7-05,一轮回扣,2018高考数学,简单几何体的面积和体积
- 格式:doc
- 大小:1.23 MB
- 文档页数:14
第5讲 简单几何体的再认识(表面积与体积)1.(2016·陕西省质量检测)一个几何体的三视图如图所示,那么该几何体的体积是( ) A .3 B .2 C.43 D.23解析:选D.由三视图可得该几何体是三棱锥,高为2,底面是直角边长分别为1和2的直角三角形,所以其体积为V =13×2×⎝ ⎛⎭⎪⎫12×2×1=23.2.如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A.312B.34C.612 D.64解析:选A.三棱锥B 1ABC 1的体积等于三棱锥A B 1BC 1的体积,三棱锥A B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.3.(2016·合肥模拟)某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D .由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.(2015·高考重庆卷改编)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+π C.13+2π D.23+2π 解析:选A.由三视图可知该几何体是由一个半圆柱和一个三棱锥组成的.由图中数据可得三棱锥的体积V 1=13×12×2×1×1=13,半圆柱的体积V 2=12×π×12×2=π,所以V =13+π.5.(2016·许昌、新乡、平顶山三市联考)已知某几何体的三视图如图所示,则该几何体的体积为( ) A.8π3 B .3π C.10π3D .6π解析:选B.根据几何体的三视图可知该几何体为一个平面截去圆柱上半部分的一半后剩下的部分,所求几何体的体积为V =π×12×2+12π×12×2=3π.6.(2016·郑州质量预测)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C.由题可得该几何体是一个以主视图为底面的三棱柱,如图所示(图中的三棱柱截去一部分所剩几何体),对应主视图是边长为4的正方形,对应的四棱锥的高为2,可知主视图中正方形的中心即为其外接球的球心,则R =22,则其外接球表面积为S =4πR 2=32π.7.一个六棱柱的底面是正六边形,其侧棱垂直于底面,且该六棱柱的体积为98,底面周长为3,则棱柱的高h =________.解析:因为底面周长为3,所以正六边形的边长为12,则正六边形的面积为338.又因为六棱柱的体积为98,即338h =98,所以h = 3.答案: 38.(2015·高考天津卷改编)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为 V =13π×12×1×2+π×12×2=83π. 答案:83π9.如图,在三棱柱A 1B 1C 1ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F ADE 的体积为V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1∶V 2=________.解析:设三棱柱的底面ABC 的面积为S ,高为h ,则其体积为V 2=Sh .因为D ,E 分别为AB ,AC 的中点,所以△ADE 的面积等于14S .又因为F 为AA 1的中点,所以三棱锥F ADE 的高等于12h ,于是三棱锥F ADE 的体积V 1=13×14S ·12h =124Sh =124V 2,故V 1∶V 2=1∶24.答案:1∶2410.(2016·太原模拟)已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D ABC ,当三棱锥D ABC 的体积取最大值时,其外接球的体积为______. 解析:作出直角梯形ABCD 如图所示,过C 作CE ⊥AB 于E ,则CD =AD =1,AC =2,故CE =EB=1,故CB =2,故AC 2+BC 2=AB 2=4,即∠BCA =90°;可知,当平面ADC ⊥平面ABC 时,三棱锥D ABC 的体积最大,即为三棱锥B ADC 的体积最大,此时,将三棱锥B ADC 补成长方体,可知该长方体的长、宽、高分别为1,1,2,故外接球的半径R =1+1+22=1,故其外接球体积V =43πR 3=43π.答案:43π11.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得:CE =2,DE =2,CB =5,S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π.12.一个几何体的三视图如图所示.已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ; (2)求该几何体的表面积S .解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形,故S =2×(1×1+1×3+1×2)=6+2 3.1.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 解析:选C.如图,设球的半径为R ,因为 ∠AOB =90°,所以S △AOB =12R 2.