模糊综合评判法的应用案例
- 格式:doc
- 大小:1.20 MB
- 文档页数:36
模糊综合评价法举例模糊综合评价法是一种常见的决策方法,用于解决多属性决策问题。
它广泛应用于各个领域,如企业管理、市场调研、投资决策等。
本文将通过几个实例,详细介绍模糊综合评价法的应用。
首先,我们来看一个企业市场调研的实例。
假设某企业想要推出一款新产品,为了确定该产品的市场潜力,他们需要对市场进行调研和评估。
首先,该企业确定了几个要素,如市场容量、竞争情况、消费者需求等等。
然后,针对每个要素,他们设定了一些评价指标,如市场容量可以由市场规模和增长率来评估,竞争情况可以由竞争对手数量和市场份额来评估,消费者需求可以由消费者满意度和购买意愿来评估。
接下来,他们需要对每个评价指标进行模糊评价。
对于市场容量这个指标,他们可以设定为小、中、大三个模糊集合,分别代表市场容量较小、中等、较大。
然后,他们根据实际情况,将市场规模100万人、增长率10%作为划分市场容量的标准。
对于竞争情况这个指标,他们可以设定为低、中、高三个模糊集合,分别代表竞争情况较弱、一般、较强。
然后,他们根据竞争对手数量和市场份额的数据,将竞争情况划分为低、中、高三个水平。
接着,他们需要对每个评价指标设置权重。
按照某一专家的意见,他们将市场容量、竞争情况、消费者需求三个指标的权重分别设置为0.4、0.3、0.3。
然后,根据权重,计算每个评价指标的模糊评价函数。
最后,他们可以通过模糊综合评价法,对市场进行综合评价。
他们将每个指标的模糊评价函数进行加权平均,得到最终的评价结果。
根据结果,他们可以判断市场潜力是否足够大,是否值得推出新产品。
除了企业市场调研,模糊综合评价法在其他领域也有广泛的应用。
比如,在投资决策中,投资者可以利用该方法评估不同投资项目的风险和收益。
他们可以将投资项目的不同属性作为评价指标,根据专家意见设定权重,然后进行模糊评价,最终得出综合评价结果,从而作出更明智的投资决策。
综上所述,模糊综合评价法是一种重要的决策方法,可以帮助我们在多属性决策问题中做出合理的决策。
模糊综合评判法在幼儿园决策中的应用
模糊综合评判法是一种将主观与客观指标相结合的决策方法,通过对不确定性问题进
行模糊化处理,综合考虑多种因素,得出最优解决方案的方法。
在幼儿园决策中,可以应
用模糊综合评判法来解决一些模糊不清的问题。
幼儿园经营涉及到许多方面的问题,如招生、课程设置、师资配备等,而这些问题通
常都存在一定的模糊性。
在招生问题上,幼儿园可能面临着招生人数不确定、学生素质不
同等问题,而这些问题很难用准确的数字或标准来衡量。
这时候,可以使用模糊综合评判
法将各个指标进行模糊化处理,从而根据各指标的重要性进行综合评判。
幼儿园在课程设置上也需要考虑到各个方面的因素。
幼儿园的课程设置需要兼顾娱乐
性和教育性,需要考虑到幼儿的兴趣和发展需要。
而这些指标也很难用准确的标准来衡量,因此可以使用模糊综合评判法将各个指标进行模糊化处理,得出最优的课程设置。
幼儿园在师资配备上也需要进行合理的决策。
因为幼儿园的教师对于幼儿的教育起着
至关重要的作用,所以在师资配备上需要考虑到师资的数量和质量等因素。
而这些指标也
是模糊的,可以使用模糊综合评判法进行综合评价,从而得出最优的师资配备方案。
模糊综合评判法在幼儿园决策中的应用还可以涉及到其他方面的问题,比如幼儿园的
设施建设、教材选用等。
在这些问题上,也存在着一定的模糊性,可以利用模糊综合评判
法来得出最优的决策方案。
模糊综合评判法在企业安全生产管理评价中的应用一、前言安全生产管理从对象而言,包括人的行为和物的状态;从部门而言几乎包括了安全、生产、技术、财务等所有部门,因此对企业安全管理进行评价将涉及诸多方面的因素,现在普遍运用的定量、定性评价方法都不能适用。
本文介绍了建立在模糊数学原理与方法基础上对企业安全生产管理的模糊综合评判模型。
模糊综合评判数学模型简单、容易掌握,适合于对多因素、多层次的复杂问题的评价,在很多领域中得到了广泛的运用。
二、模糊综合评判的数学模型模糊综合评判的理论基础是模糊映射与模糊变换、模糊综合评判的数学模型及其应用。
