模糊综合评价法
- 格式:ppt
- 大小:3.20 MB
- 文档页数:27
模糊综合评价法原理模糊综合评价法是一种基于模糊数学的综合评价方法,它应用模糊关系综合的原理,将一些界限不清、难以量化的因素量化,进行综合评价。
这种综合评价方法根据模糊数学的隶属度理论,将定性评价转化为定量评价,即利用模糊数学对受多种因素制约的事物或对象进行总体评价。
它具有结果明确、系统性强的特点,能解决模糊、难以量化的问题,适用于解决各种不确定性问题。
其特点是评价结果不是绝对肯定或否定的,而是用一个模糊集来表示。
模糊综合评价通常由目标层和指标层组成。
通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵),可以得到目标层对评价集的隶属度向量,从而得到目标层的综合评价结果。
隶属度和隶属度矩阵是模糊综合评价的关键概念。
计算步骤1、确定评价对象的因素集设U={u1,u2,...,um}为刻画被评价对象的m种评价因素(评价指标),其中:m是评价因素的个数,由具体的指标体系所决定。
2、确定评价对象的评语集设V={v1,v2,...,vn},是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合,一般划分为3-5个等级。
3、确定评价因素的权重向量设A=(a1,a2,...,am)为权重分配模糊矢量,其中ai表示第i个因素的权重,要求a1+a2+...+am=1,A反映了各因素的重要程度。
在模糊综合评价中,权重会对最终的评价结果产生很大的影响,不同的权重有时会得到完全不同的结论。
现在权重一般是凭经验给的,但很主观。
确定权重的方法有:(1)专家估计法;(2)加权平均法:当专家人数少于30人时,可采用此方法。
先由多位专家独立给出各因素的权重,然后取各因素的平均值作为其权重;(3)频率分布测定的权重法;(4)模糊协调决策方法:贴近度和贴近度选择原则;(5)层次分析法。
4、进行单因素模糊评价,确立模糊关系矩阵R5、综合评价6、对模糊综合评价结果进行定量分析模糊综合评价的结果是被评价对象对各等级模糊子集的隶属度,它一般是一个模糊矢量,而不是一个值,因而他能提供的信息比其它方法更丰富。
模糊综合评价法模糊综合评价法(Fuzzy Comprehensive Evaluation)是一种常用的多指标决策方法,它可以在不确定、模糊的条件下对不同选项进行评估和排序。
该方法通过将不同指标的评价结果用模糊集合表示,结合权重和评价等级,最终得出各选项的综合评估结果。
本文将介绍模糊综合评价法的概念、基本步骤和具体应用。
模糊综合评价法的核心思想是将模糊集合理论与评价方法相结合,从而克服了传统评价方法只考虑确定性条件下的不足。
在现实问题中,往往存在不确定和模糊的因素,无法用简单的数学模型描述。
而模糊综合评价法可以通过模糊集合的运算和推理,对这些模糊因素进行量化和评估。
模糊综合评价法的基本步骤如下:1. 确定评价指标:根据评价对象的特征和目标,确定几个关键评价指标。
这些指标应该能够反映出评价对象的综合性能。
2. 构建评价集合:对于每个评价指标,需要构建其对应的模糊集合。
模糊集合由隶属函数表示,它可以描述事物的不同特征和评价等级之间的关系。
3. 确定权重:为不同评价指标确定权重,反映出它们在综合评价中的重要性。
常用的方法有主观赋权、层次分析法等。
4. 进行评价计算:根据评价指标的隶属函数和权重,对每个指标进行评估计算。
通常采用隶属度最大值法、隶属度平均值法等方法。
5. 综合评价:将各个指标的评估结果综合起来,得出最终的综合评价结果。
可以通过加权平均法、熵权法等进行综合。
模糊综合评价法在实践中有着广泛的应用。
它可以用于企业绩效评估、项目可行性分析、人才选拔、产品质量评价等领域。
通过综合考虑多个指标,可以更全面地评估对象的优劣,为决策提供科学依据。
然而,模糊综合评价法也存在一些问题和挑战。
首先,评价指标的选择和权重的确定往往具有主观性,不同人对同一指标的看法可能存在差异。
其次,模糊综合评价法的计算过程较为繁琐,需要较高的数学基础和专业知识。
最后,由于模糊综合评价法忽略了指标之间的相互关系,可能导致评价结果的不准确性。
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法,这俩在解决问题的时候可都有自己的一套本事。
咱先来说说模糊综合评价法。
这就好比你去买水果,你没法明确说这个苹果到底是“超级好”还是“有点差”,因为“好”和“差”的界限不是那么清晰的。
模糊综合评价法就是能处理这种模模糊糊、不好明确界定的情况。
比如说,评价一个老师的教学质量,学生们的感受可能各种各样,有的觉得特别好,有的觉得还行,有的觉得不太满意。
这时候用模糊综合评价法,就能把这些模糊的感受综合起来,给出一个相对全面的评价。
我记得有一次,我们学校组织评选优秀教师。
当时用的就是模糊综合评价法。
先列出了好多评价指标,像教学方法、与学生的互动、作业批改情况等等。