因为 V O ABC =V C AOB ,而△AOB 面积为定值,所以当点C 到平面AOB 的距离最大时,V O ABC 最大,所以当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ABC 最大为13×12R 2×R =36,所以R =6,所以球O 的表面积为4πR 2=4π×62=144π.故选C. 2.(2016·石家庄质检)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球的表面积为______.解析:由三视图知,该几何体为一个横放着的三棱柱,其底面是边长为2的正三角形,侧棱长为2,三棱柱两底面的中心连线的中点与三棱柱的顶点的连线就是外接球的半径,设其为r ,则r =⎝ ⎛⎭⎪⎫2332+12=73,则球的表面积为S =4πr 2=4π·⎝⎛⎭⎪⎫ 732=28π3.答案:28π33.一几何体按比例绘制的三视图如图所示(单位:m): (1)试画出它的直观图; (2)求它的表面积和体积. 解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截去一个三棱柱,且该几何体的体积是以A 1A ,A 1D 1,A 1B 1为棱的长方体的体积的34,在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1于E , 则四边形AA 1EB 是正方形, AA 1=BE =1,在Rt △BEB 1中,BE =1,EB 1=1, 所以BB 1=2,所以几何体的表面积S =S 正方形ABCD +S 矩形A 1B 1C 1D 1+2S 梯形AA 1B 1B +S 矩形BB 1C 1C +S 正方形AA 1D 1D=1+2×1+2×12×(1+2)×1+1×2+1=(7+2)(m 2).几何体的体积V =34×1×2×1=32(m 3).所以该几何体的表面积为(7+2)m 2,体积为32m 3.4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D ABC 的体积. 解:(1)证明:在题图1中,可得AC =BC =22,从而AC 2+BC 2=AB 2, 故AC ⊥BC ,取AC 的中点O ,连接DO , 则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC , DO 平面ADC , 从而DO ⊥平面ABC , 所以DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,所以BC ⊥平面ACD .(2)由(1)可知,BC 为三棱锥B ACD 的高,BC =22,S △ACD =2.所以V D ABC =V B ACD =13S △ACD ·BC=13×2×2 2 =423.。
2018版高考数学大一轮复习第八章立体几何 8.2 空间几何体的表面积与体积教师用书文新人教版1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台和球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( √)(2)锥体的体积等于底面积与高之积.( ×)(3)球的体积之比等于半径比的平方.( ×)(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √)(5)长方体既有外接球又有内切球.( ×)(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( ×)1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.32cm答案 B解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.2.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺答案 B解析 设圆柱底面半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.5.如图,三棱柱ABC -A 1B 1C 1的体积为1,P 为侧棱B 1B 上的一点,则四棱锥P -ACC 1A 1的体积为______.答案 23解析 设点P 到平面ABC ,平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =111A B C S ,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +111P A B C V -=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而11P ACC A V -=V -V ′=1-13=23.题型一 求空间几何体的表面积例1 (1)(2017·淮北月考)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)A (2)12解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为 6×(4-12)+2×34×(2)2=21+ 3.故选A.(2)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.答案 26解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S 长方体表-2S 半圆柱底-S 圆柱轴截面+S 半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V =13×1×1×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π,故选C.