平面向量的概念练习(学生版)
- 格式:doc
- 大小:434.00 KB
- 文档页数:4
(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。
平面向量的基本概念与线性运算____________________________________________________________________________________________________________________________________________________________________1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.一、平面向量的概念:1、平面向量:________________________________________________________2、向量的模长:________________________________________________________3、零向量:____________________________________________________________4、单位向量:__________________________________________________________5、平行向量:_________________________________________________________6、相等向量:_________________________________________________________7、相反向量:__________________________________________________________二、平面向量的基本运算:一般地,λa+μb叫做a,b的一个线性组合(其中λ,μ均为系数).如果l =λa+μb,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC u u u r 叫做位移AB u u u r与位移BC u u u r 的和,记作____________________2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD u u u r =BC u u ur ,根据三角形法则得AB u u u r +AD u u u r=________________________平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =u u u r OA ,b =u u u rOB ,则()= OA OB OA OB OA BO BO OA BA -=+-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .即(7.2)观察图7-13可以得到:起点相同的两个向量a 、b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.图7-7ACBaba +bab图7-9A一般地,实数λ与向量a的积是一个向量,记作λa,它的模为||||||aaλ=λ(7.3)若||λ≠a0,则当λ>0时,λa的方向与a的方向相同,当λ<0时,λa的方向与a的方向相反.由上面定义可以得到,对于非零向量a、b,当0λ≠时,有λ⇔=a b a b∥(7.4)一般地,有0a= 0, λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a, b及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ;()()()()2a a aλμλμμλ== ;()()3a a aλμλμ+=+ ;()()a b a bλλλ+=+4 .题型1平面向量的基本概念例1给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;③若AB→=DC→,则A、B、C、D四点构成平行四边形;④在ABCD中,一定有AB→=DC→;⑤若m=n,n=p,则m=p;aAa-bBbO图7-13⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号)例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA u u u r相等的向量; (2)找出向量DC u u u r的负向量;(3)找出与向量AB u u u r平行的向量.练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出 (1)与EF u u u r 相等的向量;(2)与AD u u u r共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC u u u r 相等的向量; (2)OC u u u r 的负向量; (3)与OC u u u r题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.练习:1. 如图,已知a ,b ,求a +b .2.填空(向量如图F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 ADCB图7-5Obbaa(1)(2)第1题图所示):(1)a +b =_____________ , (2)b +c =_____________ , (3)a +b +c =_____________ . 3.计算:(1)AB u u u r+BC u u u r +CD u u u r ; (2)OB u u u r +BC u u u r +CA u u u r .例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .练习:1.填空:(1)AB u u u r AD -u u u r=_______________,(2)BC u u u r BA -u u u r=______________, (3)OD u u u r OA -u u u r=______________.2.如图,在平行四边形ABCD 中,设AB u u u r = a ,AD u u u r= b ,试用a , b 表示向量AC u u u r 、BD u u u r 、DB u u u r.例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB u u u r =a ,AD u u u r=b ,试用a , b 表示向量AO u u u r 、OD u u u r.练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).BbOaAba(1)(2)图7-142.设a , b 不共线,求作有向线段OA u u u r ,使OA u u u r =12(a +b ).例7 平行四边形OADB 的对角线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.练习:练习:在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.题型3 共线向量例8 设两个非零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线. 题型4 向量共线的应用例4 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.练习:如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.一、选择题1.在下列判断中,正确的是( ) ①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等; ④单位向量都是同方向; ⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤D .①③⑤2.向量(AB →+MB →)+(BO →+BC →)+OM →等于( ) A .BC → B .AB → C .AC →D .AM →3.若a 、b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同4.已知下列各式:①AM →+MB →+BA →;②AB →+CA →+BD →+DC →;③OA →+OC →+BO →+CO →.其中结果为零向量的个数为( )A .0B .1C .2D .3二、填空题5.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是________. 6.如图所示,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+BC →=________.三、解答题7.如图所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1)分别写出AO →,BO →相等的向量; (2)写出与AO →共线的向量; (3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等?8.梯形ABCD 中,AB ∥CD ,AB =2CD ,M 、N 分别是CD 和AB 的中点,若AB =a ,AD =b ,试用a 、b 表示BC 和MN ,则BC =________,MN =______._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.把平面上一切单位向量平移到共同始点,那么这些向量的终点构成的图形是( ) A .一条线段 B .一段圆弧 C .两个孤立的点D .一个圆2.把所有相等的向量平移到同一起点后,这些向量的终点将落在( ) A .同一个圆上 B .同一个点上 C .同一条直线上 D .以上都有可能4.有下列说法:①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量; ④共线向量一定在同一直线上. 其中,正确说法的个数是( ) A .0 B .1 C .2D .35.下列说法错误的是( )A .作用力与反作用力是一对大小相等、方向相反的向量B .向量可以用有向线段表示,但有向线段并不是向量C .只有零向量的模等于0D .零向量没有方向6.如图所示,圆O 上有三点A 、B 、C ,则向量BO →、OC →、OA →是( ) A .有相同起点的相等向量 B .单位向量 C .模相等的向量 D .相等的向量9.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a ⊥b C .|a |=|b |D .以上都不对 10.△ABC 中,D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( )A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠012.在四边形ABCD 中,AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形 C .正方形 D .平行四边形二、填空题12.若D 、E 、F 分别是△ABC 的三边AB 、BC 、AC 的中点,则与向量EF →相等的向量为________. 16.根据右图填空: b +c =________; a +d =________; b +c +d =________; f +e =________; e +g =________.三、解答题17.某人从A 点出发,向东走到B 点,然后,再向正北方向走了60m 到达C 点.已知|AC →|=120m ,求AC →的方向和A 、B 的距离.18.两个力F 1和F 2同时作用在一个物体上,其中F 1=40N ,方向向东,F 2=403N ,方向向北,求它们的合力.能力提升一、选择题1.若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b . 其中正确的是( )A .①④⑤B .③C .①②③⑤D .②③⑤2.如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线3.如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是()A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身)C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线4.四边形ABCD 中,若AB →与CD →是共线向量,则四边形ABCD 是( )A .平行四边形B .梯形C .平行四边形或梯形D .不是平行四边形也不是梯形1.已知向量a 表示“向东航行1km ”向量b 表示“向南航行1km ”则a +b 表示( )A .向东南航行2kmB .向东南航行2kmC .向东北航行2kmD .向东北航行2km2.在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |3.已知正方形ABCD 的边长为1,AB →=a 、BC →=b 、AC →=c ,则|a +b +c |等于( )A .0B .3C . 2D .2 2 4.下列命题中正确的个数为( )①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.A .0B .1C .2D .3二、填空题5.若|AB →|=|AD →|,且BA →=CD →,则四边形ABCD 的形状为________.6.已知A 、B 、C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =90°,则|a +b |=________.6.已知在菱形ABCD 中,∠DAB =60°,若|AB →|=2,则|BC →+DC →|=________.三、解答题8.一位模型赛车手摇控一辆赛车,沿直线向正东方向前行1m ,逆时针方向旋转α度,继续沿直线向前行进1m ,再逆时针旋转α度,按此方法继续操作下去.(1)按1100的比例作图说明当α=60°时,操作几次赛车的位移为零.(2)按此法操作使赛车能回到出发点,α应满足什么条件?请写出其中两个.9.如图所示,在△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的点,已知AD →=DB →,DF →=BE →,试推断向量DE →与AF →是否为相等向量,说明你的理由.7.如图所示,在△ABC 中,P 、Q 、R 分别为BC 、CA 、AB 边的中点,求证AP →+BQ →+CR →=0.8.轮船从A 港沿东偏北30°方向行驶了40n mile(海里)到达B 处,再由B 处沿正北方向行驶40n mile 到达C 处.求此时轮船关于A 港的相对位置.9.已知下图中电线AO 与天花板的夹角为60°,电线AO 所受拉力F 1=24N ;绳BO 与墙壁垂直,所受拉力F 2=12N.求F 1和F 2的合力.。
平面向量的概念练习题导言:平面向量是数学中一个重要的概念,广泛应用于几何学、物理学等领域。
理解和掌握平面向量的基本概念和运算方法对于解决与平面相关的问题具有关键作用。
本文将通过一系列练习题来帮助读者巩固对平面向量的理解和应用。
1. 平面向量的定义若空间中空间点对有序的,我们就将这样的有序对成为平面向量。
若点 A 和点 B 分别是平面内的两个点,向量 AB 表示从点 A 到点 B 的有向线段。
平面向量 AB 的起点为 A,终点为 B,记作 AB。
2. 平面向量的运算(1) 平面向量的加法设有平面向量 AB 和平面向量 CD,则其和向量记作 AB + CD,其几何意义为:将向量 CD 的起点与向量 AB 的终点连接形成一个新的向量,其起点为 CD 的起点,终点为 AB 的终点。
(2) 平面向量的数乘设有实数 k 和平面向量 AB,则 kAB 的几何意义为:将向量 AB 的起点固定,将向量 AB 的长度等比例地拉长或缩短,方向不变。
若 k > 0,则该向量与原向量方向相同;若 k < 0,则该向量与原向量方向相反。
