: 利用直线的方向向量,可以确定空间中的直线和平面.(1)若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P ,一定存在实数t ,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.(2)空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对(x ,y ),使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的.三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .2、若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v四、平面法向量的求法若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、设出平面的法向量为(,,)n x y z =.2、找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c ==3、根据法向量的定义建立关于x ,y ,z 的方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩4、解方程组,取其中一个解,即得法向量五、用向量方法证明空间中的平行关系和垂直关系(一)用向量方法证明空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行.1、线线平行:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1// l 2,只需证明a //b ,即()a kb k R =∈2、线面平行:(1)设直线l 的方向向量是a ,平面α的法向量是n ,则要证明//l α,只需证明⊥a n ,即0⋅=a n .(2)根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.3、面面平行(1)由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.(2)若能求出平面α、β的法向量u 、v ,则要证明α//β,只需证明u // v(二)用向量方法证明空间中的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直.1、线线垂直:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1⊥ l 2,只需证明a ⊥b ,即0a b ⋅=2、线面垂直:(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证l ⊥α,只需证明a // u(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3、面面垂直:(1)根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直.(2)证明两个平面的法向量互相垂直.六、用向量方法求空间的角(一)两条异面直线所成的角1、定义:设a 、b 是两条异面直线,过空间任一点O 作直线////,//a a b b ,则/a 与/b 所夹的锐角或直角叫做a 与b 所成的角.2、范围:两异面直线所成角θ的取值范围是02πθ<≤3、向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有cos |cos |a ba b θϕ⋅==⋅4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(二)直线与平面所成的角1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.2、范围:直线和平面所成角θ的取值范围是02πθ≤≤3、向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有sin |cos |cos sin a u a u θϕθϕ⋅===⋅或 (三)二面角1、二面角的取值范围:[0,]π2、二面角的向量求法(1)若AB 、CD 分别是二面角l αβ--的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图(a )所示).(2)设1n 、2n 是二面角l αβ--的两个角α、β的法向量,则向量1n 与2n 的夹角(或其补角)就是二面角的平面角的大小(如图(b )所示).七、用向量的方法求空间的距离(一)点面距离的求法如图(a )所示,BO ⊥平面α,垂足为O ,则点B 到平面α的距离就是线段BO 的长度.若AB 是平面α的任一条斜线段,则在Rt △BOA 中,BO BA =cos ∠ABO= cos cos BA BO ABOABO BO ⋅⋅∠∠=。
