SNP基因多态性检测实验服务
- 格式:docx
- 大小:51.37 KB
- 文档页数:2
疾病相关基因SNP的分析与验证随着技术的不断发展,生物信息学研究也日渐深入。
其中,SNP(单核苷酸多态性)成为研究生物学、药理学和医学中最重要的基因变异类型之一。
SNP分析已经成为了检测疾病和药物代谢的重要方法,而在研究人类遗传学和疾病相关基因中,SNP的应用更是不可或缺。
1. SNP的概念和分类SNP,即单个核苷酸的变异,也被称为基因突变或是基因多态性。
SNP是由单个碱基的变异所引起,通常在全基因组中有约1%的概率。
SNP被广泛应用于评估个体对疾病的易感性、药物代谢和肿瘤发生等领域。
SNP按照其在基因组中的位置分类,可分为外显子SNP、内含子SNP和调控SNP。
外显子SNP指的是存在于基因的外显子区域,可以直接影响蛋白质序列的结构和功能;内含子SNP存在于外显子和调节区域之间,通常对基因功能的影响较小;调控SNP存在于基因调节区域,可以影响基因的转录和表达,进而影响基因的功能。
2. SNP的分析SNP的分析通常包括三个步骤:SNP检测、基因型鉴定和统计分析。
其中SNP 检测是最为关键的一步,目前主要的检测技术有PCR-RFLP法、MassARRAY、SNP-PCR等。
在SNP检测的基础上,需要对检测结果进行基因型鉴定。
常见的基因型鉴定方法有PCR引物延伸分析、限制性片段长度多态性分析、基因芯片以及测序等。
最后,需要进行统计分析。
在统计分析中,最常用的是卡方检验和连锁不平衡分析。
卡方检验被广泛应用于检测基因型频率和疾病之间的关联性,而连锁不平衡分析则可以确定SNP之间的互连性。
3. SNP的验证SNP验证是保证SNP检测结果准确可靠的重要步骤。
SNP验证通常包括三个方面:测序验证、多样性验证和遗传流行病学验证。
测序验证是指通过测序对SNP检测结果进行验证。
这种验证方式直接检测SNP并确定其具体的位置和变异。
然而,测序验证的成本较高,时间较长,因此不适合高通量的SNP检测。
多样性验证是指将SNP检测结果与其他不同个体的SNP检测结果进行比较,以此确认SNP检测结果的可靠性。
长牡蛎SNP标记的开发及多态性检测的开题报告一、研究背景长牡蛎(Crassostrea plicatula)是一种重要的经济贝类动物,广泛分布于我国南海、东海和黄海等沿海水域。
近年来,随着养殖业的发展,长牡蛎的养殖规模逐渐扩大,但因其容易受到疾病和环境等因素的影响,导致生产效益低下。
因此,对长牡蛎进行分子水平的研究,有助于提高其疾病抵抗力和生产性能,进而推动养殖业的发展。
单核苷酸多态性(Single nucleotide polymorphisms,SNPs)是一种广泛存在于基因组中的遗传变异,其基本形式是在同一位置上出现两种或更多等位基因。
近年来,随着高通量测序技术的不断发展,SNP已成为最常用的分子标记。
SNP标记可广泛应用于基因组维度的分析,包括物种鉴定、遗传变异分析、亲缘关系推断、群体结构分析和基因定位等研究领域。
因此,本研究拟利用RAD-seq技术,对长牡蛎进行SNP标记的开发及多态性检测,为长牡蛎遗传多样性和生产性能研究提供基础数据。
二、研究内容1. 样品收集及DNA提取本研究选取长牡蛎为研究对象,从南海、东海和黄海等沿海水域采集长牡蛎样品,利用基因组提取试剂盒对其进行DNA提取,获取高质量的基因组DNA。
2. RAD-seq测序及SNP标记开发通过RAD-seq技术对长牡蛎样品进行高通量测序,利用双端读取的方式获取大量有效数据。
随后,通过应用一系列的生物信息学分析方法,对数据进行处理和过滤,提取出具有高质量的SNP标记。
3. SNP标记的多态性检测利用群体遗传学分析软件,对获得的SNP标记进行多态性检测,包括遗传多样性、基因型频率、杂合度和遗传连锁不平衡等指标的测定。
三、研究意义随着现代化养殖业的发展,对基因组水平的研究越来越受到关注。
本研究将利用RAD-seq技术,对长牡蛎进行SNP标记的开发及多态性检测,为长牡蛎遗传多样性和生产性能研究提供基础数据,进一步推动长牡蛎产业的发展。
基因多态性的检测方法一、直接方法1.目标基因测序:通过对目标基因进行测序,可以直接得到其等位基因的序列信息。
目前,高通量测序技术的发展使得测序成为一种常用的基因多态性检测方法。
2.杂交技术:杂交技术可以用于检测单核苷酸多态性(SNP)和小片段插入/缺失等变异。