3. 平面向量的练习题(1) 已知向量 AB = (1, 2),向量 CD = (3, -1),计算向量 AB + CD。
(2) 已知向量 PQ = (2, 4),向量 RS = (5, 1),计算向量 2PQ - RS。
(3) 在直角坐标系中,设向量 AB = (3, 4),向量 AC = (-2, 5),求向量 BC。
(4) 确定向量 a = (4, 2) 和向量 b = (-3, 6) 的数量积和夹角。
(5) 设向量 OX = (1, 0),向量 OY = (0, 1),求向量 OA = 4OX + 3OY。
解答:(1) AB + CD = (1, 2) + (3, -1) = (4, 1)(2) 2PQ - RS = 2(2, 4) - (5, 1) = (4, 8) - (5, 1) = (-1, 7)(3) BC = AC - AB = (-2, 5) - (3, 4) = (-5, 1)(4) 数量积 a·b = 4*(-3) + 2*6 = -12 + 12 = 0夹角cosθ = (a·b) / (|a| |b|) = 0 / (√(4^2+2^2) √((-3)^2+6^2)) = 0 /(2√5 √45) = 0 / (2√5* 3√5) = 0 / (6√5) = 0由于夹角为0,说明向量 a 和向量 b 夹角为零度,即平行。
人教A 版(2019)必修第二册《6.1 平面向量的概念》同步练习一 、单选题(本大题共12小题,共60分)1.(5分)已知平面向量a →=(−2,1),b →=(1,2),则|a →−2b →|的值是( )A. 1B. 5C. √3D. √52.(5分)已知向量a →=(2,4),b →=(−2,m),且|a →+b →|=|a →−b →|,则m =()A. √3B. 1C.2√33D. 23.(5分)已知四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,若BM →=xAB →+yAD →,则x +y =()A. 3B. 52C. 2D. −124.(5分)已知四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,设AB →=a →,AD →=b →,AP →=c →,则下列向量中与PM →相等的向量是( )A. 12a →+b →−c →B. a →+12b →−c →C. −a →−12b →+c →D. a →+12b →+c →5.(5分)已知直线上OA →,OB →的坐标分别为−1,2,则下列结论不正确的是( )A. OA →<OB →B. |OA →|<|OB →| C. |AB →|=3D. AB 的中点坐标为126.(5分)在△ABC 中,已知BC →=3BD →,则AD →=()A. 13(AC →+2AB →) B. 13(AB →+2AC →) C. 14(AC →+3AB →)D. 14(AC →+2AB →)7.(5分)下列说法中错误的是()A. 零向量与任一向量平行B. 方向相反的两个非零向量不一定共线C. 单位向量的长度为1D. 相等向量一定是共线向量8.(5分)下列说法正确的是( )A. 单位向量均相等B. 单位向量e →=1 C. 零向量与任意向量平行D. 若向量a →,b →满足|a →|=|b →|,则a →=±b →9.(5分)若平面单位向量a →,b →,c →不共线且两两所成角相等,则|a →+b →+c →|=( )A. √3B. 3C. 0D. 110.(5分)已知不共线的向量a →,b →,|a →|=2,|b →|=3,a →.(b →−a →)=1,则|a →−b →|=( )A. √3B. 2√2C. √7D. √2311.(5分)有下列四个命题:①互为相反向量的两个向量模相等;①若向量AB →与CD →是共线的向量,则A ,B ,C ,D 必在同一条直线上;①若|a |=|b |,则a =b 或a =-b ;①若a ①b =0,则a =0或b =0;其中正确结论的个数是( )A. 4B. 3C. 2D. 112.(5分)已知a →,b →为两个单位向量,下列四个命题中正确的是( )A. 如果a →与b →平行,那么a →与b →相等 B. a →与b →相等C. 如果a →与b →平行,那么a →=b →或a →=−b →D. a →与b →共线二 、填空题(本大题共5小题,共25分)13.(5分)与向量a →=(1,2,−2)方向相同的单位向量是 ______.14.(5分)若向量AB →=−3CD →,则向量AB →与向量CD →共线.______ (判断对错) 15.(5分)给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a →|=|b →|,则a →=b →;③若AB →=DC →,则A ,B ,C ,D 四点构成平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m →=n →,n →=p →,则m →=p →; ⑥若向a →//b →,b →//c →,则a →//c →. 其中错误的命题有______.(填序号)16.(5分)已知平面内三点A (2,-3),B (4,3),C (5,a )共线,则a=____ 17.(5分)已知向量a →=(m,1),b →=(4−n,2),m >;0,n >;0,若a →//b →,则1m+8n的最小值为__________;三 、多选题(本大题共4小题,共20分) 18.(5分)下列命题中正确的是( )A. 单位向量的模都相等B. 长度不等且方向相反的两个向量不一定是共线向量C. 若⇀ a 与b →满足|a |>|b |,且⇀ a 与b →同向,则a →>b →D. 两个有共同起点而且相等的向量,其终点必相同 19.(5分)下列说法中,正确的个数是( )A. 时间、摩擦力、压强、重力、身高、温度、加速度都是向量;B. 向量的模是一个正实数;C. 相等向量一定是平行向量;D. 向量a →与b →不共线,则a →与b →都是非零向量. 20.(5分)下列关于平面向量的说法中,正确的是()A. 若a →=b →,b →=c →,则a →=c →B. 若a →//b →,b →//c →,则a →//c →C. 若xa →+yb →=0→,x ,y ∈R ,a →,b →不共线,则x =y =0 D. 若|a →+b →|=|a →−b →|,则|a →|2+|b →|2=|a →+b →|221.(5分)已知点P 为△ABC 所在平面内一点,且PA →+2PB →+3PC →=0→,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A. 向量PA →与PC →可能平行 B. 向量PA →与PC →可能垂直 C. 点P 在线段EF 上D. PE :PF =1:2四 、解答题(本大题共4小题,共48分)22.(12分)已知四点A(x,0),B(2x ,1),C(2,x),D(6,2x ). (1)求实数x ,使向量AB →与CD →共线;(2)当向量AB →与CD →共线时,A ,B ,C ,D 四点是否存在同一直线上?23.(12分)如图,半圆的直径AB =6,C 是半圆上的一点,D ,E 分别是AB ,BC 上的点,且AD =1,BE =4,DE =3.[{"ℎ":"57.0","w":"837.0","x":"63.0","y":"509.0"}](1)求证:AC →//DE →;(2)求|AC →|.24.(12分)已知D,E,F 分别是ΔABC 各边AB ,BC ,CA 的中点,分别写出图中与DE →,EF →,FD →相等的向量.25.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量m→=(a,√3b),n→=(cosA,sinB),且m→//n→.(Ⅰ)求角A的大小;(Ⅰ)若c=5,cosB=√21,求a的值.7答案和解析1.【答案】B;【解析】解:a →−2b →=(−4,−3). ∴|a →−2b →|=√(−4)2+(−3)2=5. 故选:B .利用数量积运算性质即可得出.此题主要考查了数量积运算性质,考查了推理能力与计算能力,属于基础题.2.