Delaunay三角剖分算法
- 格式:pdf
- 大小:237.99 KB
- 文档页数:22
上下扫描线的delaunay三角剖分算法Delaunay三角剖分是一种广泛应用于计算几何和数值分析的算法,它主要用于生成二维平面上的三角形网格。
Delaunay三角剖分具有很多优良的性质,例如空外接圆性质和最小角最大性质等。
上下扫描线的Delaunay三角剖分算法是一种高效的Delaunay三角剖分算法,其基本思想是利用扫描线从上到下或从下到上扫描整个区域,并在扫描过程中对点进行插入和删除操作,从而生成Delaunay三角剖分。
具体步骤如下:
1. 将所有点按照y坐标从大到小排序。
2. 从上到下扫描整个区域,对于每个扫描到的点,将其插入到Delaunay三角剖分中。
具体做法是:找到该点的最近点,然后删除该点,并将该点和最近点之间的线段加入到Delaunay三角剖分中。
3. 重复步骤2,直到扫描完所有点。
该算法的时间复杂度为O(nlogn),其中n为点的数量。
这是因为需要将所有点排序,并且每次插入一个点都需要在已排序的点中进行二分查找。
需要注意的是,该算法只能处理凸多边形的边界,如果存在凹多边形或自相交的情况,需要使用其他算法进行处理。
三维空间 delaunay三角剖分的分治算法
三维空间的Delaunay三角剖分可以使用分治算法来实现。
分
治算法是一种将问题分解成更小的子问题来解决的算法思想。
以下是三维空间Delaunay三角剖分的分治算法的基本步骤:
1. 将输入的点集P按照x坐标进行排序,得到有序点集P_x。
2. 对P_x进行分割,将点集分成两部分,左边部分为P_l,右
边部分为P_r。
3. 递归调用Delaunay三角剖分算法,分别对P_l和P_r进行处理。
这两个子问题可以分别在不同的处理器或线程上进行处理,从而加快算法的执行速度。
4. 将子问题的结果合并,得到整体的Delaunay三角剖分结果。
在递归调用Delaunay三角剖分算法时,同样的分治策略可以
应用到三维空间中。
对于每一个子问题,可以按照y坐标对点集进行排序,然后再递归地将子问题分割成更小的子问题。
当子问题中的点个数达到一个阈值时,可以使用其他的三维空间Delaunay三角剖分算法进行解决,如增量法或基于四面体的
方法。
通过使用分治算法,可以将大问题划分成许多小问题,并行地解决这些小问题,从而提高算法的执行效率。
同时,在三维空间中使用分治算法可以减少问题的复杂性,使得算法更易于实现和理解。
Delaunay 三角网是Voronoi(或称thiessen多边形,V 图)图的伴生图形◆Delaunay 三角网的定义:由一系列相连的但不重叠的三角形的集合, 而且这些三角形的外接圆不包含这个面域的其他任何点。
◆Voronoi图的定义:Voronoi图把平面分成N 个区,每一个区包括一个点,该点所在的区域是距离该点最近的点的集合。
◆Delaunay三角网的特性:◆不存在四点共圆;◆每个三角形对应于一个Voronoi图顶点;◆每个三角形边对应于一个Voronoi图边;◆每个结点对应于一个Voronoi图区域;◆Delaunay图的边界是一个凸壳;◆三角网中三角形的最小角最大。
空外接圆准则最大最小角准则最短距离和准则在TIN中,过每个三角形的外接圆均不包含点集的其余任何点在TIN中的两相邻三角形形成的凸四边形中,这两三角形中的最小内角一定大于交换凸四边形对角线后所形成的两三角形的最小内角一点到基边的两端的距离和为最小Delaunay三角剖分的重要的准则张角最大准则面积比准则对角线准则一点到基边的张角为最大三角形内切圆面积与三角形面积或三角形面积与周长平方之比最小两三角形组成的凸四边形的两条对角线之比。
这一准则的比值限定值,须给定,即当计算值超过限定值才进行优化Delaunay三角剖分的重要的准则不规则三角网(TIN)的建立●三角网生长算法就是从一个“源”开始,逐步形成覆盖整个数据区域的三角网。
●从生长过程角度,三角网生长算法分为收缩生长算法和扩张生长算法两类。
方法说明方法实例收缩生长算法先形成整个数据域的数据边界(凸壳),并以此作为源头,逐步缩小以形成整个三角网分割合并算法逐点插入算法扩张生长算法从一个三角形开始向外层层扩展,形成覆盖整个区域的三角网递归生长算法逐点插入算法分割合并算法12121212递归生长算法333TIN 建立过程中的几个问题:◆邵春丽.DELAUNAY 三角网的算法详述及其应用发展前景◆鲍蕊娜,等:基于凸壳技术的Delaunay 三角网生成算法研究◆于杰等:Delaunay 三角网构建方法比较研究周围点的提取 点在三角形中的查找 空外接圆判断准则 线段求交问题。
delaunay方法
Delaunay方法,又称为Delaunay三角剖分,是前苏联数学家Delaunay在1934年提出的一种三角剖分方法。
该方法满足所谓的“最大-最小角”优化准则,即所有最小内角之和最大,从而使得划分的三角形不会出现某个内角过小的情况。
这种方法在二维情况下可以描述为:对于给定的平面点集,只存在着唯一的一种三角剖分方法,满足Delaunay三角剖分的条件,即任意一个三角形的外接圆内不包括其他结点。
Delaunay三角剖分方法在各种二维三角剖分中具有全局和局部最优性。
它可以应用于数值模拟的网格生成,尤其在复杂外形的非结构网格生成中有广泛应用。
此外,Delaunay 三角剖分方法还可以推广至多维问题,例如在三维情况下,四面体的外接球内不包含其他节点。
