克隆构建目的基因的简便方法
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
第讲目的基因的克隆与分离引言目的基因是指在一项研究中,具有研究意义或实际应用价值的基因。
目的基因克隆和分离是分子生物学研究的重要环节,它们为后续研究提供了基础和保障。
本文将介绍目的基因克隆和分离的方法和技术。
一、目的基因的克隆1. PCR扩增PCR是聚合酶链反应的简称,是一种利用DNA聚合酶酶作用、在体外增加DNA序列数量的技术。
PCR扩增可以在保证目的基因序列一致性的前提下,扩增出足够的DNA量,用于后续实验。
PCR扩增的步骤一般包括模板DNA的选择、引物的设计和勘误、PCR反应体系的搭建等。
2. 基因文库筛选基因文库指的是将一个或多个组织的基因在体外克隆并构建而成的基因库。
基因文库筛选是一种在文库中选取目的基因的方法。
其中最常用的是基于杆菌的蛋白表达文库、细胞质体DNA文库和DNA合成文库。
基因文库筛选的步骤一般包括构建文库、传统筛选和高通量筛选。
3. 限制性内切酶切割限制性内切酶切割是指利用特定的酶切位点将DNA分割成碎片,然后选取目标DNA寻找需要的限制酶切片段的方法。
这种方法可以快速而准确地寻找目的基因,并进行克隆。
限制酶切割的步骤一般包括DNA提取、DNA质量检测、选取限制酶和体外反应等。
二、目的基因的分离1. 分子杂交分子杂交是指在体外或体内使某一脱氧核糖核酸(DNA)与另一种DNA或核酸杂交而形成方法的过程。
它的作用是寻找与目的基因DNA互补的DNA序列,并在该序列中分离目的基因。
分子杂交的步骤主要包括细胞培养和DNA序列的寻找和筛选等。
2. 化学合成化学合成是指通过化学方法合成目的基因的方法。
这种方法可以直接合成目的基因,只要知道目的基因的序列就可以了,不需要进行PCR扩增、克隆等操作。
化学合成的步骤主要包括碱基合成、链延伸、中间产物合成和连接、滤液等。
3. 通量基因测序通量基因测序也称为高通量测序,是一种快速且准确测定DNA或RNA序列的方法。
通过对目的基因进行测序,可以快速分离目的基因。
同源序列法克隆目的基因同源序列法克隆是一种常用的基因克隆方法,用于获取目的基因的DNA序列。
同源序列法克隆的主要步骤如下:1. 设计引物:根据已知目的基因的序列,设计一对引物(即寡核苷酸片段),其中一个引物具有与目的基因的5'端相互匹配,另一个引物具有与目的基因的3'端相互匹配。
2. 提取模板DNA:从包含目的基因的源生物体中提取总DNA 或特定组织/细胞中的DNA作为模板。
3. 聚合酶链反应(PCR)扩增:在PCR反应中使用设计的引物和模板DNA来扩增目的基因的DNA序列。
PCR反应通过多次循环加热和冷却来产生大量DNA复制品。
4. 凝胶电泳分析:将PCR扩增产物与分子量标记物一起加载在琼脂糖凝胶上进行电泳分离。
通过比较扩增产物与标记物在凝胶上的迁移距离,可以确定是否成功扩增了目的基因。
5. 纯化目的基因:从PCR反应中纯化目的基因的扩增产物,一般使用凝胶切片、DNA纯化试剂盒等方法。
6. 连接到载体:将纯化的目的基因DNA与适当的载体(如质粒)进行连接。
这通常涉及酶切目的基因和载体的DNA,然后使用连接酶将它们连接在一起。
7. 转化宿主细胞:将连接的DNA导入宿主细胞中,使其自行复制和表达。
这可以通过转染、电穿孔或热激冲等方法实现。
8. 筛选与鉴定:通过对转化后的细胞进行选择性培养或检测,筛选出带有目的基因的克隆。
常用的筛选方法包括抗生素筛选、荧光筛选等。
9. 验证目的基因:最终需要验证克隆中是否成功插入了目的基因。
这可以通过DNA测序、限制性酶切、PCR等方法来进行。
同源序列法克隆是一种有效的基因克隆技术,可用于获得感兴趣的基因序列并进一步研究其功能、表达和调控机制等。
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
实验:目的基因克隆PCR技术课前预习PCR polymerase chain reaction 反应的基本原理;目的要求1.学习和掌握PCR 反应的基本原理与实验技术方法;2.认真完成每一步实验操作,详细记录实验现象和结果并加以分析和总结;基本原理类似于DNA 的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;PCR 由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA 与引物的退火复性:模板DNA 经加热变性成单链后,温度降至55℃左右,引物与模板DNA 单链的互补序列配对结合;③引物的延伸:DNA 模板--引物结合物在TaqDNA 聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4 分钟,2~3 小时就能将待扩目的基因扩增放大几百万倍;到达平台期Plateau所需循环次数取决于样品中模板的拷贝;实验用品1.材料:重组质粒DNA作为模板2.器材和仪器:移液器及吸头,硅烷化的PCR 小管,DNA扩增仪PE 公司,琼脂糖凝胶电泳所需设备电泳槽及电泳仪,台式高速离心机3.试剂:①10×PCR 反应缓冲液:500mmol/L KCl, 100mmol/L Tris·Cl, 在25℃下, , %Triton X-100;②MgCl2 :25mmol/L;③ 4 种dNTP 混合物:每种L;④Taq DNA聚合酶5U/μl;⑤T4 DNA连接酶及连接缓冲液:方法步骤一PCR反应1. 依次混匀下列试剂35μl H2 O 5μl 10×PCR反应缓冲液4μl 25mmol/L MgCl2 4μl 4种dNTP μl 上游引物引物1μl 下游引物引物2μl 模板DNA约1ng 混匀后离心5秒;2. 将混合物在94℃下加热5分钟后冰冷,迅速离心数秒, 使管壁上液滴沉至管底,加入Taq DNA聚合酶μl约,混匀后稍离心,加入一滴矿物油覆盖于反应混合物上;3. 用94℃变性1分钟,45℃退火1分钟, 72℃延伸2分钟, 循环35轮,进行PCR;最后一轮循环结束后, 于72℃下保温10分钟,使反应产物扩增充分;4 电泳按前所述,取10μl扩增产物用1%琼脂糖凝胶进行电泳分析,检查反应产物及长度; 注意1. PCR非常灵敏, 操作应尽可能在无菌操作台中进行;2. 吸头、离心管应高压灭菌, 每次吸头用毕应更换, 不要互相污染试剂;3. 加试剂前, 应短促离心10秒钟, 然后再打开管盖, 以防手套污染试剂及管壁上的试剂污染吸头侧面;4. 应设含除模板DNA所有其它成分的负对照;实验结果注意事项微量操作、PCR 反应体系的设计、引物设计、扩增条件的优化思考题1. 降低退火温度对反应有何影响2. 延长变性时间对反应有何影响3. 