然后让学生们打分,不是那种明确的分数,而是类似于“很好”“较好”“一般”“较差”“很差”这样的等级。
最后把这些模糊的评价综合起来,还真选出了大家都比较认可的优秀教师。
再来说说层次分析法。
这就像是给问题搭个架子,一层一层分得清清楚楚。
比如说要决定假期去哪里旅游,你得先考虑是国内还是国外,国内的话是南方还是北方,南方又有好多具体的地方可以选。
通过这样一层一层地分析,最后就能做出比较明智的选择。
我有个朋友,前段时间装修房子。
他就用了层次分析法来决定各种装修材料的选择。
先确定大的方面,比如地板是选木地板还是瓷砖;然后在木地板这个选项里,再细分是实木的还是复合的;接着再考虑颜色、价格、质量等等因素。
最后装出来的效果那叫一个满意!那这两种方法有啥不一样呢?模糊综合评价法更侧重于处理那些模糊不清、难以精确衡量的东西;而层次分析法则更擅长把一个复杂的问题一层一层分解,让你能更有条理地去思考和做决定。
比如说,评价一个城市的宜居程度。
如果用模糊综合评价法,可能会综合大家对环境、交通、教育、医疗等方面那种模糊的感受来评价。
但要是用层次分析法,就会先把这些因素分层,比如第一层是大的方面,像基础设施、公共服务;第二层再细分,基础设施里包括交通、水电供应等,公共服务里有教育、医疗、文化活动等。
模糊综合评价法模糊综合评价当需要对评价对象做出客观全⾯的评价,但是存在⼤量的模糊性的概念,⽐如⼀个⼈的好坏这样的主观因素会起很⼤作⽤,会使很多指标都⽆法量化,这时就很适合⽤模糊综合评价。
⼀级模糊综合评判1. 确定因素集把所有需要评价的指标构成⼀个集合,即因素集U={u1,u2,...u n}其中的每个u i就为⼀个评价指标2. 确定评语集由于每个指标的评价值不同,那么我们需要有⼀个等级制度来评判各个指标把所有等级构成⼀个集合,即为评语集V={v1,v2,...,v m}⽐如V={好,较好,中等,较差,差}3. 确定各个因素的权重W=[w1,w2,...,w n]$w_i$为第i个元素的权重,且满⾜$\sum_{k=1}^{n}w_i=1$确定权重的⽅法有不少,如Delphi法,加权平均法,众⼈评估法等4. 确定模糊综合评价矩阵对于第i个评价指标u i来说,它有m个评语,我们把对它的评判向量记为R iR i=[r i1,r i2,...,r im]那么对各个指标的总模糊综合评价矩阵就为R=[R1,R2,...R n]它是⼀个从U到V的模糊关系矩阵,即是从因素到评语的关系5. 综合评判综合评价结果B就是权重W和关系矩阵R的乘积,即B=W.R那么最后的评价结果就是B=[b1,b2,...,b m]中最⼤的⼀个元素多层次的模糊综合评价1. 实际上多层次的分析就是在单层次的分析上在多⼀次分析就可由第⼀级的分析得到⼀级评判向量B=[b1,b2,...,b m]。
2. B的权重为A=[a1,a2,....a m]3. ⼆级评判向量B2为B2=A.B4. 故也可以继续推出第三级,第四级,甚⾄更⾼层次的步骤。
Processing math: 100%。
模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
中文名模糊综合评价法理论依据模糊数学属性综合评标方法提出人查德模糊集合理论(fuzzy sets)的概念于1965 年由美国自动控制专家查德(L.A.Zadeh)教授提出,用以表达事物的不确定性。
术语定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):是指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):是指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):是指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):是指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):是指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
模糊综合评价方法
1.建立评价指标体系:根据评价对象的性质和评价目标,建立评价指
标体系。
评价指标体系应具有科学性、全面性和可操作性,包括定性指标
和定量指标。
2.构建评价模型:根据评价指标体系的准则层和子准则层,采用层次
分析法或层次分解法构建评价模型。
通过对指标之间的层次关系进行定量
分析,确定每个指标的权重,并将其转化为模糊权重。
3.收集评价数据:根据评价指标体系,收集评价数据。
评价数据可以
是具体数值,也可以是模糊数值或模糊语言,通过对数据进行模糊化处理,将其转化为模糊数值。
4.建立模糊评价矩阵:将收集到的评价数据构建成模糊评价矩阵。
模
糊评价矩阵是一个模糊数矩阵,其中每个元素代表一个指标对应的模糊评价。
5.计算模糊评价值:通过模糊综合运算,计算出模糊评价值。
常用的
模糊综合运算方法有模糊加法、模糊乘法、模糊加权平均等。