常用的方法包括限制性片段长度多态性(RFLP)和串联重复片段多态性(VNTR)等。
3.聚合酶链反应(PCR):PCR可以通过扩增目标片段的方法,检测基因多态性。
例如,引物在目标序列上的配对使得PCR扩增产物的长度与目标基因的等位基因有关。
通过测定扩增产物的长度变化,可以确定基因多态性。
4.克隆测序:克隆测序是一种将目标基因克隆到载体中,并对克隆的DNA进行测序的方法。
这种技术可以用于检测较大的插入/缺失变异以及基因拷贝数变异等。
二、间接方法1.单核苷酸多态性(SNP)芯片:SNP芯片是一种高通量并行检测SNP 的技术。
它通过固定在芯片上的特异性探针与待测样品中的SNP位点进行杂交,然后使用荧光信号检测方法来确定不同等位基因的存在情况。
2.DNA芯片:DNA芯片可以广泛用于基因多态性的检测。
它可以同时测定数百甚至数千个基因,快速、准确地检测多个等位基因的存在情况。
3.高分辨率融解曲线分析:高分辨率融解曲线分析可以用来区分等位基因之间的序列差异。
该方法通过双链DNA在升温过程中解旋变性的温度差异,来分析目标序列中的等位基因。
4. 二代测序技术:二代测序技术(如Illumina和Ion Torrent)基于多组重叠的小片段测序,可以用于高通量的基因多态性检测。
它可以同时测定数百万个SNP位点,识别多个等位基因的存在情况。
综上所述,基因多态性的检测方法涵盖了直接方法和间接方法。
这些方法可以用于检测单核苷酸多态性、插入/缺失变异、基因拷贝数变异等不同类型的基因多态性。
随着技术的不断发展,基因多态性的检测方法将变得更加高效、准确和经济。
TaqMan SNP基因分型技术方法:此技术是由美国Life technologies公司研发的SNP分型技术,其技术原理如下简介。
PCR 反应时,加入一对两端有不同荧光标记的特异探针来识别不同的等位基因(allele1和allele2),5’端为报告荧光基团(reporter),3’端为淬灭荧光基团(quencher)。
PCR过程中,两个探针能与正向引物和反向引物之间的互补序列特异退火结合。
当探针以完整形式存在时,由于能量共振转移,荧光基团只发出微弱荧光。
特异的探针与相应的等位基因杂合后,DNA聚合酶发挥5’到3’外切酶活性,把报告荧光基团切割下来,脱离了3’端淬灭荧光基团的淬灭作用(quench),从而发出荧光。
两个探针的5’端标有不同的荧光(FAM或VIC),3’端标有MGB 淬灭基团结合体。
根据检测到的不同荧光,可以判断相应的样本的SNP 等位基因型。
整个技术的示意图如下:应用领域:本方法适用于多个涉及到SNP分型的遗传研究领域。
尤其适合针对全基因组SNP 关联研究获得的初步阳性位点,以及全基因组测序得到的大量初筛突变位点进行进一步的大样品验证研究。
RFLP (多重荧光)SNP分型技术已知的很多SNP位点正好位于限制性内切酶的识别区域,针对这些SNP位点我们就可以使用此方法进行SNP分型。
尤其是对于大样品量的多个SNP分型来说,此方法的优势较为明显。
技术方法:RFLP技术于1980年由人类遗传学家Bostein提出。
它是第一代DNA分子标记技术。
Donis—Keller利用此技术于1987年构建成第一张人的遗传图谱。
DNA分子水平上的多态性检测技术是进行基因组研究的基础。
已被广泛用于基因组遗传图谱构建、基因定位以及生物进化和分类的研究。
RFLP是根据不同品种(个体)基因组的限制性内切酶的酶切位点碱基发生突变,或酶切位点之间发生了碱基的插入、缺失,导致酶切片段大小发生了变化,通过电泳将其区分。
SNP检测方法汇总SNP(Single Nucleotide Polymorphism)是存在于基因组中的最小的遗传变异单位,是指基因组中单个核苷酸发生变化的现象。
SNP检测方法是针对这些变异进行分析和检测的工具或技术。
本文将对目前常用的SNP检测方法进行汇总和介绍。
1.基于PCR的SNP检测方法PCR是一种常用的DNA复制技术,在SNP检测中有多种变体,包括追踪标记PCR(TaqMan PCR)、Allele-Specific PCR(AS-PCR)、限制性片段长度多态性(RFLP)PCR等。
这些方法都利用PCR扩增目标DNA片段,并通过引入特定的引物或酶切位点来区分不同等位基因的差异。
2.基于测序的SNP检测方法测序是一种直接测定DNA序列的方法,可以通过测序检测SNP。