安全生产管理模糊综合评判模型就是运用模糊数学的方法将与安全生产管理有关因素组成一个评价因素集V,安全生产管理的状态组成一个评价集U,根据这2个集合得到一个模糊评判集R,结合安全生产管理的隶属度μ,对安全生产管理状况做出评判。
在安全生产管理评价中需考虑的因素多且具不同的层次一般采用二级模糊综合评判法。
1、确定评价因素集V将论域(企业安全生产管理)划分为n个评价因素集:V={V1,V2,V3……Vn}其中Vi(i=1,2,3……n)代表各待评价的因素。
对各评价因素Vi继续分解,设定为:Vi={Vi1,Vi2,Vi3……Vim}其中Vij(j=1,2,3……m)以检查项目进行归纳。
2、确定评判集U将各因素的状况分为j个评价级别,安全生产管理评价中一般分为好、较好、中、较差、差5个评价等级:U={U1,U2,U3 (5)3、确定权重集A根据各因素的重要程度,确定评价论域中各评价因素集V的归一化权重分配:A={a1,a2,a3……an}且4、确定隶属度μ隶属函数是模糊综合评判方法的关键之一,它是一种对不能精确定量表述的事物现象、规律及进程模糊陈述的表达式,是对模糊概念贴近程度的度量。
因此,隶属函数确定是否符合实际情况,会直接影响到分析结果的正确性。
目前确定隶属函数的方法通常用模糊统计方法或者是凭实际经验。
模糊综合评价法案例模糊综合评价法是一种常用的多指标决策方法,它可以帮助决策者在具有多个评价指标的情况下,对各个方案进行综合评价,从而找到最优的决策方案。
下面我们通过一个案例来具体介绍模糊综合评价法的应用。
某公司需要选定一个供应商,以满足其原材料采购需求。
为了选择最优的供应商,公司需要考虑多个指标,包括价格、交货周期、质量等。
为了进行综合评价,公司决定采用模糊综合评价法。
首先,公司确定了三个评价指标,价格、交货周期和质量。
然后,针对每个指标,公司对供应商进行评价。
在评价过程中,由于供应商的表现可能存在一定的不确定性,公司采用了模糊数来描述评价结果。
比如,对于价格指标,公司可能认为某供应商的价格在便宜和昂贵之间存在一定的模糊性,于是可以用“价格便宜”的模糊数来描述其价格水平。
接下来,公司需要确定各个评价指标的权重。
在实际应用中,评价指标的重要性往往不同,因此需要对各个指标进行加权。
公司可以通过专家打分、层次分析法等方法来确定各个指标的权重。
然后,公司对每个供应商的评价结果进行模糊综合评价。
具体来说,对于每个供应商的每个指标,公司根据其模糊数和权重,计算出一个综合评价值。
最终,通过比较各个供应商的综合评价值,公司可以找到最优的供应商。
通过模糊综合评价法,公司成功地选择了最优的供应商,并在原材料采购中取得了良好的效果。
这个案例充分展示了模糊综合评价法在多指标决策中的优势和应用价值。
总之,模糊综合评价法是一种非常有效的多指标决策方法,它可以帮助决策者在不确定的环境下进行综合评价,找到最优的决策方案。
在实际应用中,我们可以根据具体情况,灵活运用模糊综合评价法,为企业的决策提供有力的支持。
层次分析法和模糊综合评判法
层次分析法和模糊综合评判法在化工园区(聚集区)的应用
化工园区(聚集区)是非常复杂的系统,采用层次分析法和模糊综合评判法相结合,对化工园区(聚集区)的整体安全性进行分析和评价,该方法属于一种简单易行的化工园区(聚集区)安全评价方法。
该法有以下几点结论:
1)应用模糊综合评价研究方法,结合化工园的实际情况,客观、合理地选择评价指标,建立了化工园区安全现状评价模型。
2)应用模糊综合评价法,可以全面考虑影响系统安全的各种因素,将定性和定量的分析有机地结合起来,既能够充分体现评价因素和评价过程的模糊性,又尽量减少个人主观臆断所带来的弊端,比一般的评价方法更符合客观实际。
评价结果可信、可靠。
3)该方法既可以用于系统的整体安全评价也可以用于局部的系统评价。
如:可以评价一个园区的安全状况以及园区中某个企业的安全状况,甚至企业中某部分作业的安全状况。
4)该方法易于实现计算机程序化,在计算机上即可得出评价人员因素评价结果,直观易懂、可操作性强,是一种较好的系统安全评价方法。
