第八章扭转作用
- 格式:pptx
- 大小:613.81 KB
- 文档页数:53
第八章 圆轴的扭转工程构件一般可分为三类。
第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。
此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。
若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。
本课程主要讨论直杆,这是一种最简单的构件。
如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。
为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。
前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。
§8.1扭转的概念和实例工程中承受扭转的构件是很常见的。
如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。
又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。
以上二例都是承受扭转的构件实例。
由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。
本章亦仅限于讨论直圆轴的扭转问题。
图8.2 传动轴图8.3所示为等截面直圆轴扭转问题的示意图。
扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。
如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。
圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。
图8.3中,φAB 表示截面B 相对于截面A 的扭转角。
必须指出,工程中的传动轴,除受扭转作用外,往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。
这类问题属于组合变形,将在以后研究。
§8.2 扭矩与扭矩图已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。
材料力学扭转材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而扭转则是材料力学中非常重要的一种变形形式。
在工程实践中,我们经常会遇到各种扭转现象,比如轴承、螺纹、螺栓等零部件的扭转变形。
因此,了解材料力学中的扭转现象对于工程设计和实际应用具有重要意义。
首先,我们来看一下什么是扭转。
扭转是指材料在外力作用下沿着一定轴线发生的旋转变形。
在扭转过程中,材料内部会受到剪切应力的作用,从而导致材料发生扭转变形。
扭转变形不仅会影响材料的外观和尺寸,还会对材料的力学性能产生影响。
在材料力学中,我们通常用剪切模量来描述材料的扭转性能。
剪切模量是指材料在扭转过程中所表现出的抗扭转能力。
剪切模量越大,材料的抗扭转能力就越强,反之则越弱。
因此,在工程设计中,我们需要根据材料的剪切模量来选择合适的材料,以满足工程的扭转性能要求。
除了剪切模量,材料的断裂韧性也是影响材料扭转性能的重要因素。
断裂韧性是指材料在扭转过程中抵抗断裂的能力。
材料的断裂韧性越大,其扭转性能就越好,能够更好地抵抗扭转变形和破坏。
因此,在工程设计中,我们还需要考虑材料的断裂韧性,以确保材料在扭转过程中不会发生过早的断裂。
此外,材料的微观结构也会对其扭转性能产生影响。
晶粒的大小、形状以及晶界的性质都会影响材料的扭转性能。
一般来说,晶粒越细小,晶界越强化,材料的扭转性能就会越好。
因此,在材料的制备过程中,我们需要通过控制材料的微观结构来提高其扭转性能。
总的来说,材料力学中的扭转现象是工程设计中不可忽视的重要问题。
了解材料的扭转性能,选择合适的材料,并通过控制材料的微观结构来提高其扭转性能,对于保证工程零部件的稳定性和可靠性具有重要意义。
希望本文能够对大家对材料力学中的扭转问题有所帮助。