命题点2 求简单几何体的体积例3 (2016·江苏改编)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.若AB =6 m ,PO 1=2 m ,则仓库的容积为________m 3.答案 312解析 由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.(2)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( )A .3 B.32 C .1 D.32答案 (1)33(2)C 解析 (1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h =1,则体积V =13Sh =13×(12×23×1)×1=33.(2)在正△ABC 中,D 为BC 的中点,则有AD =32AB =3,11DB C S ∆=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , 平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴11A B DC V -三棱锥=1311DB C S ∆·AD =13×3×3=1.题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =522+62=132. 引申探究1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3. 2.已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.已知侧棱和底面边长都是32的正四棱锥,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为22-122=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4答案 A解析 如图,设球心为O ,半径为r ,则在Rt△AOF 中,(4-r )2+(2)2=r 2, 解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.15.巧用补形法解决立体几何问题典例 (2016·青岛模拟)如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5,则此几何体的体积为________.思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ×AA ′=12×24×8=96.答案 961.(2016·合肥质检)某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2答案 D解析 由三视图可得该几何体是平放的直三棱柱,该直三棱柱的底面是腰长为2的等腰直角三角形、侧棱长为4,所以表面积为12×2×2×2+4×2×2+4×22=20+82,故选D.2.(2016·大同模拟)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A.+π33B.+π36C.+π33D .(4+π) 3答案 B解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为 3.则V =13·⎝ ⎛⎭⎪⎫12π+4·3=+π36.故选B.3.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3D .2π答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2答案 B解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.5.(2016·湖北优质高中联考)甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π 答案 B解析 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B.6.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 答案 B解析 由题意知米堆的底面半径为163尺,体积V =13×14πR 2·h =3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).7.(2016·北京)某四棱柱的三视图如图所示,则该四棱柱的体积为________.答案 32解析 由三视图知该四棱柱为直四棱柱, 底面积S =+2=32,高h =1, 所以四棱柱体积V =S ·h =32×1=32.8.(2016·新疆乌鲁木齐地区二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________. 答案 7π解析 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥CD .在Rt△AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt△EFA 中,∵AF =12AB =62,AE =102,∴EF =1.