空间平面法向量求法一、法向量概念概念:若是,那么向量叫做平面的法向量。
平面的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法一、内积法在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)],在平面内任找两个不共线的向量,。
由,得·=0且·=0,由此取得关于x,y的方程组,解此方程组即可取得。
二、任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。
Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一样方程。
其法向量=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一样式即可求出它的法向量。
3、外积法设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为二者交角,且0<θ<π,而与,, 皆垂直的向量。
通常咱们采取“右手定则”,也确实是右手四指由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。
设=(x1,y1,z1),=(x2,y2,z2),则×=(注:一、二阶行列式:;二、适合右手定则。
)Codepublic double[] GetTriangleFunction point1, point2, point3){try{double a = 0, b = 0,c=0; //方程参数double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值double[] returnValue = new double[3];x1 = * 1000;y1 = * 1000;z1 = * 1000;x2 = * 1000;y2 = * 1000;z2 = * 1000;x3 = * 1000;y3 = * 1000;z3 = * 1000;//向量I1double[] I1 = new double[3];I1[0] = x2 - x1;I1[1] = y2 - y1;I1[2] = z2 - z1;//向量I2double[] I2 = new double[3];I2[0] = x3 - x1;I2[1] = y3 - y1;I2[2] = z3 - z1;double X1 = I1[0];double Y1 = I1[1];double Z1 = I1[2];double X2 = I2[0];double Y2 = I2[1];double Z2 = I2[2];a = Y1 * Z2 - Y2 * Z1;b = X2 * Z1 - X1 * Z2;c = X1 * Y2 - X2 * Y1;returnValue[0] = a;returnValue[1] = b;returnValue[2] = c;return returnValue;}catch (Exception e){throw e;}}OPENGL里面就如此实现void getNormal(GLfloat gx[3],GLfloat gy[3], GLfloat gz[3],GLfloat *ddnv) {GLfloat w0,w1,w2,v0,v1,v2,nr,nx,ny,nz;w0=gx[0]-gx[1]; w1=gy[0]-gy[1];w2=gz[0]-gz[1];v0=gx[2]-gx[1]; v1=gy[2]-gy[1];v2=gz[2]-gz[1];nx=(w1*v2-w2*v1);ny=(w2*v0-w0*v2);nz=(w0*v1-w1*v0);nr=(GLfloat)sqrt(nx*nx+ny*ny+nz*nz); //向量单位化。
案例(二)----精析精练课堂 合作 探究重点难点突破知识点一 平面的法向量1.平面法向量的定义(1)定义:已知平面a 如果向量n 的基线与平面a 垂直,则向量n 叫做平面a 的法向量或说向量n 与平面a 正交.(2)平面法向量的性质:①平面a 的一个法向量垂直于与平面a 共面的所有向量;②一个平面的法向量有无数个,一个平面的所有法向量互相平行.2.平面的法向量的求法方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法向量方法二:待定系数法,即若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:①设出平面的法向量为n=(x,y,x);②找出(求出)平面内的两个不共线的向量的坐标a=(x 1,y 1,z 1),b=(x 2,y 2,z 2);③根据法向量的定义,建立关于x,y,z 的方程组⎩⎨⎧=∙=∙;0,0b n a n ④解方程组,取其中的一个解,即得法向量.