在具体实施过程中,三维情况下的Delaunay三角化可以包括以下步骤:在三维空间内定义一个大的凸壳区域以覆盖所有将要插入的点;根据网格步长分布要求在凸壳区域内引入一个新点;标记将被删除的四面体(其外接球包含新点的所有四面体);建立空洞边界(由被标记的四面体组成的凸壳的外边界);在剩余四面体中查找被标记四面体的邻居以
建立有效的空间连续性;利用空洞边界上每个三角形的三个顶点与新点组成新的四面体;建立空洞外原四面体和新生成的四面体的邻居关系。
delaunay 三角剖分步骤1. Delaunay三角剖分是用于将点集分割成不规则三角形的方法。
The Delaunay triangulation is a method for dividing a set of points into irregular triangles.2.首先选择一个点作为起始点。
First, select a point as the starting point.3.然后选择另外两个点与起始点构成一个三角形。
Then select two other points to form a triangle with the starting point.4.接着选择一个未被包含在任何三角形内的点。
Then select a point that is not included in any triangle.5.在所有的三角形中寻找能将这个新点包含进去的三角形。
Find a triangle among all the triangles that can include this new point.6.如果找到了这样的三角形,将这个三角形和新点围成的区域删除。
If such a triangle is found, remove the area enclosed by this triangle and the new point.7.在新的边缘上寻找新的三角形。
Find new triangles on the new edges.8.重复以上步骤,直到所有的点都被包含在三角形内。
Repeat the above steps until all points are included in triangles.9. Delaunay三角剖分具有无重叠、最小化夹角和最大化最小角的性质。
Delaunay triangulation has the properties of non-overlapping, minimizing angles, and maximizing minimum angles.10.可以使用Delaunay三角剖分来进行网格生成和空间分析。
三维空间Delaunay三角剖分算法的研究及应用一、本文概述随着计算几何和计算机图形学的发展,三维空间Delaunay三角剖分算法已成为一种重要的空间数据处理和分析技术。
本文旨在全面深入地研究三维空间Delaunay三角剖分算法的原理、实现方法以及应用领域。
本文将对三维空间Delaunay三角剖分算法的基本概念和性质进行详细的阐述,包括其定义、性质、特点以及与其他三角剖分算法的比较。
接着,本文将重点探讨三维空间Delaunay三角剖分算法的实现方法,包括增量法、分治法和扫描转换法等,并分析它们的优缺点和适用范围。
本文还将对三维空间Delaunay三角剖分算法在各个领域的应用进行详细的介绍和分析。
这些领域包括计算机科学、地理信息系统、地质学、气象学、生物医学等。
通过具体的应用案例,本文将展示三维空间Delaunay三角剖分算法在实际问题中的应用价值和效果。
本文还将对三维空间Delaunay三角剖分算法的未来发展方向进行展望,探讨其在新技术和新领域中的应用前景和挑战。
本文旨在全面系统地研究三维空间Delaunay三角剖分算法的理论和实践,为其在实际问题中的应用提供有力的支持和指导。
二、三维空间Delaunay三角剖分算法的基本原理Delaunay三角剖分算法是一种广泛应用于二维空间的数据处理算法,它的核心目标是将一组离散的二维点集剖分为一系列互不重叠的三角形,且这些三角形满足Delaunay性质。
简单来说,Delaunay 性质要求任何一个三角形的外接圆内部不包含该三角形之外的任何数据点。
初始化:为每个点分配一个初始的三角形。
这通常是通过连接每个点与它的两个最近邻点来完成的,形成一个初始的三角形网格。
合并三角形:接下来,算法会尝试合并相邻的三角形,以形成更大的三角形。
在合并过程中,算法会检查新形成的三角形是否满足Delaunay性质。
如果满足,则合并成功;如果不满足,则放弃合并,并标记这两个三角形为“已处理”。
一、概述Delaunay 三角剖分算法是计算机图形学领域中常用的一种算法,它可以将给定的点集进行高效的三角剖分,用于构建网格、进行地理信息系统分析、建立三维模型等应用。
本文将对该算法的原理、实现和应用进行介绍。
二、算法原理1. 待剖分点集在进行Delaunay三角剖分之前,需要准备一个点集,这个点集是待剖分的对象。
点集的数量取决于具体的应用,可以是二维平面上的点,也可以是三维空间中的点。
2. Delaunay 三角形在进行三角剖分时,Delaunay 三角形是一种特殊的三角形,满足以下性质:a. 任意一个点要么位于Delaunay 三角形的外接圆内部,要么位于外接圆的边上;b. 任意两个Delaunay 三角形之间的外接圆不相交。
3. Delaunay 三角剖分Delaunay 三角剖分是将给定点集进行三角剖分的过程,它的目标是构建满足Delaunay 三角形性质的三角形集合。