循环次数是否越多越好为何4. PCR有哪些用途举例说明;附:PCR知识供参考一PCR 反应体系与反应条件标准的PCR 反应体系:10×扩增缓冲液10ul4 种dNTP 混合物各200umol/L引物各10~100pmol模板DNA ~2ugTaq DNA聚合酶Mg2+ L加双或三蒸水至100ulPCR 反应五要素:参加PCR 反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物:引物是PCR 特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度;理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR 就可将模板DNA在体外大量扩增;设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右;②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb 的片段;③引物碱基:G+C 含量以40-60%为宜,G+C 太少扩增效果不佳,G+C 过多易出现非特异条带;ATGC最好随机分布,避免5 个以上的嘌呤或嘧啶核苷酸的成串排列;④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带;⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR 失败;⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处;⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性;引物量:每条引物的浓度~1umol 或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会;酶及其浓度:目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶;催化一典型的PCR 反应约需酶量指总反应体积为100ul 时,浓度过高可引起非特异性扩增,浓度过低则合成产物量减少;dNTP 的质量与浓度:dNTP 的质量与浓度和PCR 扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性;dNTP 溶液呈酸性,使用时应配成高浓度后,以1M NaOH 或1M Tris;HCl的缓冲液将其PH调节到~,小量分装,-20℃冰冻保存;多次冻融会使dNTP 降解;在PCR 反应中,dNTP 应为50~200umol/L, 尤其是注意 4 种dNTP 的浓度要相等等摩尔配制, 如其中任何一种浓度不同于其它几种时偏高或偏低,就会引起错配;浓度过低又会降低PCR 产物的产量;dNTP 能与Mg2+结合,使游离的Mg2+浓度降低;模板靶基因核酸:模板核酸的量与纯化程度,是PCR 成败与否的关键环节之一,传统的DNA 纯化方法通常采用SDS 和蛋白酶K 来消化处理标本;SDS 的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K 能水解消化蛋白质,特别是与DNA 结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸;提取的核酸即可作为模板用于PCR 反应;一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR 扩增;RNA 模板提取一般采用异硫氰酸胍或蛋白酶K 法,要防止RNase降解RNA;Mg2+浓度:Mg2+对PCR 扩增的特异性和产量有显著的影响,在一般的PCR 反应中,各种dNTP 浓度为200umol/L时,Mg2+浓度为~L为宜;Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少;PCR 反应条件的选择PCR 反应条件为温度、时间和循环次数;温度与时间的设置:基于PCR 原理三步骤而设置变性-退火-延伸三个温度点;在标准反应中采用三温度点法,双链DNA 在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸;对于较短靶基因长度为100~300bp 时可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸此温度Taq DNA酶仍有较高的催化活性;①变性温度与时间:变性温度低,解链不完全是导致PCR 失败的最主要原因;一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响;此步若不能使靶基因模板或PCR 产物完全变性,就会导致PCR 失败;②退火复性温度与时间:退火温度是影响PCR 特异性的较重要因素;变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合;由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞;退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度;对于20 个核苷酸,G+C 含量约50%的引物,55℃为选择最适退火温度的起点较为理想;引物的复性温度可通过以下公式帮助选择合适的温度:Tm值解链温度=4G+C+2A+T复性温度=Tm值-5~10℃在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR 反应的特异性;复性时间一般为30~60sec,足以使引物与模板之间完全结合;③延伸温度与时间:Taq DNA聚合酶的生物学活性:70~80℃150核苷酸/S/酶分子70℃60 核苷酸/S/酶分子55℃24 核苷酸/S/酶分子高于90℃时, DNA合成几乎不能进行;PCR 反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合;PCR 延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够的;3~4kb 的靶序列需3~4min;扩增10Kb 需延伸至15min;延伸进间过长会导致非特异性扩增带的出现;对低浓度模板的扩增,延伸时间要稍长些;循环次数:循环次数决定PCR 扩增程度;PCR 循环次数主要取决于模板DNA的浓度;一般的循环次数选在30~40 次之间,循环次数越多,非特异性产物的量亦随之增多;PCR 反应特点特异性强PCR 反应的特异性决定因素为:①引物与模板DNA 特异正确的结合;②碱基配对原则;③Taq DNA 聚合酶合成反应的忠实性;④靶基因的特异性与保守性;其中引物与模板的正确结合是关键;引物与模板的结合及引物链的延伸是遵循碱基配对原则的;聚合酶合成反应的忠实性及Taq DNA 聚合酶耐高温性,使反应中模板与引物的结合复性可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度;再通过选择特异性和保守性高的靶基因区,其特异性程度就更高;灵敏度高PCR 产物的生成量是以指数方式增加的,能将皮克pg=10 -12 g量级的起始待测模板扩增到微克ug=10 -6 g水平;能从100 万个细胞中检出一个靶细胞;在病毒的检测中,PCR 的灵敏度可达3 个RFU空斑形成单位;在细菌学中最小检出率为3 个细菌;简便、快速PCR 反应用耐高温的Taq DNA 聚合酶,一次性地将反应液加好后,即在DNA 扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应;扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广;对标本的纯度要求低不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板;可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA 扩增检测;PCR 扩增产物分析PCR 