这里需要说明的是:①方法二必须建立空间直角坐标系,而方法一却不一定要建立空间直角坐标系,视具体情况而定;②在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法;③在利用方法二求解平面的法向量时,方程组⎩⎨⎧=∙=∙;0,0b n a n 有无数多个解,只需给x,y,之中的一个变量赋予一个特值,即可确定平面的一个法向量.赋予的值不同,所求平面的法向量就不同,但它们是共线向量.3.平面法向量的作用详解:设n 1,m 2分别是平面a,β的法向量,m 是直线l 的方向向量,则有:①l ∥a 或l ⊂a ⇔m ⊥n 1⇔m ·n 1=0;②l ⊥a ⇔m ∥n 1;③a ∥β或a 与β重合⇔n 1∥n 2;④a ⊥β⇔=n 1⊥n 2⇔n 1·n 2=0.知识点二 三垂线定理及其逆定理.三垂线定理及逆定理实际上反映的是斜线和射影的关系.①三垂线定理的符号描述如右图,PO 、PA 分别是平面a 的垂线、斜线,OA 是PA 在a 内的射影,a ⊂a,且a ⊥OA,则a ⊥PA.②三垂线定理的逆定理的符号描述如上图,PO 、PA 分别是平面a 的垂线、斜线,OA 是PA 在a 内的射影,a ⊂a,且a ⊥PA,则a ⊥OA.关于定理的应用,首先是找出平面的垂线,至于射影则是由垂足,斜足来确定的,因而是第二位的,由此,我们可以得出三垂线定理证明a ⊥b 的一个程序:一垂、二射、三证,即:第一:找平面及平面的垂线;第二:找射影线(或斜线),这时a,b 便成为平面内的一条直线及一条斜线(或射影);第三:证明射影(或斜线)与直线a 垂直,从而得出a,b 垂直.典型例题分析题型1 求平面的法向量【例1】已知平面a 经过三点A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面a 的一个法向量.解析 用待定系数法求解平面a 的法向量.答案 因为A(1,2,3),B(2,0,-1),C(3,-2,0),所以=(1,-2,-4),=(2,-4,-3).设平面a 的法向量为n=(x,y,z),依题意,应有n ·=0,n ·=0,即有⎩⎨⎧=--=--,0342,042z y x z y x 解得⎩⎨⎧==.0,2z y x 令y=1,则x=2,所以平面a 的一个法向量为n=(2,1,0 方法指导 用待定系数法求解平面的法向量,关键是在平面内找两个不共线的向量,然后列出方程组,方程组有无数解取其中的一个解即可,但要注意在取方程组的一组解时,不能都取零,否则得到零向量,而零向量的方向不能确定,不能作为法向量.【变式训练1】 已知点A(3,0,0),B(0,4,0),C(0,0,5),求平面ABC 的一个单位法向量 答案 因为A(3,0,0),B(0,4,0),C(0,0,5),所以=(-3,4,0),=(-3,0,5).设平面ABC 的法向量为n=(x,y,z)依题意,应有n ·=0,n ·=0,即有⎩⎨⎧=+-=+-,053,043z x y x 解得⎪⎪⎩⎪⎪⎨⎧==,53,43x z x y ,即平面A 的法向量为n(x ,43x,53x),所以平面ABC 的单位向量为n 0=n n =(76920,76915,76912)或n 0=-n n =(-76920,-76915,-76912). 【例2】 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1的法向量n 和单位法向量n 0.解析 首先建立空间直角坐标系,再用待定系数法求解平面的法向量.答案 建立空间直角坐标系,如图,则A(1,0,0),C(0,1,0).设平面ACD1的法向量n=(x,y,1).得AC =(-1,1,0),AD =(-1,0,1).又n ⊥面ACD,得n ⊥,n ⊥,所以有⎩⎨⎧=-∙=-∙,0)1,0,1()1,,(,0)0,1,1()1,,(y x y x 得⎩⎨⎧==,1,1y x ∴n=(1,1,1), n 0=n n =111)1,1,1(++=⎪⎪⎭⎫ ⎝⎛33,33,33. 方法指导 用待定系数法求解平面的法向量,应该说是个基本方法,它具有操作简单的特点,应切实掌握其实,对于本题来说,却未必是一个好的方法,这是因为我们可以利用三垂线定理得出直线DB 1⊥AD 1,DB 1⊥CD 1,从而DB 1⊥平面ACD 1,所以1DB 就是平面ACD 1的一个法向量.【变式训练2】 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,在BC,DD 1上是否存在点E,F,使B 1是平面ABF 的法向量?若存在,请证明你的结论,并求出点E,F 满足的条件;若不存在,请说明理由.