三、算法实现1. 基于增量法的实现增量法是Delaunay 三角剖分的一种经典算法,它的基本思想是逐步增加点,并根据Delaunay 三角形的性质进行调整。
具体步骤如下: a. 初始化:选择一个超级三角形包含所有点集,作为初始三角剖分;b. 顺序插入点:逐个将待剖分点插入到当前三角剖分中,并进行调整;c. 边界检测:检测新增的边界是否需要进行修正;d. 优化处理:对新增点周围的三角形进行优化调整。
2. 时间复杂度分析增量法的时间复杂度主要取决于点集的数量和点的分布情况,一般情况下,其时间复杂度可以达到O(nlogn)。
四、算法应用1. 图形渲染在计算机图形学中,Delaunay三角剖分常用于构建网格、进行三维渲染等。
它可以有效地分割空间,使得渲染效果更加真实。
2. 地理信息系统地理信息系统中常常需要对地理数据进行空间分析,Delaunay三角剖分可以帮助构建地理网格,进行地形分析、资源评估等。
3. 三维建模在三维建模领域,Delaunay三角剖分可以用于构建复杂的三维模型,并支持模型的分析、编辑等功能。
Delaunay三角剖分在实际中运用的最多的三角剖分是Delaunay三角剖分。
首先,我们来了解一下Delaunay边。
Delaunay边的定义为:假设E中的一条边e(其端点为a,b),若e满足条件:存在一个圆经过a,b两点,圆内不含点集中任何其他的点,这一特性又称空圆特性,则称之为Delaunay边:Delaunay三角剖分的定义为:如果点集的一个三角剖分只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。
要满足Delaunay三角剖分的定义,必须符合下面两个重要的准则:1)空圆特性:Delaunay三角网是唯一的,在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在;2)最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。
从这个意义上讲,Delaunay 三角网是“最接近于规则化的”的三角网。
具体来说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。
经典的Delaunay剖分算法主要有两类[1]:1)增量算法:又称为Delaunay空洞算法或加点法,其思路为从一个三角形开始,每次增加一个点,保证每一步得到的当前三角形是局部优化的三角形。
2)局部变换法:又称为换边或换面法,其思路为构造非优化的三角网,然后对两个共边三角形形成的凸四边形迭代换边优化。
迄今为止关于Delaunay剖分已经出现了很多算法,主要有分治算法、逐步插入法、三角网生长法等。
其中三角网生长算法由于效率较低,目前较少采用; 分治算法最为高效,但算法相对比较复杂;逐点插入法实现简单,但它的时间复杂度差[2]。
特别是近些年,随着计算机水平的不断提升,又出现了各种各样的改进算法。
本节将主要根据逐步插入法的原理,通过对给予的数据高程点进行Delaunay三角剖分。
其基本步骤为:1)获取点集坐标数组;2)获取点集外围边界;3)根据边界及内部点生成三角网。
Delauney三角网剖分算法原理:分为三步:一、凸包生成:1)求出如下四点:min(x-y)、min(x+y)、max(x-y)、max(x+y)并顺次放入一个数组,组成初始凸包;2)对于凸包上的点I,设它的后续点为J,计算矢量线段IJ右侧的所有点到IJ的距离,求出距离最大的点K;3)将K插入I,J之间,并将K赋给J;4)重复2,3步,直到点集中没有在IJ右侧的点为止;5)将J赋给I,J取其后续点,重复2,3,4步,当遍历了一次凸包后,凸包生成完成。
二、环切边界法凸包三角剖分:在凸包数组中,每次寻找一个由相邻两条凸包边组成的三角形,在该三角形的内部和边界上都不包含凸包上的任何其他点,然后去掉该点得到新的凸包链表,重复这个过程,最终对凸包数组中的点进行三角剖分成功。
三、离散的内插:1)建立三角形的外接圆,找出外接圆包含待插入点的所有三角形,构成插入区域;2)删除插入区域内的三角形公共边,形成由影响三角形顶点构成的多边形;3)将插入点与多边形所有顶点相连,构成新的Delaunay三角形;4)重复1,2,3,直到所有非凸包上的离散点都插入完为止。
功能实现流程:1. 在绘图菜单栏下添加一个子菜单项为Delauney,并且在工具栏上添加一个工具项。
设置text为Delaunay三角剖分,name为delaunay等属性,添加单击事件,并为单击事件代码2.为事件函数添加如下代码Graphics gra = panel1.CreateGraphics();List<Point_T> pts = new List<Point_T>();foreach (Geometry_T geo in choosegeos.Geofeatures){if (geo.GetType() == typeof(Point_T)){Point_T pt = (Point_T)geo;pts.Add(pt);}}List<Tin> deltins = DelauneyTin(pts);//根据多点构建delauney三角网foreach (Tin tin in deltins){Point[] ctin = new Point[3];for (int i = 0; i < 3; i++){cp = new Point((int)tin.Pthree[i].X, (int)tin.Pthree[i].Y); ctin[i] = cp;}gra.DrawPolygon(Pens.Red, ctin);}3.