取EF的中点为O ,连接OA ,则OF =12.在Rt△OFA 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 9. (2016·三门峡陕州中学对抗赛)如图所示,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.则三棱锥P -ABC 体积的最大值为________.答案 13解析 V P -ABC =13PO ·S △ABC ,当△ABC 的面积最大时,三棱锥P -ABC 体积达到最大值.当CO ⊥AB时,△ABC 的面积最大,最大值为12×2×1=1,此时V P -ABC =13PO ·S △ABC =13.10.(2016·武汉模拟)已知某几何体的三视图如图所示,则该几何体的体积为________.答案 3π解析 方法一 由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.方法二 由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用两个大小与形状完全相同的该几何体补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.11.(2016·全国丙卷)如图,四棱锥PABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体NBCM 的体积. (1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB , 所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N-BCM 的体积V N-BCM =13×S △BCM ×PA 2=453.*12.(2016·湖北七校联考)如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.解 (1)当M 是线段AE 的中点时,AC ∥平面MDF . 理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE -BCF =V ADE -B ′CF -V F -BB ′C =8-13×⎝ ⎛⎭⎪⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M -DEF =13×⎝ ⎛⎭⎪⎫12×2×4×1=43,所以V ADM -BCF =203-43=163,所以两几何体的体积之比为43∶163=1∶4.。
第二节 空间几何体的表面积与体积【考点点知】知己知彼,百战不殆新课标中空间几何体的表面积和体积有加强的趋势,考试的要求也有所提高.重点是柱体和多面体,特别是不规则几何体的表面积和体积的计算,高考中一般以选择、填空、解答题的形式出现,难度不大,但是常与其他问题一起考查.体现了“多一点想,少一点算”的命题思想.考点一: 直棱柱、正棱柱、正棱锥、正棱台的概念1.侧棱垂直于底面的棱柱叫做直棱柱.底面是正多边形的直棱柱叫做正棱柱.2.如果一个棱锥的底面是正多边形,并且顶点在底面上的正投影是底面中心,我们称这样的棱锥为正棱锥.正棱锥的侧棱长相等.3.正棱锥被平行于底面的平面所截,截面和底面的部分叫做正棱台.4. 棱柱的分类(1)按底面多边形的边数分类:三棱柱,四棱柱,……,n 棱柱. (2)按侧棱与底面的位置关系分类: 斜棱柱(侧棱与底面不垂直)棱柱 正棱柱(底面为正 直棱柱(侧棱垂直于底面) 多边形的直棱柱) 其他直棱柱考点二: 直棱柱、正棱锥、正棱台的侧面积一些简单的多面体可以沿着多面体的某些棱将它剪开面成平面图形,这个平面图形叫做该多面体的平面展开图.1.直棱柱的侧面展开图是矩形, 这个矩形的长等于棱柱的底面周长c ,宽等于直棱柱的高h ,因此直棱柱的侧面积是S ch =直棱柱侧.2.棱锥的侧面展开图是由各个侧面三角形组成的,展开图的面积就是棱锥的侧面积.如果正棱锥的底面周长为c ,斜高(即侧面等腰三角形底面上的高)为h ',则它的侧面积是12S ch '=正棱锥侧. 3.若正棱台的上、下底面的周长分别为,c c ',斜高为h ',则它的侧面积是1()2S c c h ''=+正棱台侧. 考点三: 圆柱、圆锥、圆台的侧面积1.圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图.它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高.这个长方形又叫圆柱的侧面展开图.图1所示, 就是圆柱的平面展开图.若圆柱的底面圆周为c ,底面圆半径为r ,母线长为l ,则圆柱体的侧面积公式2S cl rl π==圆柱侧.2.圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图.它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图.具体图形见图2所示,就是圆锥的平面展开图.若圆锥的底面圆周长为c ,底面圆半径为r ,母线长为l ,则圆锥体的侧面积公式12S cl rl π==圆锥侧.3.圆台锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆台体剪开铺平,就得到圆台锥的平面展开图.它是由一个半径为圆台锥体的母线长,两弧长分别等于圆台体上下底面圆的周长的扇环形和两个圆组成的,这个扇环形又叫圆台的侧面展开图.