产物是否为特异性扩增,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论;PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法;凝胶电泳分析:PCR产物电泳,EB 溴乙锭染色紫外仪下观察,初步判断产物的特异性;PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件;琼脂糖凝胶电泳:通常应用1~2%的琼脂糖凝胶,供检测用;聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析;酶切分析:根据PCR 产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究;分子杂交:分子杂交是检测PCR 产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法;Southern 印迹杂交:在两引物之间另合成一条寡核苷酸链内部寡核苷酸标记后做探针,与PCR 产物杂交;此法既可作特异性鉴定,又可以提高检测PCR 产物的灵敏度,还可知其分子量及条带形状,主要用于科研;斑点杂交:将PCR 产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR 产物特异性鉴定及变异分析;核酸序列分析:是检测PCR 产物特异性的最可靠方法;PCR 常见问题总结PCR 产物的电泳检测时间一般为48h 以内,有些最好于当日电泳检测,大于48h 后带型不规则甚致消失;假阴性,不出现扩增条带PCR 反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件;寻找原因亦应针对上述环节进行分析研究;模板:①模板中含有杂蛋白质,②模板中含有Taq 酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚;⑤模板核酸变性不彻底;在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改;酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性;需注意的是有时忘加Taq 酶或溴乙锭;引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR 失败或扩增条带不理想、容易弥散的常见原因;有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位;②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR 有可能失败,应和引物合成单位协商解决;如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度;③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效;④引物设计不合理,如引物长度不够,引物之间形成二聚体等;Mg2+浓度:Mg2+离子浓度对PCR 扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR 扩增产量甚至使PCR扩增失败而不出扩增条带;反应体积的改变:通常进行PCR 扩增采用的体积为20ul、30ul、50ul;或100ul,应用多大体积进行PCR 扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败;物理原因:变性对PCR 扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率;有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一;靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR 扩增是不会成功的;假阳性出现的PCR 扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高;引物设计不合适:选择的扩增序列与非目的扩增序列有同源性, 因而在进行PCR 扩增时, 扩增出的PCR产物为非目的性的序列;靶序列太短或引物太短,容易出现假阳性;需重新设计引物;靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性;这种假阳性可用以下方法解决:①操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外;②除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒;所用离心管及样进枪头等均应一次性使用;③必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸;二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性;可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR 方法来减轻或消除;出现非特异性扩增带PCR 扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带;非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体;二是Mg2+离子浓度过高、退火温度过低,及PCR 循环次数过多有关;其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增;其对策有:①必要时重新设计引物;②减低酶量或调换另一来源的酶;③降低引物量,适当增加模板量,减少循环次数;④适当提高退火温度或采用二温度点法93℃变性,65℃左右退火与延伸;出现片状拖带或涂抹带PCR 扩增有时出现涂抹带或片状带或地毯样带;其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起;其对策有:①减少酶量,或调换另一来源的酶;②减少dNTP的浓度;③适当降低Mg2+浓度;④增加模板量,减少循环次数;PCR 污染与对策PCR 反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生;污染原因一标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染;二PCR 试剂的污染:主要是由于在PCR 试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染.三PCR扩增产物污染:这是PCR反应中最主要最常见的污染问题, 因为PCR产物拷贝量大一般为1013拷贝/ml,远远高于PCR 检测数个拷贝的极限,所以极微量的PCR 产物污染,就可造成假阳就可形成假阳性;还有一种容易忽视,最可能造成PCR 产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染;据计算一个气溶胶颗粒可含48000 拷贝,因而由其造成的污染是一个值得特别重视的问题;四实验室中克隆质粒的污染:在分子生物学实验室及某些用克隆质粒做阳性对照的检验室,这个问题也比较常见;因为克隆质粒在单位容积内含量相当高,另外在纯化过程中需用较多的用具及试剂,而且在活细胞内的质粒,由于活细胞的生长繁殖的简便性及具有很强的生命力,其污染可能性也很大;污染的监测一个好的实验室,要时刻注意污染的监测,考虑有无污染是什么原因造成的污染,以便采取措施,防止和消除污染;对照试验1. 