三角形TIN的数据结构public class Tin{Point_T[] pthree = new Point_T[3];Line_T[] lthree = new Line_T[3];public Line_T[] Lthree{get { return lthree; }set { lthree = value; }}public Point_T[] Pthree{get { return pthree; }set { pthree = value; }}public Tin(){ }public Tin(Point_T p1, Point_T p2, Point_T p3){pthree[0] = p1;pthree[1] = p2;pthree[2] = p3;lthree[0] = new Line_T(p1, p2);lthree[1] = new Line_T(p2, p3);lthree[2] = new Line_T(p3, p1);}}4.圆的数据结构public class Circle_T:Geometry_T{private Point_T cpt;public Point_T Cpt{get { return cpt; }set { cpt = value; }}double radius;public double Radius{get { return radius; }set { radius = value; }}public Circle_T(){ }public Circle_T(Point_T pt, double r){cpt = pt;radius = r;}}5.实现Delaunay三角剖分算法1)public List<Tin> DelauneyTin(List<Point_T> pts)//根据多点构建delauney三角网;分三步:构建凸包;凸包剖分;离散点内插{Graphics gra = panel1.CreateGraphics();List<Tin> deltins = new List<Tin>();List<Point_T> envpts = EnvelopeTin(pts);//构建凸包//for (int i = 0; i < envpts.Count - 1; i++)//{// gra.DrawLine(Pens.Black, new Point((int)envpts[i].X,(int)envpts[i].Y), new Point((int)envpts[i + 1].X, (int)envpts[i + 1].Y));//}//gra.DrawLine(Pens.Black, new Point((int)envpts[0].X, (int)envpts[0].Y), new Point((int)envpts[envpts.Count - 1].X, (int)envpts[envpts.Count - 1].Y));List<Point_T> dispts = new List<Point_T>();//非凸包上的离散点foreach (Point_T pt in pts){if (!envpts.Contains(pt)){dispts.Add(pt);}}List<Tin> envtins = EnvelopeDivision(envpts);//凸包剖分//foreach (Tin tin in envtins)//{// Point[] ctin = new Point[3];// for (int i = 0; i < 3; i++)// {// cp = new Point((int)tin.Pthree[i].X, (int)tin.Pthree[i].Y);// ctin[i] = cp;// }// gra.DrawPolygon(Pens.Blue, ctin);//}deltins = TinInsert(envtins, dispts);//离散点内插return deltins;}2)public List<Point_T> EnvelopeTin(List<Point_T> pts)//构建凸包{List<Point_T> envpts = new List<Point_T>();List<Point_T> othpts = new List<Point_T>();foreach (Point_T pt in pts){othpts.Add(pt);}//构建以x-y,x+y最大最小值组成的初始矩形框CompareXaddY comxandy = new CompareXaddY();CompareXsubY comxsuby = new CompareXsubY();pts.Sort(comxsuby);envpts.Add(pts[0]);envpts.Add(pts[pts.Count - 1]);othpts.Remove(pts[0]);othpts.Remove(pts[pts.Count-1]);pts.Sort(comxandy);if(!envpts.Contains(pts[0])){envpts.Insert(1, pts[0]);}if (!envpts.Contains(pts[pts.Count - 1])){envpts.Add(pts[pts.Count - 1]);}othpts.Remove(pts[0]);othpts.Remove(pts[pts.Count-1]);//构建以x-y,x+y最大最小值组成的初始矩形框int