6.做出评价决策:根据模糊评价值,进行评价决策。
可以通过与模糊
评价值相对应的评价等级或评价区间来进行判断和决策。
需要注意的是,模糊综合评价方法的可行性和有效性依赖于评价指标
体系的合理性和模糊度的合理界定。
评价指标体系应尽可能全面反映评价
对象的特征,模糊度的合理界定可以通过专家知识和历史数据进行确定。
模糊综合评价方法
模糊综合评价方法是将复杂的现实问题通过建立模糊语言系统,借助对模糊语言表述
的知识推理能力,用精细化的数字模型来度量各项因素之间的相关性及其重要性,通过构
建模糊系统,实现系统众多因素综合评价的一种新方法。
模糊综合评价是以模糊数学方法
把定量或定性的评价指标合成为一个定量化的综合评价指标的新技术。
它结合了模糊数学、人工智能技术和智能决策理论等多学科,在实现多个事物多方面复杂关系的快速准确评价、评估和决策上起了重要作用。
模糊综合评价方法建立定量模型时首先要完成两个基本任务:第一是确定综合评价问
题的评价指标。
根据待评价问题的特点,分析问题,可以把涉及的各个方面的指标客观有
效地描述出来;第二是给所有的指标设定合理的权重,衡量指标间的关联性。
构建综合评
价指标权重的方法有多种,如由专家所属的决策委员会通过分析决策问题的内容来确定评
价指标和权重等。
建立了综合评价指标体系和权重以后,就可以运用模糊综合评价方法,进行多个指标
的定量化实现。
模糊综合评价方法,可根据指标划分不同的等级,将综合评价每条指标的
量化结果存入一个综合数 *,进而确定总评分。
模糊综合评价方法具有特殊的评价单位,
不仅全面衡量各个指标,而且以等级变量的表示方式,使评价变得简洁明了,结果更直观。
模糊综合评价方法造就了复杂事物的综合评估,广泛应用于工业类别中,用于系统性
地衡量决策上下文环境、产品内部结构、性能特性等多个指标子系统。
特别是模糊综合评
价法能够有效地解决问题对象难以精确量化的情况,能有效的保留专家的精神状态与专业
知识,比较适用于多元化的评价环境。
模糊综合评价法(fuzzy comprehensive evaluation method)1.什么是模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
2.模糊综合评价法的术语及其定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):系指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):系指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):系指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):系指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
6.加权平均评价值(Epw):系指加权后的平均评价值。
模糊综合评价法和层次分析法比较在解决复杂的决策和评价问题时,模糊综合评价法和层次分析法是两种常用且有效的方法。
它们各自有着独特的特点和适用场景,下面我们就来对这两种方法进行一番比较。
首先,我们来了解一下模糊综合评价法。
模糊综合评价法是一种基于模糊数学的综合评价方法。
它的核心思想是通过对多个因素的模糊评价,得出一个综合的评价结果。
这种方法的优势在于能够处理那些具有模糊性和不确定性的评价指标。
比如说,对于“服务质量”这样一个较为抽象且难以精确量化的指标,我们可以用“很好”“较好”“一般”“较差”“很差”这样的模糊语言来进行描述和评价。
在实际应用中,模糊综合评价法通常包括以下几个步骤:确定评价因素集、确定评价等级集、确定各因素的权重、进行单因素评价、构建模糊评价矩阵、进行模糊综合评价。
它的特点在于能够较好地反映人们在评价过程中的模糊思维,使得评价结果更贴近实际情况。
接下来,我们再看看层次分析法。
层次分析法是一种将复杂问题分解为多个层次和因素,并通过两两比较确定各因素相对重要性的方法。
它的基本思路是把问题层次化,将其分解为不同的层次结构,然后通过比较同一层次中各因素对于上一层次目标的重要性,构建判断矩阵,进而计算出各因素的权重。
层次分析法在实际操作时,主要包括以下几个步骤:建立层次结构模型、构造判断矩阵、计算权重向量并进行一致性检验。
其优点在于能够将复杂的问题系统化、层次化,使得决策过程更加清晰和有条理。
那么,这两种方法有哪些相同点和不同点呢?相同点方面,它们都属于多因素综合评价方法,都需要对多个因素进行分析和评价。
并且,在确定因素权重的过程中,都需要一定的主观判断。
然而,它们的不同点也十分显著。
在适用范围上,模糊综合评价法更适用于那些评价指标具有模糊性和不确定性的问题,比如对人的主观感受、难以精确量化的指标进行评价。
而层次分析法更适用于具有层次结构、因素之间存在明确的上下关系的问题,比如对一个系统的各个组成部分进行重要性排序。