阳性对照:在建立PCR 反应实验室及一般的检验单位都应设有PCR 阳性对照,它是PCR 反应是否成功、产物条带位置及大小是否合乎理论要求的一个重要的参考标志;阳性对照要选择扩增度中等、重复性好,经各种鉴定是该产物的标本,如以重组质粒为阳性对照,其含量宜低不宜高100 个拷贝以下,但阳性对照尤其是重组质粒及高浓度阳性标本,其对检测或扩增样品污染的可能性很大;因而当某一PCR 试剂经自己使用稳定,检验人员心中有数时,在以后的实验中可免设阳性对照;2. 阴性对照:每次PCR 实验务必做阴性对照;它包括①标本对照:被检的标本是血清就用鉴定后的正常血清作对照;被检的标本是组织细胞就用相应的组织细胞作对照;②试剂对照:在PCR 试剂中不加模板DNA或RNA,进行PCR 扩增,以监测试剂是否污染;3. 重复性试验4. 选择不同区域的引物进行PCR 扩增防止污染的方法一合理分隔实验室:将样品的处理、配制PCR 反应液、PCR 循环扩增及PCR产物的鉴定等步骤分区或分室进行,特别注意样本处理及PCR产物的鉴定应与其它步骤严格分开;最好能划分①标本处理区;②PCR 反应液制备区;③PCR 循环扩增区;④PCR 产物鉴定区;其实验用品及吸样枪应专用,实验前应将实验室用紫外线消毒以破坏残留的DNA 或RNA;二吸样枪:吸样枪污染是一个值得注意的问题;由于操作时不慎将样品或模板核酸吸入枪内或粘上枪头是一个严重的污染源,因而加样或吸取模板核酸时要十分小心,吸样要慢,吸样时尽量一次性完成,忌多次抽吸,以免交叉污染或产生气溶胶污染;三预混和分装PCR试剂:所有的PCR 试剂都应小量分装,如有可能,PCR 反应液应预先配制好,然后小量分装,-20℃保存;以减少重复加样次数,避免污染机会;另外,PCR 试剂,PCR 反应液应与样品及PCR产物分开保存,不应放于同一冰盒或同一冰箱;四防止操作人员污染,使用一次性手套、吸头、小离心管应一次性使用;五设立适当的阳性对照和阴性对照,阳性对照以能出现扩增条带的最低量的标准病原体核酸为宜,并注意交叉污染的可能性,每次反应都应有一管不加模板的试剂对照及相应不含有被扩增核酸的样品作阴性对照;六减少PCR 循环次数,只要PCR 产物达到检测水平就适可而止;七选择质量好的Eppendorf管,以避免样本外溢及外来核酸的进入,打开离心管前应先离心,将管壁及管盖上的液体甩至管底部;开管动作要轻,以防管内液体溅出;参考文献一、主要教学参考书:1.基因工程原理第二版.吴乃虎编著,科学出版社2.分子克隆实验指南第三版.黄培堂等译,科学出版社3.基因克隆和DNA分析.魏群等译,高等教育出版社4.最新分子生物学实验技术梁国栋主编,科学出版5分子生物学实验指导主编:魏群高等教育出版社施普林格出版社二、主要参考文献:, SN, ACY Chang and L Hsu, 1972, Sci. 69:2110., HC and J Doly. 1979.,Nucleic Acids Res. 7:1513., C and P Borst, 1972.,Biochim. Biophys. Acta 269:192.F, RL Rodriguez, PJ Greene, MC Betlach, HL Heyneker, HW Boyer, JH Crosa, and S Falkow, 1977b,,Gene 2:95.K, F Faloona, S Scharf, R Saiki, G Horn and H Erlich, 1986.,Cold Spring Harbor Symp. Quant. Biol. 51:263.。
目的基因T载体克隆实验步骤pcr产物的t载体克隆一.重组质粒的构建:重组的dna分子就是在dna连接酶的促进作用下,存有mg切的载体分子与外源dna分子进行连接。
dna连接酶存有两种:t4噬菌体dna连接酶和大肠杆菌dna连接酶。
两种dna连接酶都存有将两个具有相同粘性末端的dna分子连在一起的功能,而且t4噬菌体dna连接酶除了一种大肠杆菌dna连接酶没的特性,即为能够并使两个平末端的双链dna分子连接起来。
但这种相连接的效率比粘性末端的相连接率为高,通常可以通过提升t4噬菌体dna 连接酶浓度或减少dna浓度去提升平末端的相连接效率。
t4噬菌体dna连接酶催化剂dna 连接反应分成3步:首先,t4dna连接酶与辅因子atp构成酶-atp复合物;然后,酶-atp 复合物再融合至具备5’磷酸基和3’羟基切口的dna上,并使dna腺苷化;最后产生一个代莱磷酸二酯键,把切口封出来。
连接反应通常将两个相同大小的片断相连。
很多dna聚合酶在进行pcr扩增时会在pcr产物双链dna每条链的3’端加上一个突出的碱基a。
pucm-t载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的t。
这样,pucm-t载体的两端就可以和pcr产物的两端进行正确的at配对,在连接酶的催化下,就可以把pcr产物连接到pucm-t载体中,形成含有目的片断的重组载体。
连接反应的温度在37℃时有助于连接酶的活性。
但是在这个温度下黏末端的氢键融合就是不稳定的。
因此实行折衷的温度,即12-16℃,相连接12-16h(过夜),这样既可以最大限度地充分发挥连接酶的活性,又兼具至较长时间接合结构的平衡。
2、atp存有的相连接缓冲器系统中,将分别经酶二.感受态制备原理细菌在0ccacl2低渗溶液中胀变成球形,遗失部分膜蛋白,沦为难稀释外源dna的状态。
三.β-半乳糖甘酶显色反应选择法(蓝白筛选)原理lacz基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。
分子克隆操作方法
分子克隆是一项常用的生物技术,用于将特定DNA 片段定向克隆到载体DNA 上,生成包含目的基因的重组DNA 分子。
以下是分子克隆的常用方法:
1. 限制酶切剪接:利用限制酶切剪配对的方式,将目的DNA 片段和载体DNA 上的相应区域进行切割,得到两个切口,然后将两个断裂的DNA 片段连接起来,形成含有目标DNA 片段的重组DNA 分子。
2. PCR 扩增:利用PCR 技术对目的DNA 片段进行扩增,并将其与载体DNA 进行连接,形成重组DNA 分子。
3. TA 克隆:TA 克隆是一种优化的克隆方法,使用缺十二碳酸二酯酶的Taq DNA 聚合酶进行PCR 扩增,将目的DNA 片段amplified 插入含有单一胞嘧啶(T)的TA 克隆载体上,然后将TA 克隆载体转化到大肠杆菌中进行筛选。
4. 原位杂交:将互补的DNA 探针标记并与目的细胞DNA 结合,发现目的DNA 片段的位置,然后将其在载体上克隆。
5. 基因文库筛选:将目的DNA 片段插入到原核或真核生物基因文库中,然后筛选出含有目的DNA 片段的重组DNA 分子。
6. 自主克隆:将目的DNA 片段插入到自主复制的质粒上,使其复制并表达出
目的蛋白质。
需要根据具体实验目的,选择适合的方法进行分子克隆,为后续的分子生物学研究提供可靠的材料基础。
目的基因的克隆方法
1. 直接克隆法呀,这就好比你直接去商店挑了一个你最喜欢的玩具,简单又直接!比如说,我们想克隆某个特定基因,就像你一眼看中那个可爱的小熊玩偶,直接把它拿过来就行啦。
2. 还有反转录克隆法哦,哎呀,就好像把一段声音录下来再倒放出来一样神奇!比如从细胞中的 mRNA 反转录得到 cDNA,不就是很有趣的过程嘛?