i = 0;int tag = 0;bool over = true;while(i<envpts.Count){Line_T cline;if (i==envpts.Count-1){cline = new Line_T(envpts[i], envpts[0]);}else{cline = new Line_T(envpts[i], envpts[i + 1]);}double dismax=0;for (int j = 0; j < othpts.Count ;j++ ){if (IsLeftPoint(othpts[j], cline)){double distance = PointToLine(othpts[j], cline);if (distance > dismax){dismax = distance;tag = j;over = false;}}}if (over){i++;}else{//envpts.RemoveAt(i);envpts.Insert(i+1, othpts[tag]);over = true;}}return envpts;}public List<Tin> EnvelopeDivision(List<Point_T> pts)//凸包剖分{List<Tin> envtins = new List<Tin>();List<Point_T> cpts = new List<Point_T>();foreach (Point_T pt in pts){cpts.Add(pt);}while (cpts.Count > 2){int tag = 0;double minangle = 120;for (int i = 0; i < cpts.Count; i++){double angle;if (i == 0){angle = CalcuAngle(cpts[cpts.Count - 1], cpts[i], cpts[i + 1]);}else if (i == cpts.Count - 1){angle = CalcuAngle(cpts[i-1], cpts[i], cpts[0]);}else{angle = CalcuAngle(cpts[i-1], cpts[i], cpts[i + 1]);}if ((angle - 60) < minangle){minangle = angle - 60;tag = i;}}int btag=tag-1;int atag=tag+1;if (tag == 0){btag = cpts.Count - 1;}else if (tag == cpts.Count - 1){atag = 0;}Tin ctin = new Tin(cpts[btag], cpts[tag], cpts[atag]);envtins.Add(ctin);cpts.RemoveAt(tag);}return envtins;}public List<Tin> TinInsert(List<Tin> tins, List<Point_T> pts)//离散点内插 {List<Tin> deltins = new List<Tin>();List<Tin> ctins = new List<Tin>();//临时凸包foreach (Tin tin in tins){ctins.Add(tin);}foreach (Point_T pt in pts)//对离散点遍历,内插{List<Point_T> cpts = new List<Point_T>();//临时点集foreach (Tin tin in ctins)//找到外接圆包含离散点的三角形{Circle_T ccir = DelauneyCicle(tin);//构造外接圆if (IsPointInCircle(pt, ccir))//点是否包含在圆内{//for (int i = 0; i < 3; i++)//{// if (!cpts.Contains(tin.Pthree[i]))// {// cpts.Add(tin.Pthree[i]);//记录当前点// }//}deltins.Add(tin); //记录保存当前三角形}}//List<Point_T> ecpts = EnvelopeTin(cpts);//求点集(外接圆包含离散的三角形)的凸包?,接下来,插入点,构建新三角网//for (int j = 0; j < ecpts.Count;j++ )//{// Tin tin;// if (j == ecpts.Count-1)// {// tin = new Tin(ecpts[j], ecpts[0], pt);// }// else// {// tin=new Tin(ecpts[j],ecpts[j+1],pt);// }// ctins.Add(tin);//}List<Line_T> eli = BorderTin(deltins);foreach (Line_T line in eli){Tin tin = new Tin(line.Frompt, line.Topt, pt);ctins.Add(tin);}foreach (Tin tin in deltins)//改变临时三角网(删除deltins保存的三角网){ctins.Remove(tin);}deltins.Clear();}return ctins;}3)public bool