在基于测序的SNP检测中,有两种主要的方法:Sanger测序和大规模并行测序(Next-Generation Sequencing,NGS)。
Sanger测序是一种经典的测序方法,能够准确地确定单个核苷酸的序列,但是对于大规模SNP检测来说成本较高。
而NGS技术则可以同时测定多个样本的DNA序列,且速度和成本都更高效。
3.基于芯片的SNP检测方法芯片技术是通过固相法在芯片上固定已知的DNA片段,再与样本中的DNA进行杂交来实现SNP检测。
常用的芯片技术包括基于碱基延伸法(Primer Extension Assay)的Oligonucleotide Ligation Assay (OLA)、基于碱基延伸法的SNPstream和基于液相杂交法的GeneChip等。
这些方法在检测过程中通常采用荧光探针标记样本的SNP位点,通过荧光检测的方式进行分析和鉴定。
4.基于质谱的SNP检测方法质谱技术是通过检测质量-电荷比(m/z)来对样本中的DNA片段进行分析和检测的方法。
基于质谱的SNP检测主要采用基因分型质谱法(genotyping mass spectrometry),其中常用的方法有MALDI-TOF质谱(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry)和Sequenom质谱。
检测单核苷酸多态性(SNP)的新方法------Invader assay 一、什么是单核苷酸多态性及其研究意义:✧SNP (single nucleotide polymorphism):染色体DNA上某一给定位置的碱基多态性。
✧SNP是直接导致遗传病的原因之一。
镰刀型贫血症(sickle-cell anemia):血红蛋白的β珠蛋白基因17位的A突变为T,导致Val变Glu,血红蛋白构型改变,其携氧能力大大降低,引发严重贫血。
静脉血栓(venous thrombosis):凝血因子5(factor V)基因1691位的G突变为A,导致Arg变为Glu,封闭了抗凝血因子APC(activated Protein C)对factor V的切割位点而促使血栓形成。
✧SNP的研究意义:二、Invader assay的原理:✧Invasive complexGTTGGATCAGTTGGA CGGCATG~~~TCAGTCAACCTGCCGTACGCT~~~~✧Flap endonucleases (FENs)特点:1.特异性识别invasive complex结构,包括模板、信号探针(signal probes)和侵入探针(invader probes)。
2.切掉信号探针游离部分,且切割位点固定(N1位点)。
3.两探针必须有至少一个碱基的重叠时才会发生切割,没有重叠则不发生切割。
所以信号探针N1位置的碱基是否与模板配对决定了是否发生切割作用。
(有趣的是,侵入探针3’末端的碱基与酶的切割作用毫无关系。
)NNNNNGTCAGTTGGA CGGCATG~~~TCAGTCAACCTGCCGTACGCT~~~~✧Invader assay的基本原理1999年由Third Wave Technologies 公司研究人员发明。
A.Mut probes Mut target:B.WT probes Mut target:✧Invader assay的具体过程:三、Invader assay技术的优点:✧只有两个探针与模板完全配对后才可形成invasive complex的结构,因此其检测结果比简单杂交的准确性好。
SNPSNP,念法为〔snIp〕,全称Single Nucleotide Polymorphisms,是指在基因组上单个核苷酸的变异,包括转换、颠换、缺失和插入,形成的遗传标记,其数量很多,多态性丰富。
从理论上来看每一个SNP 位点都可以有4 种不同的变异形式,但实际上发生的只有两种,即转换和颠换,二者之比为2:1[1] 。
SNP 在CG 序列上出现最为频繁,而且多是C转换为T ,原因是CG中的C 常为甲基化的,自发地脱氨后即成为胸腺嘧啶。
一般而言,SNP 是指变异频率大于 1 %的单核苷酸变异。
在人类基因组中大概每1000 个碱基就有一个SNP ,人类基因组上的SNP 总量大概是3 ×10E6 个。
因此,SNP成为第三代遗传标志,人体许多表型差异、对药物或疾病的易感性等等都可能与SNP有关。