3. 载体介导克隆法呢,就好像给基因找了一辆专门的车来运输它!像把基因放到特定的载体里,让它顺利到达目的地。
4. 基因文库筛选法呀,哇,这就像是在一个超级大的宝库中找宝贝!比如说在庞大的基因文库中去努力找到我们想要的那个目的基因。
5. PCR 扩增克隆法哟,这就跟变魔术一样厉害呢!比如通过 PCR 技术把特定基因大量扩增出来,好神奇呀!
6. 杂交捕获克隆法,哈哈,就好像用一个小陷阱去抓住我们想要的基因!像是专门设计来抓住目标基因一样。
7. cDNA 末端快速扩增法,这不就像是跑步冲刺一样快速到达终点嘛!像快速扩增 cDNA 的末端,得到我们要的基因片段。
8. 人工合成克隆法,哇塞,这可真牛,就像自己动手做一个超级厉害的东西出来!比如人工合成一些小的基因片段呢。
9. 染色体步移克隆法,嘿嘿,就好像一步一步探索一个神秘的地方一样!像是沿着染色体逐步找到我们的目的基因。
我觉得这些目的基因的克隆方法都超级有趣,各有各的神奇之处呀!真的是让我们对基因世界的探索更加丰富多彩了呢!。
目的基因的4种获取方法目的基因的4种获取方法目的基因是指科学家们在研究某种生物学现象时,所需要的特定基因。
获取目的基因是进行分子生物学研究和基因工程实验的前提条件之一。
本文将介绍四种常见的获取目的基因的方法。
一、PCR扩增法PCR扩增法是一种常见且简便的获取目的基因方法。
其原理是利用DNA聚合酶在模板DNA上进行反复扩增,从而获得大量目标序列。
PCR扩增法适用于已知序列或有已知序列片段可供引物设计的情况下。
具体步骤如下:1. 设计引物:根据目标序列设计出适当长度、互补性良好、不含二级结构和非特异性引物。
2. 提取模板DNA:从样品中提取出含有目标序列DNA片段的模板。
3. PCR反应:将引物与模板DNA加入PCR反应体系,通过多轮温度循环反复扩增出目标序列。
4. 纯化PCR产物:通过凝胶电泳等手段纯化出PCR产物。
二、限制性内切酶消化法限制性内切酶消化法是一种利用限制性内切酶切割DNA,从而获得目标序列的方法。
其原理是在DNA双链中寻找特定的核苷酸序列,并将其切割成特定长度的DNA片段。
具体步骤如下:1. 设计引物:根据目标序列设计出适当长度、互补性良好、不含二级结构和非特异性引物。
2. 提取模板DNA:从样品中提取出含有目标序列DNA片段的模板。
3. 选择限制性内切酶:根据目标序列中存在的限制性内切酶位点,选择合适的限制性内切酶。
4. 消化反应:将模板DNA与选择好的限制性内切酶加入反应体系,进行消化反应。
5. 纯化产物:通过凝胶电泳等手段纯化出所需长度的DNA片段。
三、基因克隆法基因克隆法是一种将外源基因插入到载体中并进行繁殖复制的方法。
其原理是通过PCR扩增或限制性内切酶消化等手段获取目标基因,并将其插入到载体中,再通过细胞培养等手段进行繁殖复制。
具体步骤如下:1. 设计引物:根据目标序列设计出适当长度、互补性良好、不含二级结构和非特异性引物。
2. 提取模板DNA:从样品中提取出含有目标序列DNA片段的模板。
ta克隆方法(原创版3篇)目录(篇1)1.TA 克隆方法的概述2.TA 克隆方法的原理3.TA 克隆方法的步骤4.TA 克隆方法的应用5.TA 克隆方法的优缺点正文(篇1)一、TA 克隆方法的概述TA 克隆方法是一种分子生物学技术,主要用于获取目标 DNA 片段。
该方法操作简便,且具有较高的克隆效率,因此在基因工程、基因组学等领域得到了广泛应用。
二、TA 克隆方法的原理TA 克隆方法的原理是基于 PCR 技术的扩增与限制性内切酶的切割。
首先通过 PCR 技术扩增目标 DNA 片段,然后使用限制性内切酶对扩增产物进行切割,最后通过连接酶将目的基因与载体连接,形成重组子。
三、TA 克隆方法的步骤1.设计引物:根据目标 DNA 序列,设计一对特异性引物,用于 PCR 扩增。
2.PCR 扩增:利用设计的引物进行 PCR 扩增,得到目标 DNA 片段。
3.限制性内切酶切割:对 PCR 扩增产物进行限制性内切酶切割,暴露出黏性末端。
4.连接:利用连接酶将目的基因与载体连接,形成重组子。
5.转化:将重组子转化入受体细胞,进行表达或进一步研究。
四、TA 克隆方法的应用TA 克隆方法广泛应用于基因工程、基因组学、基因表达谱等领域。
例如,用于基因的克隆、突变体的筛选、基因表达水平的研究等。
五、TA 克隆方法的优缺点优点:操作简便,克隆效率较高,可获得较高的目标基因克隆数量。
目录(篇2)1.TA 克隆方法简介2.TA 克隆方法的步骤3.TA 克隆方法的应用4.TA 克隆方法的优势与局限性正文(篇2)一、TA 克隆方法简介TA 克隆(Targeted Amplification of Microsatellite DNA)方法,即微卫星 DNA 目标扩增方法,是一种基于 PCR 技术的分子生物学实验方法。
TA 克隆方法主要应用于扩增微卫星 DNA(Microsatellite DNA,简称 MS)区域,以研究遗传标记和基因定位。
基因克隆的方法基因克隆是指在体外将含有目的基因或其它有意义DNA段同能够自我复制的载DNA连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究的分子操作的过程,因此基因克隆又称分子克隆,基因操作或重组DNA 技术。
根据这个定义,于是选择和使用不同的方法,最后得到含有目的基因片段的菌株。
