第十三章 协方差分析
- 格式:ppt
- 大小:525.00 KB
- 文档页数:51
第十一节协方差分析(analysis of covariance)在各种试验设计中,对应变量(dependent variable)Y 研究时,常希望其他可能影响Y的变量在各组间保持基本一致,以达到均衡可比。
例如:比较几种药物的降压作用,各试验组在原始血压、性别、年龄等指标应无差异。
第十一节协方差分析有时这些变量不能控制,须在统计分析时,通过一定方法来消除这些变量的影响后,再对应变量y作出统计推断。
称这些影响变量为协变量(Covariate)。
如果所控制的变量是分类变量时,可用多因素的方差分析;当要控制的变量是连续型变量时,可用协方差分析,以消除协变量的影响,或将协变量化成相等后,对y的修正均数进行方差分析。
第十一节协方差分析例如:比较几种不同饲料对动物体重增加的作用,可把动物的进食量作为协变量。
比较大学生和运动员的肺活量时,可把身高作为协变量。
比较治疗后二组舒张压的大小,可把治疗前的舒张压作为协变量。
第十一节协方差分析协方差分析的基本原理:协方差分析是把直线回归和方差分析结合起来的一种统计分析方法。
当不同处理结果的y值受协变量x的影响时,先找出y与x的直线关系,求出把x值化为相等后y的修正均数,然后进行比较,这样就能消除x对y的影响,更恰当地评价各种处理的作用。
协方差分析的步骤±观察指标服从正态分布、方差齐性、各观察相互独立H检验分组因素与协变量x是否有交互作用。
对上例,即是否雌雄羔羊进食量相同,它们的体重增加量却不相同。
如检验结果分组因素与协变量x间没有交互作用,即说明雌雄羔羊进食量相同的情况下,它们的体重增加量是相同的。
进行第二项检验:H检验协变量与应变量之间是否存在线性关系。
如果不存在线性关系,则不能简单地运用协方差分析,因为协方差分析是利用协变量x与应变量y之间的线性回归关系扣除协变量x对y的影响。
必要时可考虑进行变量转换。
如果检验结果协变量与应变量之间存在线性关系,则进行第三项检验:H进一步扣除x对y影响的前提下,检验各组的修正均数差别是否有统计学意义。
23. 协方差分析一、基本原理1. 基本思想在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。
如果忽略这些因素的影响,则有可能得到不正确的结论。
这种影响的变量称为协变量(一般是连续变量)。
例如,研究3种不同的教学方法的教学效果的好坏。
检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。
协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。
协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。
前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。
协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。
当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。
2. 协方差分析需要满足的条件(1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差;(2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。
否则,就有可能犯第一类错误,即错误地接受虚无假设;(3) 自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除;(4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。
方差分析和协方差分析协变量和控制变量方差分析(Analysis of Variance,简称ANOVA)是用于比较两个或多个组之间差异的一种统计方法。
它常用于实验设计中,特别是当研究者希望判断不同组别对其中一变量的均值是否存在显著差异时。
方差分析的基本思想是通过分析组间变异和组内变异的差异性,来评估不同组别之间的差异是否超出了随机误差的范围。
在执行方差分析时,我们需要计算组间平方和(Sums of Squares Between Groups, SSBG)和组内平方和(Sums of Squares Within Groups, SSWG),并以此计算F值来进行假设检验。
协方差分析(Analysis of Covariance,简称ANCOVA)则是在方差分析基础上引入了协变量(covariate)的一种分析方法。
协变量是指与主要变量(研究变量)相关的、可能对变量之间关系产生影响的另一个变量。
协方差分析旨在通过控制协变量的影响,更准确地评估主要变量对因变量的影响。
具体而言,协方差分析会使用协变量与因变量的相关性来对因变量进行线性调整,将其影响减少到最低限度。
这样可以消除协变量对因变量的干扰,使比较组之间的差异更为准确。
在研究设计中,协变量和控制变量是常用的两种概念,用于控制和修正分析过程中的干扰因素。
在实验设计中,控制变量是指研究者通过依据主要变量的研究设计,将一些可能导致干扰的因素保持恒定。
例如,在比较两种不同药物对疾病治疗效果时,研究者可以将患者的性别、年龄、体重等因素作为控制变量,确保不同组别之间的差异主要来自于药物本身的影响。
而协变量则是在非实验研究中常用的,在测量研究变量之前,研究者会对协变量进行测量和记录,并在分析过程中加以控制。
例如,研究人员可能关注不同年龄组中学生的学业成就,但同时也要控制其他因素,如家庭背景、社会经济地位等,这些因素可能会干扰到学业成就与年龄之间的关系。
总之,方差分析和协方差分析是两种常用的统计分析方法,在不同的情境下用于数据的比较和解释。
协方差分析协方差分析(ANCOVA)是一种在统计学中常用的方法,用于比较两个或更多组之间的平均值是否存在差异,并控制一个或多个可能存在的共同协变量的影响。
在本文中,将介绍协方差分析的基本概念、假设前提、模型、效应检验、应用注意事项等内容。
一、基本概念协方差分析是一种结合了方差分析(ANOVA)和回归分析的技术,旨在研究组间的差异是否受到一个或多个协变量的影响。
协变量指的是可能影响因变量的其他变量,例如年龄、性别、智力水平等。
通过控制协变量的影响,协方差分析可以更准确地评估组间的差异是否真正存在。
二、假设前提三、模型在协方差分析中,需要估计各组的平均值(μ)和回归系数(β1和β2),以及误差项的方差(σ²)。
通过比较组间方差与误差项方差的比值,可以判断在控制协变量的情况下,组间的差异是否显著。
四、效应检验另外,还可以通过比较回归系数的显著性来判断协变量对因变量的影响。
如果协变量的回归系数显著,表示协变量对因变量的影响在各组之间存在差异。
五、应用注意事项在进行协方差分析时,需要注意以下几点:1.选择合适的协变量:选择与因变量相关的协变量,以减少协变量的影响,提高结果的准确性。
2.检验协变量与因变量之间的线性关系:协变量与因变量之间的关系应该是线性的,否则可能导致结果不准确。
3.选择适当的控制组:选择适当的控制组进行比较,以保证对组间差异的探究更有说服力。
4.检验方差齐次性假设:协方差分析要求各组之间的方差应该是齐次的,如果方差齐次性假设不成立,可能导致结果失真。
5.做出合理的解释:协方差分析仅能提供组间的比较结果,不能得出因果关系的结论。
因此,在解释结果时应谨慎,并结合实际情况进行合理解释。
总结:协方差分析是一种在统计学中常用的方法,用于比较组间平均值是否存在差异,并控制可能存在的共同协变量的影响。
通过协方差分析,可以更准确地评估组间差异的显著性,并提供合理的解释。
在进行协方差分析时,需要注意选择合适的协变量、检验线性关系、选择适当的控制组、检验方差齐次性假设,并做出合理的解释。