具体图形见图3所l c 'c c c cc l r r l cc 图1 图2 图3 示,就是圆台的平面展开图.若圆台的上、下底面圆周分别为,c c ',上、下底面圆半径为分别,r r ',母线长为l ,则圆台锥体的侧面积公式1()()2S c c l r r l π''=+=+圆台侧. 圆柱、圆锥、圆台的表面积就是侧面和底面的和.考点四: 祖暅原理与几何体体积1.祖暅原理:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.2.长方体的长、宽、高分别为,,a b c ,底面积为S ,高为h ,那么它的体积为V abc =长方体或V Sh =长方体.3.柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh =柱体.4.棱锥的底面积为S ,高为h ,那么它的体积为13V Sh =锥体. 5.台体(棱台、圆台)的体积可以转化为锥体的体积来计算,如果台体的上、下底面面积分别为S '、S ,高是h ,那么它的体积为1()3V h S S '=台体. 考点五: 球的体积与表面积1.引理.球面内接圆台(圆台上、下底面是球的两个平行截面)的高为h ,球心到母线的距离为P ,那么圆台的侧面积为2πPh .2.定理.球面面积等于它的大圆面积的4倍,即24S R π=球面.3.球体积公式V =34πR 3. 【考题点评】分析原因,醍醐灌顶 例1.(基础·2007湛江市模拟)如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为 (不考虑接触点)A . 6+3+πB . 18+3+π4C . 18+23+πD . 32+π正视图 侧视图俯视图SACBOPABCD OM N E h 2h 1h 1F思路透析:由三视图可知,该几何体为一个底边边长为2的等边三角形,高为3的正三棱柱与一个半径为1的球组合而成的.该几何体的表面积222232341184S ππ=+⨯⨯+⨯=+, 故应选C . 点评:由三视图想象几何体时要根据"长对正,宽相等,高平齐"的基本特征,想象视图中每部分对应的实物部分的形象.特别注意几何体中与投影面垂直或平行的线及面的位置.例2.(基础·2007宁夏卷文科11)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A.π B.2π C.3π D.4π思路透析:如右图所示,OS=OA=OB=OC=r ,又SO ⊥平面ABC, 可得SO 的长即为三棱锥S-ABC 的高.∵ACBC ⊥, AC =,∴BC AC ==,∴3243411)32S ABCr V V r ππ-==⨯⨯⨯球三棱锥,故应选D.点评:考生不能够定位球心的位置,而使球的半径求解错误,部分考生书写锥体积公式时遗忘了三分之一,增加了检验的时间而出现解答基本题的延时现象.灵活抓住线面垂直的关系,迅速定位球心位置找出求半径与三棱锥棱长间的关系,可降低出错率.例3.(综合·2007宁夏卷理科12)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =()2:2思路透析:如图所示,正四棱锥P-ABCD 的一个侧面与正四面体P-CDF 的一个侧面重合,过点P 作PO ⊥面ABCD 于点O, 取CD 、PF 边的中点M 、N,连结MN,则MN=PO=1h , 过点P 作PE ⊥FM 于点F , 则PE ⊥平面FCD, 即PE=2h , 又∵平面PAB//平面FCD, ∴2h h =,设棱长为a ,则在PMF ∆中1122PMF S PF MN FM PE ∆=⋅=⋅,∴122h MN MF h PE PF ===,∴12::2:2h h h =, 故应选B. 点评:不少考生的解题过程中看错了三条高线各自对应的几何体,使求得的结论出现颠倒的现象,仍有不少考生不能迅速定位高线的位置,找出各条高线间的相互关系.无论是什么样的几何体的高,在分析与求解时均可以化归为一个三角形的高去研究,本题中出现的三个高可以化归为一个三角形中的两条高线,通过面积公式去求得高线长之比. 例4.(综合·2006江苏9题)两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个(C )3个 (D )无穷多个思路透析:如图所示,在正方体的俯视图中,可得正八面体中 截面四边形正方形ABCD 的内接于另一个 正方形,此正方形ABCD 的面积的范围为1[,1)2S ∈∴八面体的体积1111[,)363V S =⨯∈, 即其体积的可能 值有穷多个.故应选D.点评:本题考查了正方体内接几何体的空间模型建构.通过俯视图的作图来化归分析几何问题,解决了此开放性问题.很多立体几何问题如果直接求解,空间想象不一定会很到位, 而通过三视图中的正视图或俯视图等其中之一去思考,可以实现从立几到平几间的直接过渡,巧妙解决立几问题.例5.(创新探究·2007广东卷文科17)已知某几何体的俯视图是 如图所示的矩形,正视图(或称主视图)是一个底边长为8、 高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、 高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S思路透析:由已知可得该几何体是一个底面为矩形,高为4,顶点 在底面的射影是矩形中心的四棱锥V-ABCD ;(1)()1864643V =⨯⨯⨯= (2)该四棱锥有两个侧面V AD. VBC 是全等的等腰三角形,且BC 边上的高为1h == 另两个侧面V AB. VCD 也是全等的等腰三角形,AB边上的高为25h ==,因此112(685)4022S =⨯⨯⨯⨯=+点评:本题考查了对四棱锥的三视图所表示的立体模型的识别,多数考生将高为4的等腰三角形理解为四棱锥的一个侧面,将4视侧面上的斜高而求解锥体的表面积与体积,没有正确分析得出锥体的主视图与左视图中三角形的高即为锥体的高的结论.