针对目的基因的来源不同,可以选择多种克隆方法,但并没有放之四海而皆准的方法,要针对自己的目的基因的特点采取相应的且合适准确的方法来获得目的基因的克隆。
1当目的基因的序列完全已知时。
则可以根据文献上所查到的基因的注册序列号到相应的网上数据库去查找该基因的全序列结构信息,例如最常用的美国NCBI网站上的Genbank数据库。
然后查找到相应的目的基因的核苷酸序列信息和其来源。
然后使用生物信息学软件对基因的序列进行分析,设计通过PCR反应来扩增目的基因的核苷酸引物,并将设计的引物序列发给生物技术公司合成,最后得到引物核苷酸并用纯水进行合理的稀释。
接下来将采集含有目的基因的生物标本材料,使用合理的方法提取生物标本的基因组并进核酸浓度与纯度的测定,由于生物体的核酸从化学性质上来讲主要分为DNA和RNA两种,所以提取基因组后针对基因组的选择要尽可能去除另一种核酸的干扰与污染。
然后根据基因组的质量,浓度,PCR扩增设计引物的结构,目的基因的长度等因素设计PCR反应的条件,反复试验以找到能够通过PCR方法来准确扩增目的基因的最佳反应条件。
在目前的PCR反应中所采用工具酶为Taq DNA聚合酶,通常所用的Taq DNA聚合酶具有一个生物反应特性,在其扩增的PCR产物上,其3’末端总是会带有一个非模板依赖性的突出碱基,而且这个碱基几乎总是A( dATP), 因为Taq DNA聚合酶对dATP具有优先聚合活性,故可以针对这一点采取两种克隆策略。
其一,可以采取TdT末端加同聚尾的方法与载体拼接;其二,可直接与一些T载体(切口处含有一个突出T碱基的克隆载体)连接并克隆。
ta克隆方法(最新版3篇)目录(篇1)1.引言:介绍 Ta 克隆方法的背景和重要性2.Ta 克隆方法的原理3.Ta 克隆方法的实验操作步骤4.Ta 克隆方法的应用领域5.结论:总结 Ta 克隆方法的优势和未来发展前景正文(篇1)Ta 克隆方法是一种分子生物学中常用的实验技术,主要用于获取目标 DNA 片段。
该方法以其高效、准确和便捷的特点,在基因工程、基因组学和生物医药研究等领域具有广泛的应用。
Ta 克隆方法的原理主要基于聚合酶链式反应(PCR)技术。
首先,通过设计特定的引物,使目标 DNA 片段的两侧分别扩增出可与 Ta 克隆载体连接的序列。
然后,将扩增后的目标 DNA 片段与 Ta 克隆载体连接,形成重组载体。
最后,通过转化宿主细胞,筛选出含有目标 DNA 片段的重组子,从而实现目标 DNA 片段的克隆。
Ta 克隆方法的实验操作步骤主要包括以下几个方面:1.设计引物:根据目标 DNA 片段的序列,设计互补的引物,以便进行 PCR 扩增。
2.PCR 扩增:利用 PCR 技术,分别扩增目标 DNA 片段的两侧,形成扩增产物。
3.载体连接:将扩增后的目标 DNA 片段与 Ta 克隆载体连接,形成重组载体。
4.转化宿主细胞:将重组载体转化到宿主细胞中,进行筛选。
5.筛选重组子:通过筛选含有目标 DNA 片段的重组子,获得成功克隆的目标 DNA 片段。
Ta 克隆方法的应用领域非常广泛,包括基因工程、基因组学、蛋白质组学、生物医药研究等。
该方法为研究者提供了一种有效的手段,以获取和研究感兴趣的基因或 DNA 片段。
总之,Ta 克隆方法作为一种高效、准确和便捷的 DNA 克隆技术,在生物科学研究领域具有重要的应用价值。
目录(篇2)1.概述 ta 克隆方法2.ta 克隆方法的步骤3.ta 克隆方法的应用4.ta 克隆方法的优点与局限性正文(篇2)一、概述 ta 克隆方法ta 克隆方法是分子生物学领域中常用的一种实验技术,主要用于获取目标 DNA 片段。
克隆基因的步骤姓名:王静马红梅施翔骞武洋梁丹罗星(指导老师)克隆基因的步骤摘要:基因是遗传物质的最基本单位,也是所有生命活动的基础,不论是揭示某个基因的功能还是要改变某个基因的功能,都必须将所要研究的基因克隆出来。
本文将试验中的体会以及查阅文献后获得的知识做一汇总,简述克隆基因中的步骤以及在操作中应该注意到的一些问题。
关键词:基因克隆;质粒;重组基因克隆可概括为∶分、切、连、转、选。
"分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。
DNA克隆的第一步是获得包含目的基因在内的一群DNA分子,常用的方法有机械切割和核酸限制性内切酶消化。
如果基因的两端部分序列已知,根据已知序列设计引物,从基因组DNA 或cDNA 中通过PCR技术可以获得目的基因。
该试验为设计引物来获得目的基因。
接下来选择载体,本次试验采用的是质粒载体,利用质粒进行载体构建。
载体构建的原理为:依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
体外重组则可完成上述过程。
体外重组即体外将目的片断和载体分子连接的过程。
大多数核酸限制性内切酶能够切割DNA分子形成有粘性末端,用同一种酶或同尾酶切割适当载体的多克隆位点便可获得相同的粘性末端,粘性末端彼此退火,通过T4 DNA连接酶的作用便可形成重组体,此为粘末端连接。
基因克隆实验流程基因克隆技术,又称重组 DNA 技术,是将目的基因与具有自主复制能力的载体DNA 进行体外重组,获得新的重组DNA后导入受体细胞中表达相应蛋白,以研究蛋白结构与功能及其与其他分子的相互作用。
一、获取目的基因目的基因就是需要研究的特定基因或DNA片段。
获取目的基因的主要方法: 1、用限制性内切酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。