5)根据化工园区(聚集区)安全现状模糊综合评价的结果,可以了解整个园区的安全现状,可以通过对安全等级较差的指标的进一步分析提出合理的安全对策措施,实现改善园区安全状况的目标。
模糊综合评价法案例模糊综合评价法是一种利用模糊数学理论对多指标进行综合评价的方法。
它能够充分考虑各指标之间的相互影响和重要性,避免了传统评价方法的主观性和简单性。
下面通过一个案例来解释模糊综合评价法的具体应用。
假设某汽车公司需要对不同汽车品牌进行综合评价,共有以下五个指标:品牌知名度、市场占有率、客户满意度、技术创新能力和产品质量。
每个指标的评价等级分为优秀、良好和一般。
首先,我们需要将每个指标的评价等级转化为模糊数。
例如,品牌知名度的优秀、良好和一般分别转化为0.8、0.5和0.2。
同样,其他指标也进行相应转化。
接着,我们需要确定各指标的权重。
权重可以通过专家调查、层次分析法等方法获取。
假设我们已经得到了各指标的权重,品牌知名度权重为0.3,市场占有率权重为0.2,客户满意度权重为0.15,技术创新能力权重为0.25,产品质量权重为0.1。
然后,根据模糊综合评价法的计算公式,我们可以计算出每个品牌的评价值。
评价值可以表示为以下形式:品牌A:0.8 * 0.3 + 0.7 * 0.2 + 0.6 * 0.15 + 0.5 * 0.25 + 0.9 * 0.1 = 0.71品牌B:0.9 * 0.3 + 0.6 * 0.2 + 0.7 * 0.15 + 0.8 * 0.25 + 0.8 * 0.1 = 0.76品牌C:0.7 * 0.3 + 0.8 * 0.2 + 0.9 * 0.15 + 0.6 * 0.25 + 0.7 * 0.1= 0.74根据评价值的大小,我们可以得出品牌B最好,品牌A其次,品牌C最差的综合评价结果。
通过上述案例,我们可以看出模糊综合评价法能够在多指标综合评价中充分考虑各指标之间的权重和相互关系,避免了传统评价方法的主观性和简单性。
同时,该方法还可以提供具体的评价结果,便于决策者进行决策和比较。
总之,模糊综合评价法是一种有效的多指标综合评价方法,可广泛应用于各个领域的评价和决策过程中。
模糊综合评价法案例模糊综合评价法是一种综合评价方法,它能够有效地处理那些难以用传统的确定性数学方法来描述的问题。
在实际应用中,模糊综合评价法被广泛应用于各个领域,如经济学、管理学、工程技术等。
下面我们将通过一个案例来介绍模糊综合评价法的具体应用。
假设某公司需要对几位员工的绩效进行评价,而且评价指标涉及到工作态度、工作效率、团队合作等多个方面。
由于这些指标往往难以用确定性数值来描述,因此可以采用模糊综合评价法来进行评价。
首先,我们需要确定评价指标的隶属函数。
隶属函数描述了每个评价指标对应的模糊集合,它可以用来量化每个指标的表现程度。
比如,对于工作态度这一指标,我们可以将其划分为“优秀”、“良好”、“一般”、“差”等模糊集合,然后确定每个模糊集合的隶属函数。
接下来,我们需要确定每个评价指标的权重。
评价指标的权重反映了其在整体评价中的重要程度。
在确定权重时,可以采用专家打分法、层次分析法等方法,以确保权重的客观性和准确性。
然后,我们可以利用模糊综合评价法来对员工的绩效进行评价。
具体来说,我们可以将员工的绩效表现转化为模糊数,然后利用模糊综合评价法对这些模糊数进行综合评价,得出最终的评价结果。
最后,我们需要对评价结果进行解释和分析。
通过对评价结果的解释和分析,可以帮助决策者更好地理解员工的绩效表现,并进一步采取相应的管理措施。
通过上述案例,我们可以看到模糊综合评价法在实际应用中的重要作用。
它不仅能够有效地处理那些难以用确定性数学方法来描述的问题,而且还能够为决策者提供客观、准确的评价结果,帮助其做出更好的决策。
总之,模糊综合评价法作为一种综合评价方法,在实际应用中具有重要的意义和价值。
我们相信随着对模糊综合评价法的深入研究和实践应用,它将会在更多领域发挥重要作用,为各种复杂问题的评价和决策提供更加科学、合理的方法和手段。
第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