【答案】B;【解析】解:由题意可得|a →+b →|2=|a →−b →|2, 即a →2+2a →·b →+b →2=a →2−2a →·b →+b →2, 可得a →·b →=0,又a →=(2,4),b →=(−2,m), 即有2×(−2)+4m =0, 解得m =1, 故选:B.由已知条件结合向量模的求法可得a →·b →=0,再代入坐标运算即可求解. 此题主要考查了向量模的求法,向量数量积的坐标运算,属于基础题.3.【答案】C;【解析】解:∵四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,∴BC →=4AD →,故点M 为线段DC 的中点, ∴BM →=BD →+BC →2=BA →+AD →+4AD→2=−12AB →+52AD →.又∵BM →=xAB →+yAD →,∴x =−12,y =52, 故 x +y =2, 故选:C.由题意先求得BC →=4AD →,故点M 为线段DC 的中点,再利用平面向量的线性运算,借助平面向量的基本定理即可求解.本题考查的知识点是平面向量的基本定理,平面向量的线性运算,属于中档题.4.【答案】B;【解析】解:∵四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,AB →=a →,AD →=b →,AP →=c →,∴PM →=PB →+12BC →=PA →+AB →+12BC →=−c →+a →+12b →, 故选:B.直接根据向量的三角形法则进行求解即可.此题主要考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.5.【答案】A;【解析】解:向量不能比较大小,故A 不正确, ∵|OA →|=1,|OB →|=2,∴|OA →|<|OB →|,故选项B 正确, ∵AB →=OB →−OA →=2−(−1)=3,∴|AB →|=3,故选项C 正确, ∵A 的坐标为−1,B 的坐标为2,∴AB 的中点坐标为−1+22=12,故选项D 正确.故选:A.利用直线上的向量的坐标运算求解.此题主要考查了直线上的向量的坐标运算,考查了中点坐标公式,是基础题.6.【答案】A;【解析】解:根据向量的三角形法则得到AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →−AB →)=23AB →+13AC →=13(2AB →+AC →);故选:A.利用平面向量的三角形法则,将AD →用AB →,AC →表示,找出正确答案. 此题主要考查了向量的三角形法则,属于基础题.7.【答案】B;【解析】解:零向量与任一向量平行,故A 正确; 方向相反的两个非零向量一定共线,故B 错误; 单位向量的长度为1,故C 正确;相等向量的模相等,方向相同,一定是共线向量,故D 正确. 故选:B.由零向量的概念判断A ;由相反向量的概念判断B ;由单位向量的概念判断C ;由相等向量的概念判断D.此题主要考查向量的基本概念,是基础题.8.【答案】C; 【解析】此题主要考查了向量的概念,属于基础题. 根据向量的概念逐一判定即可.解:单位向量的模相等且为1,但单位向量的方向不确定,故A 、B 错误; 零向量与任意向量平行,故C 正确;若向量a →,b →满足|a →|=|b →|,只能得出向量a →,b →的模相等,但向量a →,b →的方向不确定,故D 错误; 故选C.9.【答案】C;【解析】解:∵平面单位向量a →,b →,c →不共线且两两所成角相等; ∴a →,b →,c →两两夹角为120°,且|a →|=|b →|=|c →|=1;∴|a →+b →+c →|=√(a →+b →+c →)2=√(a →)2+(b →)2+(c →)2+2a →.b →+2a →.c →+2b →.c →=√3+6cos120° =0 故选:C .根据三个向量不共线且两两所成的角相等可知,它们两两夹角为120°;再根据平面向量模的计算公式即可得出答案.该题考查了平面向量模的运算,属基础题.10.【答案】A;【解析】解:∵|a →|=2,|b →|=3,a →⋅(b →−a →)=1, ∴a →⋅b→−a 2→=a →⋅b →−4=1,∴a →⋅b →=5,∴|a →−b →|2=a 2→−2a →⋅b →+b 2→=4−2×5+9=3,∴|a →−b →|=√3, 故选:A .由已知结合数量积的运算可得a →⋅b →=5,代入运算可得|a →−b →|2的值,求其算术平方根即得.此题主要考查平面向量数量积的运算,涉及向量的模长的求解,属中档题.11.【答案】D;【解析】此题主要考查平面向量的基本概念与应用问题,是基础题.根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.解:对于①,互为相反向量的两个向量模相等,命题正确;对于①,向量AB 与CD 是共线的向量,点A ,B ,C ,D 不一定在同一条直线上, 如平行四边形的对边表示的向量,原命题错误; 对于①,当|a |=|b |时,a =b 或a =-b 不一定成立, 如单位向量模长为1,但不一定共线,原命题错误; 对于①,当a ①b =0时,a =0或b =0或a ①b ,原命题错误; 综上,正确的命题是①,共1个. 故选D.12.【答案】C;【解析】解:∵a →,b →为两个单位向量,∴如果a →与b →平行,那么a →=b →或a →=−b →,故A 不正确,C 正确; 因为两向量相等的充要条件是模相等且方向相同,所以B 不正确; ∵a →,b →为两个单位向量,∴a →,b →为两个向量不一定平行,故D 不正确. 故选:C .a →,b →为两个单位向量,它们的模是单位长度1,方向是任意的,根据两个单位向量的这两条性质,可以判断四个选项的真假.该题考查了命题的真假判断与应用,解答该题的关键是单位向量的定义及两向量相等的条件,同时考查了两向量的应用.13.【答案】(13,23,-23);【解析】解:向量a →=(1,2,−2), 可得|a →|=√1+4+4=3,所以与向量a →=(1,2,−2)方向相同的单位向量是:(13,23,−23). 故答案为:(13,23,−23).求出向量的模,然后求解单位向量即可.此题主要考查单位向量的求法,向量的模的计算,是基础题.14.【答案】对;【解析】解:向量AB →=−3CD →,根据平面向量的共线定理知, 向量AB →与向量CD →共线. 故答案为:对.根据平面向量的共线定理,判断即可.本题考查了平面向量的共线定理应用问题,是基础题.15.【答案】①②③⑥;【解析】解:在①中,两个零向量相等,则它们的起点相同,终点不一定相同,故①错误;在②中,若|a →|=|b →|,则a →与b →大小相等,方向不一定相同,故②错误; 在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形,故③错误; 在④中,在平行四边形ABCD 中,由向量相等的定义得一定有AB →=DC →,故④正确; 在⑤中,若m →=n →,n →=p →,则向量相等的定义得m →=p →,故⑤正确; 在⑥中,若向a →//b →,b →//c →,当b →=0→时,a →与c →不一定平行,故⑥不正确. 故答案为:①①①①.在①中,两个零向量相等,则它们的起点相同,终点不一定相同;在②中,a →与b →大小相等,方向不一定相同;在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形;在④中,由向量相等的定义得一定有AB →=DC →;在⑤中,由向量相等的定义得m →=p →;在⑥中,当b →=0→时,a →与c →不一定平行.该题考查命题真假的判断,是基础题,解题时要认真审题,注意向量相等、向量平行的合理运用.16.【答案】6;【解析】解:AB=(2,6) ,AC=(3,a+3) 由已知知AB ∥AC 所以2(a+3)=6×3 解得a=6 故答案为:617.【答案】92; 【解析】此题主要考查利用基本不等式求最值及平面向量共线的充要条件,属于中档题. 由a →//b →,可得:n +2m =4,则1m+8n=14(n +2m )(1m+8n),化简利用基本不等式求解即可.解:∵a →//b →,∴4−n −2m =0,即n +2m =4, ∵m >;0,n >;0, ∴1m +8n=14(n +2m )(1m +8n ) =14(10+n m+16m n)⩾14(10+2√n m·16mn)=92,当且仅当n =4m =83时取等号, ∴1m +8n 的最小值是92. 