答案 建立如图所示的空间直角坐标系,则A(1,0,1),B(1,1,1),B 1(1,1,0).设F(0,0,h),E(m,1,1),则=(0,1,0),B 1=(m-1,0,1),=(1,0,1-h).∵·E B 1=0,∴AB ⊥B 1E. 若F B 1是平面ABF 的法向量,则F B 1·=m-1+1-h=m-h=0,∴h=m 即E,F 满足D 1F=CE 时,F B 1是平面ABF 的法向量.所以存在,且E,F 满足D 1F=CE.题型2 三垂线定理及其逆定理的应用【例3】 如下图,下列5个正方体图形中,线段l 是正方体的条对角线,点M 、N 、P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)① ② ③④ ⑤ 解析 本题以正方体为依托,主要考查直线与平面垂直的判定,比较深刻地考查了空间想象能力.为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l 位置固定,截面MNP 变动,l 与面MNP 是否垂直,可以从正、反两方面进行判断,MN 、NP 、MP 三条线中,若有一条不垂直l ,则可断定l 与面MNP 不垂直;若有两条相交直线与l 都垂直,则可断定l ⊥ 面MNP.答案 解法一:如果记正方体对角线l 所在的对角线截面为a,各图可讨论如下:在图①中,MN 、NP 在平面a 上的射影为同一直线,且与l 垂直故l ⊥面MNP.事实上,还可这样考虑:l 在上底面的射影是MP 的垂线,故l ⊥MP ;在左侧的射影是MN 的垂线,故l ⊥MN,从而l ⊥面MNP.在图②中,由MP ⊥面a,可证明MN 在平面a 上的射影不是l 的垂线,故l 不垂直于MN.从而l不垂直于面MNP.在图③中,点M在a上的射影是l的中点,点P在a上的射影是上底面的中点,知MP在a 上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面a平分线段MN,故l⊥MN,又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥平面MNP.在图⑤中,点N在平面a上的射影是对角线l的中点,故M、P在平面a上的射影分别是下、下底面对角线的4等分点,三个射影在同一条直线上,且l与这一直线垂直从而l⊥面MNP.至此,得①④⑤为本题答案.解法二:建立空间直角坐标系O-xyz,设正方体的棱长为2,则对角线l的方向向量可取为l=(2,2,-2).对图①,有=(0,1,0)-(1,0,0)=(-1,1,0),=(0,0,-1)-(1,0,0)=(-1,0,-1),由l·MP=0,l·=0,得l⊥面MNP.对图②,有MN=(2,2,-1)-(1,0,-2)=(1,2,1),由l·≠0知l与面MNP不垂直.对图③,有=(0,1,0)-(2,0,-1)=(-2,1,1),由l·MP≠0知与面MNP不垂直.对图④,有MP=(1,0,-2)-(2,0,-1)=(-1,0,-1),=(0,2,-1)-(2,0,-1)=(-2,2,0),由l·=0,l·=0,得l⊥面MNP.对图⑤,有MP=(2,1,0)-(1,0,-2)=(1,1,2),MN=(0,2,-1)-(1,0,-2)=(-1,2,1),由l·=0,l·=0,得l⊥面MNP综合得本题答案为①④⑤.方法指导从解法二可以看到:应用向量法讨论两直线是否垂直十分方便,操作也比较简单,无须多动脑筋,只需要计算正确即可.【变式训练3】已知正方体ABCD-A1B1C1D1中,E、F、G分别是棱AB、BC、BB1上的点,且BE=BF=BG,求证:BD1⊥平面EFG.答案如下图所示,因为四边形ABCD是正方形,BE=BF,所以EF∥AC,又因为AC⊥BD,所以EF ⊥BD.因为BD 为BD 1在平面AB 上的射影,所以BD 1⊥EF(三垂线定理).同理BD 1⊥EG,故BD 1⊥平面EFG.【例4】 如右图,P 是△ABC 所在平M 面外一点,且PA ⊥平面ABC,若O,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.解析 欲证线面垂直,只须证明OQ 垂直于面PBC中的两条相交线,据重心,结合PA ⊥面ABC,利用三垂线定理其逆定理及求解答案PAE BC PE BC PBC Q AE BC ABC O 平面的垂心是的垂心是⊥⇒⎭⎬⎫⊥⇒∆⊥⇒∆. 因为OQ ⊂平面PAE,所以OQ ⊥BC,因为PA ⊥平面ABC,BFC 平面ABC 所以BF ⊥PA,又因为O 是△ABC 的垂心,所以BF ⊥AC,所以BF ⊥平面PAC,则FM 是BM 在平面PAC 上的射影. 因为BM ⊥PC,根据三垂线定理的逆定理,可得FM ⊥PC,从而PC ⊥平面BFM,又OQ ⊂平面BFM,所以OQ ⊥PC,又PC ∩BC=C,所以OQ ⊥平面PBC.方法指导 三垂线定理及其逆定理是证明线线垂直,特别是异面直线垂直的常用工具. 