模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
由于地质环境与地质灾害系统的复杂性,地质环境与地质灾害评价需要研究的变量关系较多且错综复杂,其中既有确定的可循的变化规律,又有不确定的随机变化规律,人们对地质环境的认识也是既有精确的一面,也有模糊的一面。
用绝对的“非此即彼”有时不能准确地描述地质环境中的客观现实,经常存在着“亦此亦彼”的模糊现象,其刻划与描述也多用自然语言来表达,如某一斜坡地段的工程岩组为软“弱岩体” ,该地段岩体稳定性“较差”等等。
自然语言最大的特点是它的模糊性。
从逻辑上讲,模糊现象不能用 1 真(是)或 0 假(否)二值逻辑来刻划,而是需要一种用区间 [0, 1]的多值(或连续值)逻辑来描述。
可见,运用模糊理论解决地质环境与地质灾害危险性评价问题,是模拟人脑某些思维方式,提高认识地质体的一种有效方法。
因此,地质环境质量与地质灾害危险性评价中引入了模糊综合评判方法是客观事物的需要 ,也是主观认识能力的发展。
模糊综合评判方法是应用模糊关系合成的特性,从多个指标对被评价事物隶属等级状况进行综合性评判的一种方法,它把被评价事物的变化区间作出划分,又对事物属于各个等级的程度作出分析,这样就使得对事物的描述更加深入和客观,故而模糊综合评判方法既有别于常规的多指标评价方法 ,又有别于打分法。
(1)模糊综合评判数学模型设 U={ u1,u2, …,u m}为评价因素集,V={v1,v2, …v n}为危险性等级集。
评价因素论域和危险性等级论域之间的模糊关系用矩阵 R 来表示:式中, r ij = η(u i,v j)(0≤r ij ≤1) ,表示就因素 u i 而言被评为 v j 的隶属度;矩阵中第 i 行R i =(r i1,r i2, …,r in)为第 i 个评价因素 u i 的单因素评判,它是 V 上的模糊子集。
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
模糊综合评价法和层次分析法比较综合评价方法是指通过对不同指标进行综合评估,得出一个综合的评价结果。
在实际应用中,模糊综合评价法和层次分析法是两种常用的综合评价方法。
本文将对这两种方法进行比较。
一、模糊综合评价法1. 原理及步骤模糊综合评价法是基于模糊数学理论的一种评价方法。
它通过建立模糊评价矩阵,对各项指标进行模糊描述,然后利用模糊矩阵运算,计算出各指标的权重和综合评价值。
具体步骤如下:(1)建立指标集和评价集;(2)建立模糊评价矩阵,将指标集与评价集进行配对;(3)计算模糊矩阵的权重,为指标集中的每个指标赋予权重;(4)计算各指标的模糊综合评价值,得出综合评价结果。
2. 优点(1)能够充分考虑到指标之间的相互关系,综合评价结果更加准确;(2)对指标的模糊描述能够较好地反映实际情况;(3)可适应较为复杂的评价对象。
3. 缺点(1)计算过程较为繁琐,需要较多的运算;(2)对于指标的权重确定需要较多的专家意见。
二、层次分析法1. 原理及步骤层次分析法是一种基于构造层次结构的综合评价方法。
它通过构造指标体系和判断矩阵,对各项指标进行两两比较,然后计算权重并得出综合评价结果。
具体步骤如下:(1)建立指标体系,将评价对象划分为若干层次;(2)构造判断矩阵,将各指标两两进行比较,确定它们之间的权重;(3)计算判断矩阵的权重,为指标集中的每个指标赋予权重;(4)计算各指标的综合评价值,得出综合评价结果。
2. 优点(1)评价过程较为简单,易于操作;(2)可以较好地解决多指标综合评价问题;(3)通过对标准判断矩阵的一致性检验,能够评估判断矩阵的可靠性。
3. 缺点(1)对于指标的两两比较,需要较多的专家意见;(2)只能适应条件相对简单的评价问题。
三、方法比较1. 可行性模糊综合评价法和层次分析法在解决多指标综合评价问题上都具有一定的可行性。
模糊综合评价法适用于复杂问题的评价,能够在模糊性较大的情况下进行准确评价。
层次分析法适用于指标体系相对简单的评价问题,能够通过构造层次结构和判断矩阵确定指标的权重。
模糊综合评价法(fuzzy comprehensive evaluation method)1.什么是模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
2.模糊综合评价法的术语及其定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):系指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):系指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):系指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):系指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
6.加权平均评价值(Epw):系指加权后的平均评价值。