故答案为92.18.【答案】AD; 【解析】此题主要考查向量的有关概念,属于基础题.利用向量的有关概念,判断各个选项是否正确,从而得出结论.解:对于选项A :单位向量的模均为1,故A 正确,对于选项B :长度不等且方向相反的两个向量一定是共线向量,故B 错误, 对于选项C :向量不能比较大小,故C 错误, 对于选项D :根据相等向量的概念知,故D 正确. 故选AD .19.【答案】CD; 【解析】此题主要考查了向量的基本概念,熟练掌握向量,零向量,平行向量,向量的模的概念是解答该题的关键,属于基础题.直接由向量、零向量、向量相等,向量的模和向量共线的概念逐一核对四个命题得答案.解:对于A ,时间没有方向,不是向量,故A 错误;对于B ,零向量的模为0,故B 错误;对于C ,相等向量的方向相同,因此一定是平行向量,故C 正确;对于D ,根据零向量与任意向量共线,得到向量a →与b →不共线,则a →与b →都是非零向量,故D 正确.故选CD .20.【答案】ACD;【解析】解:若a →=b →,b →=c →,则一定a →=c →,∴A 正确;若a →与c →不平行,b →=0→,满足a →//b →,b →//c →,则得不出a →//c →,即B 错误;若xa →+yb →=0→,x,y ∈R,a →,b →不共线,则一定得出x =y =0,若x ,y 中有一个不为0,则可得出a →,b →共线,与已知不共线矛盾,∴C 正确;若|a →+b →|=|a →−b →|,则(a →+b →)2=(a →−b →)2,则a →·b →=0,从而得出|a →+b →|2=|a →|2+|b →|2,即D 正确.故选:ACD.A 显然正确;b →=0→时,可说明B 错误;根据平面向量基本定理即可说明C 正确;进行向量数量积的运算即可说明D 正确.此题主要考查了平面向量和共线向量基本定理,向量数量积的运算,考查了计算能力,属于基础题.21.【答案】BC;【解析】解:∵PA →+2PB →+3PC →=0→,∴PA →+PC →+2(PB →+PC →)=0→,∵E 为AC 的中点,F 为BC 的中点,∴2PE →+2×2PF →=0→,∴PE →=−2PF →,∴P 为FE 的三等分点(靠近点F),即PE :PF =2:1,故C 正确,D 错误,∴向量PA →与PC →不可能平行,故A 错误;当|AC →|=2|EP →|=43|EF →|=23|AB →|时,向量PA →与PC →垂直,B 正确.故选:BC.由题意并根据平面向量线性运算可知PE →=12(PA →+PC →),PF →=12(PB →+PC →),代入等式可得PE →=−2PF →,即可判断C 和D ;根据平面中的位置关系,可判断A 和B.本题考查平面向量的加法、减法和数乘运算及平面向量平行和垂直的判断,属中档题.22.【答案】解:(1)AB →=(x ,1),CD →=(4,x ),∵AB →与CD →共线,∴x 2-4=0,解得x=±2.∴当x=±2时,向量AB →与CD →共线.(2)取x=2时,A (2,0),B (4,1),C (2,2),D (6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,因此四点不共线.取x=-2时,A (-2,0),B (-4,1),C (2,-2),D (6,-4),直线AB 的方程为y-0=1−0−4−(−2)(x+2),化为:x+2y+2=0.点B ,D 满足直线AB 的方程,因此四点共线.;【解析】(1)AB →=(x,1),CD →=(4,x),利用向量共线定理解出x.(2)取x =2时,A(2,0),B(4,1),C(2,2),D(6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,即可判断出四点共线.取x =−2时,A(−2,0),B(−4,1),C(2,−2),D(6,−4),直线AB 的方程为:x +2y +2=0.验证点B ,D 是否满足直线AB 的方程,即可判断出结论.此题主要考查了向量共线定理、向量共线与直线平行的关系,考查了推理能力与计算能力,属于中档题.23.【答案】(1)证明:由题意知,在△DEB 中,BD =5,DE =3,BE =4,∴DE 2+BE 2=BD 2,∴△DEB 是直角三角形,∠DEB =90∘.又∵点C 为半圆上一点,∴∠ACB =90∘.∴AC//DE ,故AC →//DE →.(2)解:由AC//DE 知△ABC ∽△DBE.∴AC DE =AB BD ,即AC 3=65.∴AC =185,即|AC →|=185.;【解析】本题考查向量的概念及几何表示、平行向量的概念以及向量的模,属于基础题.(1)根据勾股定理可得DE ⊥BE ,因为AC ⊥BC ,故可得AC →//DE →;(2)由三角形相似得相似比,从而可求出答案.24.【答案】略;【解析】DE →=AF →=FC →;EF →=BD →=DA →;FD →=CE →=EB →.25.【答案】解:(Ⅰ)∵m →∥n →,∴asinB −√3bcosA =0,∴根据正弦定理得,sinAsinB −√3sinBcosA =0,且sinB >0,∴sinA =√3cosA ,tanA =√3,且A ∈(0,π),∴A =π3;(Ⅱ)∵cosB =√217,∴sinB =2√77,且C =2π3−B , ∴sinC =sin(2π3−B)=√32×√217+12×2√77=5√714,且c=5, ∴根据正弦定理得,c sinC =b sinB ,即5√714=2√77,解得b=4,∴根据余弦定理得,a 2=b 2+c 2-2bccosA=16+25-2×4×5×12=21,∴a =√21.;【解析】(Ⅰ)根据m →//n →即可得出asinB −√3bcosA =0,然后根据正弦定理即可得出sinA =√3cosA ,然后即可求出A =π3;(Ⅰ)可先求出sinB =2√77,sinC =5√714,然后根据正弦定理可求出b 的值,进而根据余弦定理可求出a 的值.本题考查了平行向量的坐标关系,正余弦定理,两角差的正弦公式,考查了计算能力,属于中档题.。
1、下列说法正确的是( )A 、数量可以比较大小,向量也可以比较大小.B 、方向不同的向量不能比较大小,但同向的可以比较大小.C 、向量的大小与方向有关.D 、向量的模可以比较大小.2、给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若||||a b =r r ,则a b =r r ;③若AB DC =u u u r u u u r ,则四边形ABCD 是平行四边形;④平行四边形ABCD 中,一定有AB DC =u u u r u u u r ;⑤若m n =u r r ,n k =r r ,则m k =u r r ;⑥a b r r P ,b c r r P ,则a c r r P .其中不正确的命题的个数为( )A 、2个B 、3个C 、4个D 、5个3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD u u u r u u u r u u u r u u u r 是( )A 、相等的向量B 、平行的向量C 、有相同起点的向量D 、模相等的向量4、判断下列各命题的真假:(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)向量a r 与向量b r 平行,则a r 与b r 的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量AB u u u r 和向量CD uuu r 是共线向量,则点A 、B 、C 、D 必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为( )A 、2个B 、3个C 、4个D 、5个5、若a r 为任一非零向量,b r 为模为1的向量,下列各式:①|a r |>|b r | ②a r ∥b r ③|a r |>0 ④|b r |=±1,其中正确的是( )A 、①④B 、③C 、①②③D 、②③6、下列命中,正确的是( )A 