该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。
原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。
2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。
此法仅用于筛选为蛋白质编码的结构基因。
因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。
3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。
在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。
4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。
用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。
用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。
二、选择适当的载体按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。
为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。
克隆步骤一、目的片段的回收纯化1.柱平衡步骤:向吸附柱CB2中(吸附柱放入收集管中)加入500ul 平衡液BL,12000rpm离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。
(请使用当天处理过的柱子)。
2.将单一的目的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中,称取重量。
3.向胶块中加入加入溶液PC(0.1g加入100ul,注意没过胶块),50℃水浴放置10min左右,期间不断温和地上下翻转离心管,已确保胶块充分溶解。
4.将上一步所得溶液加入一个吸附柱(吸附柱放入收集管中),12000rpm离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。
5.向吸附柱CB2中加入600ul漂洗液(使用前请先检查是否已加入无水乙醇),12000rpm离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。
6.重复步骤5.7.将吸附柱CB2放入收集管中,12000rpm离心2min,尽量除去漂洗液,将吸附柱置于室温放置数分钟,彻底晾干。
8.将吸附柱CB2放入一个干净的1.5ml离心管中,向吸附膜中间位置悬空滴加40ul的无菌水。
室温放置2min,12000rpm离心2min,收集DNA溶液。
(可以将离心后的溶液重新加到柱子中再回收一次) 9.取2ulDNA加入loading buffer点样,电泳检测是否回收出来样品。
二、目的片段与载体的连接1. 将回收的目的片段与T 载体连接,反应体系如下:目的片段 4 .5µLpMD19-T simple Vector 0.5µLSolutionⅠ 5 µLTotal 10 µL按上述体系依次加入各组分后,旋涡混匀,稍加离心后置于16℃连接过夜。
2.转化1)从-80 ℃冰箱中取50 µL 感受态细胞在冰上解冻。
2)在超净工作台上,加入10 µL 连接产物,轻轻混匀,冰上放置30 min 。
基因工程目的基因获得的方法1. 引言基因工程是一种通过改变生物体的基因组来实现特定目的的科学技术。
基因工程的目的包括但不限于改善农作物品质、开发新药物、治疗遗传性疾病等。
在基因工程中,获得目的基因是关键步骤之一,本文将介绍几种常用的方法来获取目的基因。
2. 目的基因获得方法2.1 基因克隆基因克隆是最常用且经典的获得目的基因的方法之一。
该方法利用DNA重组技术,将感兴趣的DNA片段插入到载体DNA上,形成重组DNA。
通过转化等手段将重组DNA导入宿主细胞中,使其复制和表达。
具体步骤如下:2.1.1 DNA片段获取首先需要从源生物体中获取所需DNA片段。
可以通过PCR扩增、限制性内切酶切割、合成等方式获得。
2.1.2 载体构建选择适当的载体,如质粒或噬菌体,并进行线性化处理。
然后将待克隆的DNA片段与载体进行连接,形成重组DNA。
2.1.3 转化将重组DNA导入宿主细胞中。
常用的转化方法包括热激转化、电穿孔法、化学法等。
转化后,通过筛选和鉴定,获得含有目的基因的克隆。
2.2 基因合成基因合成是一种直接合成目的基因序列的方法。
该方法适用于无法通过其他方式获取目的基因序列的情况,或者需要对基因序列进行修改和优化时使用。
具体步骤如下:2.2.1 设计和优化根据所需功能和特定要求,设计目标基因序列。
可以根据已有序列进行修改和优化,如引入特定限制性内切酶切位点、调整密码子使用频率等。
2.2.2 合成将设计好的目标基因序列提交给合成公司进行合成。
合成公司通常采用化学方法或PCR扩增方法来合成目标基因。
2.2.3 克隆将合成好的目标基因插入到载体中,并进行转化过程,获得含有目的基因的克隆。
2.3 基因编辑基因编辑是一种通过直接修改生物体基因组来实现目的基因获取的方法。