IsLeftPoint(Point_T pt, Line_T line)//点在线的左边;叉积大于{bool yes = false;if ((pt.X - line.Frompt.X) * line.ParaA + (pt.Y - line.Frompt.Y) * line.ParaB > 0){yes = true;}return yes;}public double CalcuAngle(Point_T fp, Point_T mp, Point_T tp)//首,中,尾三点构成的夹角{double angle = 0;Point_T vector1 = new Point_T(fp.X - mp.X, fp.Y - mp.Y);Point_T vector2 = new Point_T(tp.X - mp.X, tp.Y - mp.Y);angle = Math.Acos((vector1.X * vector2.X + vector1.Y * vector2.Y) /(Math.Sqrt(vector1.X * vector1.X + vector1.Y * vector1.Y) *Math.Sqrt(vector2.X * vector2.X + vector2.Y * vector2.Y)));return angle;}public Circle_T DelauneyCicle(Tin tin)//构建三角形的外接圆{double x1 = tin.Pthree[0].X;double x2 = tin.Pthree[1].X;double x3 = tin.Pthree[2].X;double y1 = tin.Pthree[0].Y;double y2 = tin.Pthree[1].Y;double y3 = tin.Pthree[2].Y;double x = ((y2 - y1) * (y3 * y3 - y1 * y1 + x3 * x3 - x1 * x1) - (y3 - y1) * (y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1))/ (2 * (x3 - x1) * (y2 - y1) - 2 * ((x2 - x1) * (y3 - y1)));double y = ((x2 - x1) * (x3 * x3 - x1 * x1 + y3 * y3 - y1 * y1) - (x3 - x1) * (x2 * x2 - x1 * x1 + y2 * y2 - y1 * y1))/ (2 * (y3 - y1) * (x2 - x1) - 2 * ((y2 - y1) * (x3 - x1)));Point_T cpt = new Point_T(x, y);double radius=Math.Sqrt(Math.Pow((x1-x),2)+Math.Pow((y1-y),2));Circle_T cir = new Circle_T(cpt,radius);return cir;}public bool IsPointInCircle(Point_T pt, Circle_T cir){if(Math.Sqrt(Math.Pow((pt.X-cir.Cpt.X),2)+Math.Pow((pt.Y-cir.Cpt.Y),2))<cir.Radius) {return true;}elsereturn false;}public List<Line_T> BorderTin(List<Tin> tins){List<Line_T> borli = new List<Line_T>();for (int i = 0; i < tins.Count; i++){for (int t = 0; t < 3; t++){bool tag = false;Line_T cl = tins[i].Lthree[t];for (int j = 0; j < tins.Count; j++){if (j!=i&&IsContainByTin(cl, tins[j])){tag = true;}}if (!tag)borli.Add(cl);}}return borli;}public bool IsContainByTin(Line_T li, Tin tin){for (int i = 0; i < 3; i++){if ((li.Frompt == tin.Lthree[i].Frompt || li.Frompt ==tin.Lthree[i].Topt) && (li.Topt == tin.Lthree[i].Topt || li.Topt ==tin.Lthree[i].Frompt)){return true;}}return false;}6.实现两个排序类CompareXsubY(x-y排序)和CompareXaddY(x+y 排序),仿照CompareX写功能操作步骤:先在面板上绘制多个点;框选部分点;按下实现Delaunay三角网剖分工具,Delaunay三角网剖分成功。
[图形算法]Delaunay三角剖分算法1. 三角剖分与Delaunay剖分的定义如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。
该问题图示如下:1.1.三角剖分定义【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。