、|a r |=|b r |⇒a r =b rB 、|a r |>|b r |⇒a r >b rC 、a r =b r ⇒a r ∥b rD 、|a r |=0⇒a r =07、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( )A 、2个B 、3个C 、4个D 、5个8、平行向量是否一定方向相同?9、不相等的向量是否一定不平行?10、与零向量相等的向量必定是什么向量?11、与任意向量都平行的向量是什么向量?12、若两个向量在同一直线上,则这两个向量一定是什么向量?14、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形,(1)找出图中与AB u u u r 共线的向量;(2)找出图中与AB u u u r 相等的向量;(3)找出图中与|AB u u u r |相等的向量;(4)找出图中与EC u u u r 相等的向量.A B15、如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中:分别写出与,AO BO u u u r u u u r 相等的向量;写出与AO u u u r 共线的向量;(3)写出与AO u u u r 模相等的向量;(4)向量AO u u u r 与CO uuu r 是否相等?1、下列各量中不是向量的是( )A 、浮力B 、风速C 、位移D 、密度2、下列说法中错误..的是( )A 、零向量是没有方向的B 、零向量的长度为0C 、零向量与任一向量平行D 、零向量的方向是任意的3、把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是() A 、一条线段B 、一段圆弧C 、圆上一群孤立点 D 、一个单位圆4、在△ABC 中,AB=AC,D 、E 分别是AB 、AC 的中点,则( )A 、 AB 与AC 共线 B 、 DE 与CB 共线C 、 AD 与AE 相等 D 、 AD 与BD 相等5、下列命题正确的是( )A 、向量AB 与BA 是两平行向量B 、若a 、b 都是单位向量,则a =bC 、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形D 、两向量相等的充要条件是它们的始点、终点相同 DE A BFCO6、在下列结论中,正确的结论为()(1)a∥b且|a|=|b|是a=b的必要不充分条件(2)a∥b且|a|=|b|是a=b的既不充分也不必要条件(3)a与b方向相同且|a|=|b|是a=b的充要条件(4)a与b方向相反或|a|≠|b|是a≠b的充分不必要条件A、(1)(3)B、(2)(4)C、(3)(4)D、(1)(3)(4)7、“两个向量共线”是“这两个向量方向相反”的条件、8、已知非零向量a∥b,若非零向量c∥a,则c与b必定、9、已知a、b是两非零向量,且a与b不共线,若非零向量c与a共线,则c与b必定10、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是11、已知|AB|=1,| AC|=2,若∠BAC=60°,则|BC|=12、在四边形ABCD中, AB=DC,且|AB|=|AD|,则四边形ABCD是13、设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,求证:KL =NM14、某人从A点出发向西走了200m到达B点,然后改变方向向西偏北60°走了450m到达C点,最后又改变方向,向东走了200m到达D点(1)作出向量AB、BC、CD (1 cm表示200 m)(2)求DA的模15、如图,已知四边形ABCD是矩形,设点集M={A、B、C、D},求集合T={PQ、Q∈M,且P、Q不重合}。
高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。
2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。
【考点】本题主要考查平面向量的线性运算。
点评:简单题,在平行四边形中,由平行四边形法则。
注意相等向量及相反向量。
3.已知点,向量,且,则点的坐标为。
【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。
【考点】本题主要考查平面向量的概念及其坐标运算。
点评:简单题,注意若A(a,b),B(c,d),则。
4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。
B.单位向量都相等;方向不一样。
C.共线的向量,若起点不同,则终点一定不同;不一定。
D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。
专题6.1 平面向量的概念知识储备一 向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小没有方向的量称为数量.二 向量的几何表示1.有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB ,线段AB 的长度叫做有向线段AB 的长度记作|AB |.2.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(印刷用黑体a ,b ,c ,书写时用c b a ,,).3.模、零向量、单位向量 向量AB 的大小,称为向量AB 的长度(或称模),记作|AB |.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量.思考 “向量就是有向线段,有向线段就是向量”的说法对吗?答案 错误.理由是:①向量只有长度和方向两个要素;与起点无关,只要长度和方向相同,则这两个向量就是相同的向量;②有向线段有起点、长度和方向三个要素,起点不同,尽管长度和方向相同,也是不同的有向线段.三 相等向量与共线向量1.平行向量:方向相同或相反的非零向量叫做平行向量.(1)记法:向量a 与b 平行,记作a ∥b .(2)规定:零向量与任意向量平行.2.相等向量:长度相等且方向相同的向量叫做相等向量.3.共线向量:由于任一组平行向量都可以平移到同一直线上,所以平行向量也叫做共线向量.要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.思考 (1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与任意向量都平行的向量是什么向量?(4)若两个向量在同一直线上,则这两个向量一定是什么向量?答案 (1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量.能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列关于空间向量的命题中,正确命题的个数是( )(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3【答案】B【解析】由相等向量的定义知(1)正确;平行且模相等的两个向量也可能是相反向量,(2)错;方向不相同且长度相等的两个是不相等向量,(3)错;相等向量只要求长度相等、方向相同,而表示两个向量的有向线段的起点不要求相同,(4)错, 所以正确答案只有一个.故选B .2.下列命题正确的是( )A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b =【答案】A 【解析】模为零的向量是零向量,所以A 项正确;||||a b =时,只说明向,a b 的长度相等,无法确定方向,所以B ,C 均错;a b 时,只说明,a b 方向相同或相反,没有长度关系,不能确定相等,所以D 错.故选A.3.若非零向量a 和b 互为相反向量,则下列说法中错误是( )A .//a bB .a b ≠C .a b ≠D .a b =-【答案】C 【解析】由平行向量的定义可知A 项正确;因为a 和b 的方向相反,所以a b ≠,故B 项正确;由相反向量的定义可知a b =-,故选项D 正确;由相反向量的定义知a b =,故C 项错误.