表3-8 某区域的模糊综合评判⑴ 分层作综合评判{}51511512513,,u u u u =,权重{}511/3,1/3,1/3A =,由表3-8对511512513,,u u u 的模糊评判构成的单因素评判矩阵:510.600.710.770.600.820.950.650.760.600.710.700.600.800.950.650.760.910.900.930.910.950.930.810.89R ⎛⎫ ⎪= ⎪ ⎪⎝⎭用模型(,)M •+计算得:515151(0.703,0.773,0.8,0.703,0.857,0.943,0.703,0.803)B A R ==类似地:525252(0.895,0.885,0.785,0.81,0.95,0.77,0.775,0.77)B A R ==5550.7030.7730.80.7030.8570.9430.7030.8030.8950.8850.7850.810.950.770.7750.77(0.40.30.20.1)0.810.940.890.600.650.950.950.890.900.600.920.600.600.840.650.81B A R ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭=(0.802,0.823,0.826,0.704,0.818,0.882,0.769,0.811)4440.600.950.600.950.950.950.950.950.600.690.920.920.870.740.890.95(0.10.10.40.4)0.950.690.930.850.600.600.940.780.750.600.800.930.840.840.600.80B A R ⎛⎫⎪⎪== ⎪⎪⎝⎭=(0.8,0.68,0.844,0.899,0.758,0.745,0.8,0.822)1110.910.850.870.980.790.600.600.950.930.810.930.870.610.610.950.87(0.250.250.250.25)0.880.820.940.880.640.610.950.910.900.830.940.890.630.710.950.91B A R ⎛⎫⎪⎪== ⎪⎪⎝⎭=(0.905,0.828,0.92,0.905,0.668,0.633,0.863,0.91)(2)高层次的综合评判{}12345,,,,U u u u u u =,权重{}0.1,0.2,0.3,0.2,0.2A =,则综合评判 12345B B B A R A B B B ⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪⎝⎭0.9050.8280.920.9050.6680.6330.8630.910.950.900.90.940.600.910.950.94 =(0.10.20.30.20.2)0.900.900.870.950.870.650.740.610.80.680.8440.8990.7580.7450.80.8220.8020.8230.8260.7040.8180.8820.7690.811⎛ ⎝⎫⎪⎪⎪⎪⎪ ⎪⎭ =(0.871,0.833,0.867,0.884,0.763,0.766,0.812,0.789)由此可知,8块候选地的综合评判结果的排序为:D,A,C,B ,G,H,F,E,选出较高估计值的地点作为物流中心。
应用模糊综合评判方法进行物流中心选址,模糊评判模型采用层次式结构,把评判因素分为三层,也可进一步分为多层。
这里介绍的计算模型由于对权重集进行归一化处理,采用加权求和型,将评价结果按照大小顺序排列,决策者从中选出估计值较高的地点作为物流中心即可,方法简便。
五、在人事考核中的应用随着知识经济时代的到来,人才资源已成为企业最重要的战略要素之一,对其进行考核评价是现代企业人力资源管理的一项重要内容。
人事考核需要从多个方面对员工做出客观全面的评价,因而实际上属于多目标决策问题。
对于那些决策系统运行机制清楚,决策信息完全,决策目标明确且易于量化的多目标决策问题,已经有很多方法能够较好的将其解决。
