模糊综合评价法原理及案例分析
- 格式:pptx
- 大小:582.37 KB
- 文档页数:41
可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
(二)模糊综合评价法“模糊综合评价方法是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评级的一种方法[33]”。
具体地说,确立评价指标集和评价集,并且通过方法对评价指标的权重进行计算以及确定其相应隶属度,从而构建模糊评判矩阵。
然后将模糊评判矩阵与指标的权向量矩阵进行模糊运算并进行归一化,主要采用矩阵相乘的方法得到模糊综合评价结果。
其主要是在模糊环境下对多种因素进行分析,为达到某种目的而对事物做出综合决策的方法。
模糊综合评价法可以不受评价对象所在环境的影响,对评价对象有唯一的评价值。
对评价指标进行模糊综合评价的目的主要是从中选出优胜和低质的指标,并且对指标进行非负赋值,然后对其进行排序和对结果进行比较研究。
(一)三角模糊评价法三角模糊评价主要是基于三角模糊理论,依据模糊化法则对评语变量进行模糊综合评价,从而获得游客对评语变量的平均认知水平。
然后以模糊化的评语变量为基础,以及通过去模糊化法则对评价指标满意度进行去模糊化计算,获得评价指标的满意度分值和整体满意度去模糊化值。
其目的是为了更好的避免了因不同游客对评语变量认知的不同,而导致的对评语变量满意度调查的误差,更加准确的计算了游客对评价指标满意度的去模糊化值。
在对评语变量进行去模糊化的基础上,对数据的获取可由两种方法进行:第一是直接获取受访对象关于评语变量的认知以及对评价指标的满意度;第二是在对评语变量进行模糊综合评价的基础上,通过对评价指标进行满意度问卷调查,然后将两者一元化归一。
具体的说是将三角模糊化的评语变量与评价指标满意度进行矩阵相乘。
(二)IPA分析法IPA分析法(Importance-Performance Analysis),即重要性及其表现分析法,马提拉(Martilla)率先将其应用于评价服务性企业的服务质量与顾客的感知程度[36]。
在旅游研究方面是由伊万斯和晁恩将其引入,并对美国两个旅游目的地进行了旅游政策制定与评估研究[37]。
第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
由于地质环境与地质灾害系统的复杂性,地质环境与地质灾害评价需要研究的变量关系较多且错综复杂,其中既有确定的可循的变化规律,又有不确定的随机变化规律,人们对地质环境的认识也是既有精确的一面,也有模糊的一面。
用绝对的“非此即彼”有时不能准确地描述地质环境中的客观现实,经常存在着“亦此亦彼”的模糊现象,其刻划与描述也多用自然语言来表达,如某一斜坡地段的工程岩组为软“弱岩体” ,该地段岩体稳定性“较差”等等。
自然语言最大的特点是它的模糊性。
从逻辑上讲,模糊现象不能用 1 真(是)或 0 假(否)二值逻辑来刻划,而是需要一种用区间 [0, 1]的多值(或连续值)逻辑来描述。
可见,运用模糊理论解决地质环境与地质灾害危险性评价问题,是模拟人脑某些思维方式,提高认识地质体的一种有效方法。
因此,地质环境质量与地质灾害危险性评价中引入了模糊综合评判方法是客观事物的需要 ,也是主观认识能力的发展。
模糊综合评判方法是应用模糊关系合成的特性,从多个指标对被评价事物隶属等级状况进行综合性评判的一种方法,它把被评价事物的变化区间作出划分,又对事物属于各个等级的程度作出分析,这样就使得对事物的描述更加深入和客观,故而模糊综合评判方法既有别于常规的多指标评价方法 ,又有别于打分法。
(1)模糊综合评判数学模型设 U={ u1,u2, …,u m}为评价因素集,V={v1,v2, …v n}为危险性等级集。
评价因素论域和危险性等级论域之间的模糊关系用矩阵 R 来表示:式中, r ij = η(u i,v j)(0≤r ij ≤1) ,表示就因素 u i 而言被评为 v j 的隶属度;矩阵中第 i 行R i =(r i1,r i2, …,r in)为第 i 个评价因素 u i 的单因素评判,它是 V 上的模糊子集。
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
模糊综合评价方法及其应用研究模糊综合评价方法是一种基于模糊数学和模糊逻辑理论的评价方法,它在多个领域都有广泛的应用。
特别是在需要综合考虑多个因素和条件的复杂系统中,模糊综合评价方法能够有效地处理不确定性、不完全性和主观性,为决策提供科学依据。
本文将介绍模糊综合评价方法的基本原理、应用范围和优点,并通过具体应用实例探讨其在不同领域的效果和优势。
模糊综合评价方法的基本原理是利用模糊数学和模糊逻辑理论,将不确定的、复杂的评价对象转化为可量化的数学模型。
该方法通过引入模糊矩阵、模糊运算等概念,将多个因素和条件的评价结果进行集成,得到一个综合的评价结果。
模糊综合评价方法具有处理不确定性、不完全性和主观性的能力,同时能够考虑多种因素和条件,为决策提供更为全面的支持。
在进行模糊综合评价之前,首先需要对评价对象进行关键词识别。
关键词识别是指从输入的文本中提取出与评价对象相关的关键词,并根据这些关键词确定文章的主题和类型。
关键词识别的方法包括基于规则的方法和基于机器学习的方法。
基于规则的方法是根据预先定义的规则和算法,从输入文本中提取出相关关键词;基于机器学习的方法则是利用机器学习算法,对输入文本进行训练和学习,自动识别出相关关键词。
在完成关键词识别后,接下来进行模糊综合评价。
模糊综合评价以识别出的关键词为基础,结合相关规则和算法,对文章进行综合评价。
具体步骤如下:建立评价指标体系:根据评价对象的特点和评价目标,建立相应的评价指标体系。
评价指标体系应包括多个层次和多个指标,用以全面反映评价对象的各个方面。
确定评价因素权重:针对每个评价指标,确定其对应的权重。
权重的确定可以采用层次分析法、熵值法等权重确定方法,也可以根据实际经验和专家意见进行赋值。
建立模糊关系矩阵:根据评价指标体系和权重,建立相应的模糊关系矩阵。
模糊关系矩阵中的元素表示不同指标之间的模糊关系,通常采用三角函数或其他函数进行计算。
进行模糊运算:将模糊关系矩阵与权重向量进行模糊运算,得到综合评价结果。