故选C.4.如图,设O 是正六边形ABCDEF 的中心,则与BC 相等的向量为( )A .BAB .CDC .AD D .OD【答案】D 【解析】根据图形看出,四边形BCDO 是平行四边形//,BC OD BC OD ∴=BC OD ∴=故选:D 5.若向量a 与向量b 不相等,则a 与b 一定( )A .不共线B .长度不相等C .不都是单位向量D .不都是零向量 【答案】D 【解析】向量a 与向量b 不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A 、B 、C 错误,D 正确.故选:D.6.下列说法错误的是( )A .若非零向量a b c ,,有//a b ,//b c ,则//a cB .零向量与任意向量平行C .已知向量a b ,不共线,且//a c ,//b c ,则0c =D .平行四边形ABCD 中,AB CD =【答案】D【解析】选项A :因为a b c ,,都不是零向量,所以由//a b ,可知向量a 与向量b 具有相同或相反方向.又由//b c ,可得向量c 与向量b 具有相同或相反方向,所以向量a 与向量c 具有相同或相反方向,故//a c ,故本说法是正确的;选项B :零向量与任意向量平行这是数学规定,故本说法是正确的;选项C :由//a c ,//b c ,可知:c 与向量a 具有相同或相反方向,c 与向量b 具有相同或相反方向,但是向量a b ,不共线,所以0c ,故本说法是正确的;选项D :平行四边形ABCD 中,应该有AB DC =,故本说法是错误的.故选:D7.a ,b 为非零向量,且a b a b +=+,则( )A .a ,b 同向B .a ,b 反向C .a b =-D .a ,b 无论什么关系均可【答案】A 【解析】当两个非零向量a 与b 不共线时,a b +的方向与a ,b 的方向都不相同,且a b a b +<+;当向量a 与b 同向时,a b +的方向与a ,b 的方向都相同,且a b a b +=+; 当向量a 与b 反向且a b <时,a b +的方向与b 的方向相同(与a 的方向相反),且a b b a +=-, 故选:A8.如图是34⨯的格点图(每个小方格都是单位正方形),若起点和终点都在方格的顶点处,则与AB的向量共有( )A.12个B.18个C.24个D.36个【答案】C⨯的格点图中【解析】由题意知,每个小正方形的对角线与AB34包含12个小正方形,所以有12条对角线,与AB平行的向量包含方向相同和相反,所有共有24个向量满足.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分。
6.1平面向量的概念——精选题目练习1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|. A .3 B .2 C .1D .02.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为13.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB→=OC → B.AB →∥DE → C .|AD→|=|BE →| D.AD→=FC → 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( )A .相等向量B .模相等的向量C .平行向量D .起点相同的向量5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.7.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD→长度的最小值为________. 8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.9.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图.(1)在每两点所确定的向量中,写出与向量FC →共线的向量;(2)求证:BE→=FD →. 10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形.答案:DDDBB 2 532 0⃗ 9.(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB→,ED →,DE →,AE →,EA →,AD →,DA →. 在▱ABCD 中,AD //BC 且.AD =BC 又E ,F 分别为AD ,BC 的中点, 所以ED //BF ,ED =BF所以四边形BFDE 是平行四边形, 所以BE //FD ,BE =FD 所以BE→=FD →.10.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB→∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD→|=|BC →|,同时两向量不平行.(2)AD→=BC →(或AD →∥BC →). 若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.。
§2.1 平面向量的实际背景及基本概念一、选择题1.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力2.设O是正方形ABCD的中心,向量AO OB CO OD、、、是()A.平行向量B.有相同终点的向量C.相等向量D.模相等的向量3.下列命题中,正确的是()A.|a| = |b|⇒a = b B.|a|> |b|⇒a > b C.a = b⇒a与b共线D.|a| = 0⇒a = 0 4.在下列说法中,正确的是()A.两个有公共起点且共线的向量,其终点必相同;B.模为0的向量与任一非零向量平行;C.向量就是有向线段;D.若|a|=|b|,则a=b5.下列各说法中,其中错误的个数为()(1)向量AB的长度与向量BA的长度相等;(2)两个非零向量a与b平行,则a与b的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A.2个B.3个C.4个D.5个6.△ABC中,D、E、F分别为BC、CA、AB的中点,在以A、B、C、D、E、F为端点的有向线段所表示的向量中,与EF共线的向量有()A.2个B.3个C.6个D.7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是__________.8.如图,O是正方形ABCD的对角线的交点,四边形OAED、OCFB是正方形,在图中所示的向量中,(1)与AO相等的向量有_________________________;(3)与AO模相等的向量有_______________________;(4)向量AO与CO是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =a ,OB =b ,AB =c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有 ;(2)与b 相等的向量有 ;(3)与c 相等的向量有 .10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB 与CD 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB =CD ;(4)若a = b ,b = c ,则a = c ; (5)四边形ABCD 中,AB DC =且||||AB AD =,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB 、BC 、CD (1cm 表示200m );(2)求DA 的模.14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处? O A B C D E F。
6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。
1、下列说法正确的是( )
A 、数量可以比较大小,向量也可以比较大小.