常用的基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFN等。
具体步骤如下:2.3.1 设计和构建编辑工具根据目的基因序列,设计适当的编辑工具。
目的基因的制备方法1. 目的基因合成法:目的基因合成法是一种通过化学合成的方式来制备目的基因的方法。
该方法通常用于制备较短的目的基因(小于1000bp),优点是速度快,产量高,并且可以轻松地对目的基因进行修改。
在该方法中,目的基因的序列首先被设计并确定,然后通过化学合成的方式进行合成。
通常将该序列分成几个较短的片段,并逐一地进行合成和连接,直到完整的目的基因被制备出来。
2. PCR扩增法:PCR扩增法是一种广泛应用于制备目的基因的方法。
该方法利用特定引物的作用下,在体外反应体系中将目的基因的DNA序列扩增至所需的数量。
优点是产量高,适用于中等长度的目的基因,且可以进行定向的修饰。
在该方法中,首先设计引物,确定PCR反应体系中目的基因的起始和终止位置。
然后,通过PCR扩增反应,将模板DNA中的目的基因序列扩增至所需数量。
通过纯化和测序等处理,制备出干净的目的基因。
3. 基因克隆法:基因克隆法是将目的基因分子克隆至载体DNA上的一种方法。
该方法通常适用于较长的目的基因(大于1000bp),优点是产量高,重复性好,并且可以进行定向的修饰。
在该方法中,需准备一种能够接受目的基因的载体DNA,并将其线性化。
然后,在体外反应体系中,将目的基因的DNA序列与线性化载体DNA连接,形成重组DNA。
通过将重组DNA转化至感受态细胞中并筛选,制备出所需的目的基因。
4. 基于CRISPR技术的编辑法:基于CRISPR技术的编辑法是在生物体内或外对目的基因进行编辑的方法。
该方法利用CRISPR-Cas9等系统以及其引导RNA的作用,直接在目的基因序列中进行特定断裂和编辑。
优点是精度高,易于实现定向编辑。
在该方法中,首先需要设计合适的引导RNA序列,并在细胞内或外表达Cas9蛋白,以引导Cas9与引导RNA结合并特异性切割目的基因的DNA序列。
然后,在切割的断口处,可将外源DNA序列转化进去,实现目的基因的定向编辑。
5. 手工组装法:手工组装法是一种将片段PCR产物或化学合成的短片段组装成完整目的基因的方法。
克隆构建
一、 PCR
1、PCR
20ul体系,4个Mix,3个回收,1个对照
H2O 10.8ul 94℃3min
KOD Buffer 2ul 94℃30s
DNTPs 2ul 5X℃30s
MgSO4 2ul 68℃Xs
Primer F 2ul 68℃10min
Primer R 2ul cycle 34
KOD 0.2ul
Plasmid 1ul
试剂确保融化完全,枪头触到表面打净,最后用白枪头反复打几次混合溶液,离心3-4s,分装20ul至PCR管。
2、加尾
0.1ul Taq 酶,加入到20ul,微弹,离心,PCR仪上放置15min。
3、回收
配中孔胶,电泳并回收试剂盒回收:熔胶后室温冷却再上柱,PW缓冲液离心过后于超净台上吹干7-9min,电泳检测回收产物。
二、连接
Solution 1 5ul
目的片段 4.5ul 16℃过夜
T-vector 0.5ul
三、转化
1、感受态细胞制备
取5ml无抗LB培养液,加入到灭菌试管中,取60-80ul新鲜菌液,37℃恒温摇床2h;取其中2.4ml倒入2.5ml EP管中,尽量保持4℃低温下12000g离心30s,
沿壁缓缓加入CaCl2溶液,冰上滑动EP管管底使菌体悬浮;
2、转化涂板
加入连接产物时边加边搅,热激时温度略微低于42℃,时间严格控制1min30s 之后冰上静置3min左右,加入300ul LB 无抗培养基,于37℃恒温箱复苏50min,涂板并37℃恒温箱过夜培养。
四、鉴定
1、质粒提取
挑去单克隆菌落,37℃过夜培养,次日提取质粒。
2、酶切鉴定
根据设计引物选择双切酶,20ul体系37℃酶切2h,电泳检测并送去测序。
3、PCR鉴定
将切出片段所属的菌液进行菌液PCR鉴定。
五、连接
1、酶切回收
将测序正确的连有中间载体的质粒进行过夜酶切,次日电泳检测并割胶回收。
2、沉淀回收
选择合适的终载体50ul体系过夜双酶切,次日进行沉淀回收并电泳检测。
3、连接终载
调节insert和vector浓度比例,进行16℃过夜连接,分为2:1和4:1 :
insert 8ul 8ul
vector 4ul 2ul
T4 Buffer 2ul 2ul
T4 Ligase 1ul 1ul
H2O 5ul 7ul
六、转化
1、感受态细胞制备
同“三”之“1”。
2、转化涂板
同“三”之“1”。
七、鉴定
1、质粒提取
挑去单克隆菌落,37℃过夜培养,次日提取质粒。
2、酶切鉴定
根据设计引物选择双切酶,20ul体系37℃酶切2h,并电泳检测。
3、PCR鉴定
将切出片段所属的质粒作为模版进行PCR鉴定。
八、转化
1、感受态细胞制备
感受态细胞为农杆菌。
2、转化涂板
电击法将切出片段的连有终载的质粒转化农杆菌感受态细胞,并涂板于28℃恒温过夜培养。
九、鉴定
1、质粒提取
挑去单克隆菌落,37℃过夜培养,次日提取质粒。
2、转化涂板
将所提质粒转化大肠杆菌感受态细胞,并涂板过夜恒温培养。
3、质粒提取
挑去单克隆菌落,37℃过夜培养,次日提取质粒。
4、酶切鉴定
根据设计引物选择双切酶,20ul体系37℃酶切2h,并电泳检测。
5、PCR鉴定
将切出片段所属的质粒作为模版进行PCR鉴定。