利用三垂线定理及其逆定理证明线线垂直的问题时,解决问题的关键是找准“一面三线”.【变式训练4】如下左图,在正三棱柱ABC=A 1B 1C 1中,AB 1⊥BC 1,求证:A 1C ⊥BC 1.答案 如上右图,取BC 、B 1C 1的中点分别为D 、D 1,由正三棱柱的性质知AD ⊥面BCC 1B 1,A 1D 1⊥面BCC 1B 1,所以B 1D 、CD 1分别为AB 1、A 1C 在面BCC 1B 1上的射影.因为AB 1⊥BC 1,所以B 1D ⊥BC 1(三垂线定理的逆定理)又D 、D 1分别为BC 、B 1C 1的中点,所以B 1D ∥CD 1,所以CD 1⊥BC 1,所以BC 1⊥A 1C(三垂线定理).题型3 利用法向量证明平行与垂直【例5】已知正方体OABC-O 1A 1B 1C 1的棱长为1,E 是C 1O 1上的点,且C 1E=21EO 1,F 是CC 1上的点,且C 1F=21FC. (1)求平面A 1BC 1的一个法向量;(2)证明EF ∥平面A1BC1.解析 一建立恰当的空间直角坐标系,用待定系教法求出平面A 1BC 1的一个法向量n,然后证明EF ⊥n.答案 建立如右图所示的空间直角坐标系,则B(1,1,0),A 1(1,0,1),C 1(0,1,1).(1)设n=(x,y,z)是平面A 1BC 1的一个法向量,则n ⊥1,n ⊥1BC ,从而n ·1=0,n ·1BC =0 ∵1=(0,-1,1),1BC =(-1,0,1),∴⎩⎨⎧=+-=+-,0,0z x z y x=z=y.取x=y=z=1,则n=(1,1,1)为平面A 1BC 1的一个法向量.(2) 要证明EF ∥平面A 1BC 1只要证明⊥n.∵E(0,32,1)F(0,1,32),=(0,31,-31).∵n ·EF =31-31=0,∴n ⊥EF ,∴E ∥平面A 1BC 1. 又EF 不在平面A 1BC 1内,∴EF ∥平面A 1BC 1.方法指导 由于有了第(1)小题,所以产生了上面第(2)小题的证明方法对于第(2)小题的证明也可以由EF =F C 1-E C 1=31(C C 1-11O C )=31(B B 1-11A B )=31B A 1,得∥B A 1,∴∥平面A 1BC 1,又EF ⊄平面A 1BC 1,故EF ∥平面A 1BC 1.或由=(0,31,-31),B A 1=(0,1,-1)=3EF 来证明.【变式训练5】 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F.答案 如下图,建立空间直角坐标系D-xyz,则有D(0,0,0)、A(2,0,0)、C(0,2,0)、C 1(0,2,2)、E(2,2,1)、F(0,0,1),所以1FC =(0,2,1)、=(2,0,0)、=(0,2,1). 设n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2)分别是平面ADE 、平面B 1C 1F 的法向量,则n 1⊥,n 1⊥AE ,∴⎪⎩⎪⎨⎧=+=∙==∙,02,0211z y n x n∴⎩⎨⎧-==,2,0y z x 取y=1.则n 1=(0,1,-2).同理可求n 2=(0,1,-2).(1) ∵n1·1FC =(0,1,-2)·(0,2,1)=0,∴n 1⊥1FC ,又FC 1¢平面ADE,FC 1∥平面ADE.(2) n 1∥n 2,∴平面ADE ∥平面B 1C 1F.【例6】 在正方体ABCD 一A 1B 1C 1D 1中,E 是棱BC 的中点,试在棱CC 1上求一点P,使得平面A 1B 1P ⊥平面C 1DE.解析 若要在棱CC 1上求一点P,使得平面A 1B 1P ⊥平面C 1DE,需建立恰当的空间直角坐标系,并设出点P 的坐标,求出平面A 1B 1P 与平面C 1DE 的法向量,建立方程求出点P 的坐标,确定点P 的位置.答案 如右图,以D 为原点,建立如图所示的空间直角坐标系,设正方体的棱长为1,则P(0,1,a),A 1(1,0,1),B 1(1,1,1)E(21,1,0), C 1(0,1,1)∴11B A =(0,1,0,A 1=(-1,1,a-1) ,DE =(21,1,0)1DC =(0,1,1). 设平面A 1B 1P 的一个法向量为n 1=(x,y,z),则⎪⎩⎪⎨⎧=∙=∙,0,011111A n B A n ⇒⎩⎨⎧=-++-=.0)1(,0z a y x y 令z=1,则得x=a-1,所以平面A1BD 的一个法向量为n1=(a-1,0,1).设平面C1DE 的一个法向量为n2=(x,y,z), 则⎪⎩⎪⎨⎧=∙=∙,0,0122DC n n ⇒⎪⎩⎪⎨⎧=+=+.0,021z y y x 令y=1,则得x=-2,z=-1,所以平面CB 1D 1的一个法向量为n 2=(-2,1,-1).因为平面A 1B 1P ⊥平面C 1DE,所以n 1·n 2=0,⇒-2(a-1)-1=0,解得a=21,所以当P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE.规律总结 此题是确定点P 的位置,但考查的是两个平面垂直的充要条件,解决本题的关键是建立恰当的空间直角坐标系,求出两个平面的法向量.这里法向量的坐标一个都不能求错,否则将得到错误答案.【变式训练6】 如下图,△ABC 是一个正三角形,EC ⊥平面ABC,BD ∥CE,且CE=CA=2BD,M 是EA 的中点.求证:平面DEA ⊥平面ECA.答案 不妨设CA=2,则CE=2,BD=1,C(0,0,0),A(3,1,0),B(0,2,0),E(0,0,2),D(0,2,1),EA =(3,1,-2),CE =(0,0,2),ED =(0,2,-1),设面CEA 与面DEA 的法向量是n 1=(x 1,y 1,z 1)、n 2=(x 2,y 2,z 3),所以得⎩⎨⎧==-+,02,0231111z z y x ⇒⎩⎨⎧=-=,0,3111z x y ⎩⎨⎧=-=-+,02,02322222z y z y x ⇒⎩⎨⎧==,2,32222y z y x 不妨取n 1=(1,-3,0),n 2=(3,1,2)从而计算得n 1·n 2=0,所以两个法向量相互垂直,两个平面就相互垂直.规律 方法 总结(1)求平面法向量的方法:求一个平面的法向量的坐标的方法步骤:①建立空间直角坐标系,设出平面的法向量为n=(x,y,z)②找出(求出)平面内的两个不共线的向量的坐标a=(a0,b1,c1),b=(a2,b2,c2).③根据法向量的定义建立关于x 、y 、x 的方程组⎩⎨⎧=∙=∙.0,0b n a n ④解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.(2)用空间向量证明平行问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行的定理,再通过向量运算来解决.(3)用空间向量证明垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于垂直的定理,再通过向量运算来解决.定时巩固检测基础训练1. 下列说法中不正确的是()A.平面a的法向量垂直于与平面a共面的所有向量B一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果a,b与平面a共面,且n⊥a,n⊥b,那么n就是平面a的一个法向量【答案】 D(点拨:a与b所在直线必须为相交直线时,n才是平面a的一个法向量,否则不是.)2. 给定下列命题:①若n1,n2分别是平面a,β的法向量,则n1∥n2⇔a∥β;②若n1,n2分别是平面a,β的法向量,则a∥β⇔n1·n2=0;③若n是平面a的法向量,且向量a与平面a 共面,则a·n=0;④若两个平面的法向量不垂直,则这两个平面定不垂直其中正确命题的个数是()A.1B.2C.3D.4【答案】 C(点拔:①③④正确,②中a∥p=mn∥m,)3. 给定下列命题:①若a是平面a的斜线,直线b垂直于a在平面a内的射影,则a⊥b;②若a是平面a的斜线,平面β内的条直线b垂直于a在平面a内的射影,则a⊥b;③若a是平面a的斜线,直线b⊂a,且b垂直于a在平面β内的射影,则a⊥b;④若a是平面a的斜线,直线b⊂a,且b垂直于a在平面a内的射影,则a⊥b.其中,正确命题的个数是()A.1B.2C.3D.3【答案】 B(点拨:根据三垂线定理及其逆定理判断只有④正确.)4. Rt△ABC的斜边BCC平面a,顶点A∉a,则△ABC的两条直角边在平面a内的射影与斜边所成的图形只能是 ( )A.一条线段或一个直角三角形B一条线段或一个锐角三角形C.一条线段或一个锐角三角形D.一个锐角三角形或一个直角三角形【答案】 C(点拨:当平面ABC ⊥平面a 时,Rt △ABC 在平面内的射影是一条线段.当平面ABC 与平面a 斜交时,如右图所示,过A 作AO ⊥a,连接BO,CO,在△BOC 中,AB 2一AO 2=BO 2,在Rt △AOC 中,AC 2-AO 2=CO 2,②在Rt △ABC 中,AB2+AC2=BC2,③在Rt △ABC 中,cos ∠BOC=COBO BC CO BQ ∙∙-+2222,④ 将①②③代入④,得cos ∠BOC=COBO AO ∙∙-22<0,所以∠BOC 是钝角,所以△BOC 是钝角三角形.)5. 设A 是空间任意一点,n 为空间任一非零向量,则适合条件·n=0的点M 的轨迹是 .【答案】 过点A 且与向量n 垂直的平面(点拨:AM ·n=0称为一个平面的向量表示式,这里考察的是基本概念.)能力提升6. 已知=(2,2,1),=(4,5,3),则平面ABC 的单位向量是 .