单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。
它是人类可遗传的变异中最常见的一种。
占所有已知多态性的90%以上。
理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多态性,但实际上,后两者非常少见,几乎可以忽略。
因此,通常所说的SNP都是二等位多态性的。
这种变异可能是转换(C T,在其互补链上则为G A),也可能是颠换(C A,G T,C G,A T)。
转换的发生率总是明显高于其它几种变异,具有转换型变异的SNP约占2/3,其它几种变异的发生几率相似。
Wang等的研究也证明了这一点。
转换的几率之所以高,可能是因为CpG二核苷酸上的胞嘧啶残基是人类基因组中最易发生突变的位点,其中大多数是甲基化的,可自发地脱去氨基而形成胸腺嘧啶。
在基因组DNA中,任何碱基均有可能发生变异,因此SNP既有可能在基因序列内,也有可能在基因以外的非编码序列上。
总的来说,位于编码区内的SNP(coding SNP,cSNP)比较少,因为在外显子内,其变异率仅及周围序列的1/5。
SNP检测方法—SNapShot SNP(Single Nucleotide Polymorphisms),即单核苷酸多态性,是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,它是人类中可遗传的变异最常见的一种,并作为第三代遗传标志。
人体许多表型差异、对药物或疾病的易感性等等都可能与SNP有关,因此被广泛用于群体遗传学研究和疾病相关基因研究。
目前,SNP检测技术已经很成熟,主要有以下几种检测方法:TaqMan 探针法、HRM法、SNapShot法、dHPLC、illumina BeadXpress法等,本文主要针对SNapShot法进行阐述。
SNapShot法是一种新兴的SNP检测技术,该技术有美国应用生物公司(ABI)开发的,是基于荧光标记单碱基延伸原理的分型技术,也称小测序,其原理是先根据基因序列,设计特异性的扩增引物及延伸引物,在一个含有测序酶、四种荧光标记ddNTP、紧邻多态位点5’端的不同长度的延伸引物和PCR产物模板的反应体系中,引物延伸一个碱基即终止,经过测序仪检测后,根据峰的移动位置确定该延伸产物对应的SNP位点,根据峰的颜色可得知渗入的碱基种类,从而确定该样本的基因型。
SNapShot法操作简单、经济,可以在多种遗传分析仪上进行快速、准确地基因分型,实现了SNP分析的自动化,可以方便高效地用于高通量的SNP 验证及中通量的SNP筛选。
目前SNapShot技术广受科研人员的认可,国内耳聋基因SNP筛查、结合易感基因SNP位点筛查等用到的检测技术均为SNapShot技术,此外在nature、SCI等多个顶级杂志中也发表了多篇SNapShot技术相关的文献。
由此说明SNapShot技术在SNP研究领域中的地位在不断的提升,已成为SNP 研究中不可或缺的一部分。
北京阅微基因技术有限公司现拥有成熟的SNapShot技术平台,配备ABI3730xl测序仪及国内的杰出人才,实验结果准确、质量高,实验数据符合发表顶级杂志的要求,并提供相应的技术指导及疑难问题解答。
检测基因多态性的方法基因多态性是指一个基因在个体或种群中存在两个或更多的等位基因,并且这些等位基因的频率大于1%。
基因多态性在人类的特征和疾病的研究中具有重要意义,因为它可以帮助我们了解基因对特定特征和疾病的贡献程度以及个体对药物治疗的反应程度。
下面将介绍几种常见的基因多态性检测方法。
1.PCR-RFLP(聚合酶链反应限制性片段长度多态性)PCR-RFLP是一种基于聚合酶链反应(PCR)和限制性酶切的技术。
首先,通过PCR扩增目标DNA区域,然后使用限制性内切酶切割PCR产物。
由于不同的等位基因可能在限制性酶切位点处有不同的序列,因此切割后的片段长度也会不同。
通过电泳分离不同长度的片段后,可以通过比较不同样本的片段模式来确定等位基因型。
2.SNP(单核苷酸多态性)芯片3.测序技术传统的测序技术,如Sanger测序,已被广泛用于检测基因多态性。
通过PCR扩增目标基因区域并分离纯化PCR产物后,使用测序方法确定其序列。
通过与已知参考序列比较,可以确定等位基因的存在和基因型。
近年来,高通量测序技术的快速发展,如Illumina测序和Ion Torrent测序等,使得更大规模的基因多态性检测成为可能。