那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:1.除了端点,平面图中的边不包含点集中的任何点。
2.没有相交边。
3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。
1.2. Delaunay三角剖分的定义在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。
先从Delaunay边说起:【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。
【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。
1.3.Delaunay三角剖分的准则要满足Delaunay三角剖分的定义,必须符合两个重要的准则:1、空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。
如下图所示:2、最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。
从这个意义上讲,Delaunay三角网是“最接近于规则化的“的三角网。
具体的说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。
如下图所示:1.4.Delaunay三角剖分的特性以下是Delaunay剖分所具备的优异特性:1.最接近:以最近临的三点形成三角形,且各线段(三角形的边)皆不相交。
matlab delaunay算法提取离散点边界的方法MATLAB Delaunay算法提取离散点边界的方法在现代科学和工程领域,我们经常会遇到需要处理离散点数据的情况。
地理信息系统、医学图像处理、地震学和遥感技术等领域都需要对离散点数据进行分析和处理。
而其中一个常见的问题就是如何从离散点数据中提取边界。
在MATLAB中,我们可以使用Delaunay算法来解决这个问题。
下面,我将深入探讨MATLAB中使用Delaunay算法提取离散点边界的方法并共享我的个人观点和理解。
1. Delaunay算法简介Delaunay三角剖分是一种将离散点集合转换为三角形网格的方法,它具有许多重要的性质,其中之一就是能够有效地提取离散点的边界。
在MATLAB中,我们可以使用`delaunay`函数来进行Delaunay三角剖分,该函数返回离散点的连接信息,也就是三角形的顶点索引。
接下来,我们可以根据这些连接信息来提取边界。
2. 提取离散点边界的方法在MATLAB中,我们可以通过以下步骤来提取离散点数据的边界:2.1 构建Delaunay三角形我们使用`delaunay`函数对离散点数据进行三角剖分,得到三角形的连接信息。
2.2 寻找边界三角形接下来,我们需要寻找属于边界的三角形。
一种简单的方法是遍历所有三角形,对每个三角形的边界进行检查,如果有边是不被其他三角形共享的,则将该三角形标记为边界三角形。
2.3 提取边界我们可以根据边界三角形的连接信息,提取离散点数据的边界。
这可以通过简单地将边界三角形的顶点连接起来来实现。
3. 我对提取离散点边界的方法的理解从我个人的角度来看,MATLAB中使用Delaunay算法提取离散点边界的方法具有一定的优势。
Delaunay三角剖分可以很好地保持三角形的形状,因此提取的边界也比较准确。
MATLAB提供了丰富的函数和工具,使得实现这一方法变得相对简单。
不过,需要注意的是,这种方法可能对于特定形状和分布的离散点数据并不适用,因此在实际应用中需要谨慎选择。
简单多边形的动态Delaunay三角剖分算法罗小华;付文超;管培祥;张传林【期刊名称】《暨南大学学报(自然科学与医学版)》【年(卷),期】2011(032)001【摘要】A simple dynamic polygon triangulation algorithm is proposed, its time complexity is O(n).The correctness of the algorithm is proved, and a dynamic triangular mesh generation software is developed. Finally it tested the robustness of the software through a large number of data.%提出了一种简单多边形的动态Delaunay三角剖分算法,其时间复杂度为O(n).从理论上证明了算法的正确性,并利用Python语言开发了一款动态Delaunay三角网生成软件,最后通过大量数据测试了该软件的健壮性并得到实例证实.【总页数】6页(P26-30,35)【作者】罗小华;付文超;管培祥;张传林【作者单位】暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632【正文语种】中文【中图分类】TP391.4【相关文献】1.简单多边形内线燃烧动态轨迹算法 [J], 张云辉;高满屯;吴建军;王淑侠;张燕2.基于最小距离简单多边形的Delaunay三角剖分算法 [J], 刘小龙;杨维芳3.简单多边形快速Delaunay三角剖分算法 [J], 刘建新;卢新明;岳昊4.一种简单多边形Delaunay三角剖分的约束生长算法 [J], 刘少华;陈华军;罗小龙5.面向并行的动态增量式Delaunay三角剖分算法 [J], 杨昊禹;刘利;张诚;于灏因版权原因,仅展示原文概要,查看原文内容请购买。