【答案】 ±(31,-32,32)(点拨:设单位法向量n=(x,y,z), 则⎪⎩⎪⎨⎧=++=++=++,0354,022,1222z y x z y x z y x 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==32,32,31z y x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=.32,32,31z y x ) 7. 如下图,PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上的一点,E 、F 分别是点A 在PB 、PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC.其中真命题的序号是 .【答案】①②③(点拨:利用三垂线定理及其逆定理判断即可.)8. 如右图所示,在四棱锥P一ABCD中,PA⊥底面ABCD,底面各边都相等,M是PC上的一动点,当点M满足时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的条件即可)【答案】 DM⊥PC(点拨:由三垂线定理可知BD⊥PC,当DM⊥PC(或BM⊥PC)时,即有PC⊥平面BMD.所以平面MBD⊥平面PCD.)9. 如右图,△ADB和△ADC都是以D为直角顶点的直角三角形,且AD=BD=CD,∠BAC=60°. (1)求证:BD⊥平面ADC; (2)若H为△ABC的垂心,求证:H是D在平面ABC内的射影【答案】 (1)因为AD=BD=CD,∠ADB=∠ADC=90°,所以△ADB≌△ADC,AB=AC,∠BAC=60°,所以△ABC为正三角形,所以AB=BC,所以△ABD≌△CBD,所以△BDC为直角三角形,∠BDC=90°,BD⊥CD.又BD⊥AD,所以BD⊥平面ADC.(2)如右图所示,设D在△ABC内的射影为H′,连接CH′并延长交AB于E,因为CD⊥AD,且CD⊥DB,所以CD⊥面ADB,所以CD⊥AB,由三垂线定理的逆定理得CE⊥AB.同理,连接BH′并延长交AC于F,可得BF⊥AC,所以H′为△ABC的垂心,即D在平面ABC内的射影为△ABC的垂心,所以H′与H重合,即H是D在平面ABC内的射影.。
平面的法向量平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。
例如在空间直角坐标系中平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。
平面的法向量1法向量简介法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。
法向量适用于解析几何。
由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
定义:三维平面的法线是垂直于该平面的三维向量。
曲面在某点P处的法线为垂直于该点切平面的向量。
法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。
在电脑图学的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
垂直于平面的直线所表示的向量为该平面的法向量。
每一个平面存在无数个法向量。
计算:对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。
用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。
如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为。
如果曲面S用隐函数表示,点集合(x,y,z)满足F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为。
如果曲面在某点没有切平面,那么在该点就没有法线。
例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。
通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
法向量与平面的关系
平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量。
一个平面的法向量可有无限多个,但单位法向量有且仅有两个。
例如在空间直角坐标系中,平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。
法向量
三维平面的法线是垂直于该平面的三维向量。
曲面在某点P处的法线为垂直于该点切平面的向量。
法线是与多边形(的曲面垂直的理论线,一个平面存在无限个法向量。
在电脑图学(的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
垂直于平面的直线所表示的向量为该平面的法向量。
每一个平面存在无数个法向量。