4.扩增片段长度多态性(AFLP)AFLP是一种通过PCR扩增特定DNA片段来检测多态性的方法。
它结合了限制性酶切和PCR扩增的原理。
首先,使用特定的限制性酶切割DNA样本,然后使用一对特定的引物进行PCR扩增。
由于每个DNA片段在PCR 扩增时会加上特定的引物顺带序列,因此PCR产物的长度会有差异。
通过电泳分离PCR产物后,可以通过比较不同样本的PCR产物长度模式来确定等位基因型。
5.基因芯片基因芯片是基因多态性检测的一种常用方法,特别适用于密集编码的基因区域。
基因芯片使用固定的DNA探针,通过和样品DNA杂交检测目标基因区域的多态性。
探针可以是PCR产物、cDNA或合成的oligonucleotide。
SNP检测方法(百度知道)现在SNP的常用检测方法主要有:Taqman法、质谱法、芯片法、测序法。
Taqman法:准确性高,适合于大样本、少位点,价格比较贵;质谱法:准确性高,适合于大样本、多位点(能检测25个位点);芯片法:准确性较低,适合于超多位点分析;测序法:非常准备,但是价格也非常的高,但是对于少样本、超多位点还是非常好的选择。
人们对SNP 的研究方法进行了许多探索和改进。
SNP 分析技术按其研究对象主要分为两大类,即:①对未知SNP 进行分析,即找寻未知的SNP 或确定某一未知SNP 与某遗传病的关系。
检测未知SNP 有许多种方法可以使用,如温度梯度凝胶电泳( TGGE) 、变性梯度凝胶电泳(DGGE) 、单链构象多态性(SSCP) 、变性的高效液相色谱检测(DHPLC) 、限制性片段长度多态性(RFL P) 、随机扩增多态性DNA(RAPD) 等,但这些方法只能发现含有SNP 的DNA 链,不能确知突变的位置和碱基类别,要想做到这一点,必须对那些含有SNP 的DNA 链进行测序。
②对已知SNP 进行分析,即对不同群体SNP遗传多样性检测或在临床上对已知致病基因的遗传病进行基因诊断。
筛查已知SNP 的方法有等位基因特异寡核苷酸片段分析(ASO) 、突变错配扩增检验(MAMA) 、基因芯片技术(gene chips) 等。
由于人类基因工程的带动,许多物种都已开始了基因组的项目,并建立了大量数据库,比较这些来自不同实验室不同个体的序列, 就可以检测到SNP。
目前,可供利用的公开SNP 网上资源主要包括: ①由美国国立卫生研究院( National Institutes of Health ,NIH) 提供的主要是与癌症和肿瘤相关的候选SNP 数据库: http :/ / cgap. nci. nih. gov/ GAI ;②由NIH 开辟的适于生物医学研究的dbSNP 多态性数据库: http :/ / www. ncbi. nlm. nih. gov/ SNP ; ③德国的HGBAS 网站提供的人类SNP 数据库:http :/ / hgbas. Cgr. ki. sei 等。
SNP基因多态性检测实验服务
一、服务介绍
单核苷酸多态性(Single Nucleotide Polymorphism,SNP),指由于单个核苷酸碱基的改变而导致的核酸序列的多态性。
在不同个体的同一条染色体或同一位点的核苷酸序列中,绝大多数核苷酸序列一致而只有一个碱基不同的现象,即SNP,它包括单碱基的转换,颠换、插入及缺失等形式。
SNP 技术服务平台包括:测序分型、飞行时间质谱(MALDI-TOF MS)分型、Taqman 探针分型、Multiplex SNaPshot 分型等技术平台。
【晶莱生物】
二、客户提供
1 组织、细胞、血液等
2 rs号或NCBI基因登录号(详细的SNP检测位点)
三、交付内容
实验报告:详细步骤、测序结果、基因分型结果统计等
项目说明周期
测序法SNP分型设计引物、PCR扩增、SNP
位点测序
30个工作日
飞行时间质谱设计引物、PCR扩增、上
机检测、基因型统计
30个工作日
Taqman探针SNP分型荧光定量PCR仪检测、
数据处理、基因型统计
30个工作日
Multiplex SNaPshot SNP分型设计引物、多重PCR、毛
细管电泳、数据处理、
基因型统计
30个工作日
做实验,找晶莱!您的科研生涯,我们一路相伴!
【平台项目开展范围】慢病毒,腺病毒,RNAi类,分子生物实验,病理实验,免疫学实验,细胞实验,动物实验,蛋白组学实验,芯片类实验,并为广大客户朋友们提供课题设计指导、基金申请指导、SCI、核心期刊等服务。