但是,在人事考核中存在大量具有模糊性的概念,这种模糊性或不确定型不是由于事情发生的条件难以控制而导致的,而是由于事件本身的概念不明确所引起的。
这就使得很多考核指标都难以直接量化。
在评判实施过程中,评价者又容易受人际关系、经验等主观因素的影响,因此对人的综合素质评判往往带有一定的模糊性与经验性。
这里说明如何在人事考核中运用模糊综合评判,从而为企业员工职务的升降、评先晋级、聘用等提供重要依据,促进人事管理的规范化和科学化,提高人事管理的工作效率。
1.一级模糊综合评判在人事考核中的应用在对企业员工进行考核时,由于考核的目的、考核对象、考核范围等的不同,考核的具体内容也会有所差别。
有的考核,涉及的指标较少,有些考核,又包含了非常全面丰富的内容,需要涉及很多指标。
鉴于这种情况,企业可以根据需要,在指标个数较少的考核中,运用一级模糊综合评判,而在问题较为复杂,指标较多时,运用多层模糊综合评判,以提高精度。
一级模糊综合评价模型的建立,主要包括以下步骤。
⑴ 确定因素集对员工的表现,需要从多方面进行综合评判,如员工的工作业绩、工作态度、沟通能力、政治表现等。
所有这些因素构成了评价体系集合,即因素集,记为:12{,,,}n U u u u =⑵ 确定评语集由于每个指标的评价值的不同,往往会形成不同的等级。
如对工作业绩的评价有好、较好、中等、较差、很差等。
由各种不同决断构成的集合被称作评语集 记为:12{,,,}m V v v v =⑶ 确定各因素的权重一般情况下,因素集中的各因素在综合评价中所起的作用是不同的,综合评价结果不仅与各因素的评价有关,而且在很大程度上还依赖与各因素对综合评价所起的作用,这就需要确定一个各因素之间的权重分配,它是U 上一个模糊向量,记为:12(,,,)n A a a a =其中i a 表示第i 个因素的权重,且11ni i a ==∑。
确定权重的方法很多,例如Delphi法、加权平均法、众人评估法等。
⑷ 确定模糊综合判断矩阵对第i 个指标来说,对各个评语的隶属度为V 上的模糊子集。
12(,,,)i i i in R r r r =,各指标的模糊综合判断矩阵为:111212122212m m n n nm r r r r r r R r r r ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦它是一个从U 到V 的模糊关系矩阵。
⑸ 综合评判如果有一个从U 到V 的模糊关系()ij n m R r ⨯=,那么利用R 就可以得到一个模糊变换::()()R T F U F V −−→由此变换,就可得到综合评判结果*B A R =。
综合后的评判可看作是V 上的模糊向量,记为:12(,,,)m B b b b =B 的求法有很多种,例如用Zadeh 算子。
这种方法很简单,但算子比较粗糙,为了加细算子,可以使用普通乘法算子等。
下面以某单位对员工的年终综合评定为例,来说明其应用。
⑴ 取因数集{}234,,,i U u u u u =政治表现工作能力工作态度工作成绩; ⑵ 取评语集{}12345,,,V v v v v v =优秀良好一般,较差差; ⑶ 确定个因素的权重:(0.25,0.2,0.25,0.3)A = ⑷ 确定模糊综合判断矩阵:对每个因素i u 做出评价。
① 1u 比如由群众评议打分来确定1(0.1,0.5,0.4,0,0)R =上面式子表示,参与打分的群众当中,有10%的人认为政治表现优秀,50%的人认为政治表现良好,40%的人认为政治表现一般,认为政治表现较差或差的人为0,用同样的方法对其它因素进行评价。
② 23,u u 由部门领导打分来确定2(0.2,0.5,0.2,0.1,0)R =3(0.2,0.5,0.3,0,0)R =③ 4u 由单位考核组员打分来确定4(0.2,0.6,0.2,0)R =以i R 为i 行构成评价矩阵0.10.50.400.20.50.20.100.20.50.3000.20.60.200R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 它是从因素集U 到评语集V 的一个模糊关系矩阵。