B 、方向不同的向量不能比较大小,但同向的可以比较大小.
C 、向量的大小与方向有关.
D 、向量的模可以比较大小.
2、给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若||||a b =,则a b =;
③若AB DC =,则四边形ABCD 是平行四边形;
④平行四边形ABCD 中,一定有AB DC =;
⑤若m n =,n k =,则m k =;
⑥a b ,b c ,则a c .
其中不正确的命题的个数为( )
A 、2个
B 、3个
C 、4个
D 、5个
3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD 是( )
A 、相等的向量
B 、平行的向量
C 、有相同起点的向量
D 、模相等的向量
4、判断下列各命题的真假:
(1)向量AB 的长度与向量BA 的长度相等;
(2)向量a 与向量b 平行,则a 与b 的方向相同或相反;
(3)两个有共同起点的而且相等的向量,其终点必相同;
(4)两个有共同终点的向量,一定是共线向量;
(5)向量AB 和向量CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上;
(6)有向线段就是向量,向量就是有向线段.
其中假命题的个数为( )
A 、2个
B 、3个
C 、4个
D 、5个
5、若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b | ②a ∥b ③|a |>0 ④|b |=±1,其中正确的是( )
A 、①④
B 、③
C 、①②③
D 、②③
6、下列命中,正确的是( )
A 、|a |=|b |⇒a =b
B 、|a |>|b |⇒a >b
C 、a =b ⇒a ∥b
D 、|a |=0⇒a =0
7、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( )
A 、2个
B 、3个
C 、4个
D 、5个
8、平行向量是否一定方向相同?
9、不相等的向量是否一定不平行?
10、与零向量相等的向量必定是什么向量?
11、与任意向量都平行的向量是什么向量?
12、若两个向量在同一直线上,则这两个向量一定是什么向量?
14、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形,
(1)找出图中与AB 共线的向量;
(2)找出图中与AB 相等的向量;
(3)找出图中与|AB |相等的向量;
(4)找出图中与EC 相等的向量.
A
B
E
C
D
15、如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中:
分别写出与,AO BO 相等的向量;
写出与AO 共线的向量;
(3)写出与AO 模相等的向量;
(4)向量AO 与CO 是否相等?
1、下列各量中不是向量的是(
A 、浮力
B 、风速
C 、位移
D
2、下列说法中错误..的是( ) A B 、零向量的长度为
0 C D
3、把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A B C D
4、在△ABC 中,AB=AC,D 、E 分别是AB 、AC 的中点,则(
A 、 A
B 与A
C 共线 B 、 DE 与CB
共
C 、 A
D 与A
E 相等 D 、 AD 与BD 相等
5、下列命题正确的是(
A 、向量A
B 与
BA
B 、若a 、b 都是单位向量,则a =
b
C 、若AB =DC ,则A 、B 、C 、
D
D 、两向量相等的充要条件是它们的始点、终点相同 D
E A B
F
C
O
6、在下列结论中,正确的结论为(
(1)a∥b且|a|=|b|是a=b
(2)a∥b且|a|=|b|是a=b
(3)a与b方向相同且|a|=|b|是a=b
(4)a与b方向相反或|a|≠|b|是a≠b
A、(1)(3)
B、(2)(4)
C、(3)(4)
D、(1)(3)(4)
7、“两个向量共线”是“这两个向量方向相反”的
8、已知非零向量a∥b,若非零向量c∥a,则c与b必定、
9、已知a、b是两非零向量,且a与b不共线,若非零向量c与a共线,则c与b必定
10、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是
11、已知|AB|=1,| AC|=2,若∠BAC=60°,则|BC|=
12、在四边形ABCD中, AB=DC,且|AB|=|AD|,则四边形ABCD是
13、设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,
求证:KL =NM
14、某人从A点出发向西走了200m到达B点,然后改变方向向西偏北60°走了450m到达C点,最后又改变方向,向东走了200m到达D点
(1)作出向量AB、BC、CD (1 cm表示200 m)
(2)求DA的模
15、如图,已知四边形ABCD是矩形,设点集M={A、B、C、D},求集合T={PQ、Q∈M,且P、Q不重合}。