例6.(创新探究·2007广东卷理科19)如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值 思路透析:(1)由折起的过程可知,P E ⊥平面ABC ,ABC S ∆=2254BEFBDC x S S ∆∆=⋅=21(9)12x -(0x << (2)∵21'())4V x x -, ∴(0,6)x ∈时,'()0v x > ,V(x)单调递增;6x <<'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值 (3)过F 作MF//AC 交AD 与M, 则,21212BM BF BE BEMB BE AB BC BD AB=====,PM=MF BF PF ====在△PFM 中, 84722cos 427PFM -∠==, ∴异面直线AC 与PF 所成角的余弦值为27;点评:考生对于空间几何体中体积最值的导数法求解在心理上存在很大的不适应,对异面直线所成角的作图构建把握不好,空间向量的应用时点的坐标求解及运算等均出现“马虎”性的错误.立几的综合性问题解题中要注意规范化,注意对解析式的研究,综合各种数学思想,从整体上去推理论证.【画龙点睛】探索规律,豁然开朗 1.规律总结:①首先从图形上理解三者之间的关系, 以棱台为中间图形, 当棱台的上底面与下底面为全等的多边形时,棱台视作为棱柱,此时上下底面的周长相等c c '=; 当棱台的上底面多边形缩小为一个点时,棱台视作为棱锥,此时上底面的周长为0c '=.②由此可得: 011()22c cc S ch S c c h S ch ''=='''=←−−−=+−−−→=直棱柱侧正棱台侧正棱锥侧 . ③分析过程侧重于三维实物与平面图形的转化,强调的是一种基于观察、实验操作基础上的实践能力.建议多从生活实际出发,考虑日常所常见的几何体的平面展开图,感受数学来自现实生活.(3)当柱体的上底缩小时,几何体可以近似看作是台体, 台体的上底进一步缩小,当缩小为一个点时,该几何体为锥体.还可以从台体出发作公式上和几何体上的探讨,如当台体的上底与下底相同时,几何体为柱体,当上底的缩为一个点时,几何体为一个锥体,反应到体积公式中可得下列的变化关系:11()33S S S V Sh V h S S V Sh ''=='=←−−−=+−−−→=柱体台体锥体.(4)正确运用各种方式,在图形的展开与折叠中求几何体的表面积,计算侧面积中要弄清展开图的形状及侧面展开图中各线段与原几何体的关系.在等价转化中求几何体的体积以及利用几何体的分割和补形的数学方法.计算体积的关健是根据条件找出相应的底面积和高,要充分利用多面体及旋转体的轴截面将空间问题转化为平面问题.2.学以致用:(1)在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A92π B 72π C 52π D 32π (2)过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A 1:2:3B 1:3:5C 1:2:4D 1:3:9(3)一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是(4)如图,已知正三棱柱111ABC A B C -的底面边长为1, 高为8,一质点自A 点出发,沿着三棱柱的侧面绕行 两周..到达1A 点的最短路线的长为.答案:(1)D 解析:213(1 1.51)32V V V r ππ=-=+-=大圆锥小圆锥,故应选D . (2)B 解析:从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l ==12312132::1:4:9,:():()1:3:5S S S S S S S S =--=,故应选B .(3)109Q 解析:22223,S R R R Q R πππ=+===全32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==.(4)10解析:如图,把正三棱柱展开成两个侧面积, AA 1//1A "A ,连接AA "1即为绕在正三棱柱侧面上两周的最短距离,在"∆11A AA Rt 中,6,8111="=A A AA . 则,101="AA 即值 A 从正三棱柱侧面绕绕绕两周到A 1的最短距离为10. 3.易错分析:(1)棱锥的考查点为两个特征三角形,熟悉棱锥体的几何结构可以进一步解决此问题; (2)棱柱问题常以综合问题面目出现, 此类问题以多面体、正方体、长方体综合性问题综合考查为主, 此类问题的得分往往不能得全, 解题过程中环节不齐, 思维漏洞较多, 平时应多作规范化训练.(3)对球的考察一般不会出现在大题目中,而往往以应用题为背景做简单的考察,考生要牢记表面积和体积公式(不管试卷是否提供)、熟悉一些地理术语,要求考生具有一定的空间想象能力、抽象能力以及分析问题的能力和处理问题的一定技巧;(4)对于图形的翻折问题,关健是利用翻折前后的不变量,另外,球和正方体,长方体,三棱锥的组合问题,应引起高度重视,而且有些问题也可以通过补形法转化成球内接正方体或内接长方体问题.【能力训练】学练结合,融会贯通一、选择题:1.下图是一个空间几何体的三视图,根据图中尺寸(单位:cm ),可知几何体的表面积是( )A.218cm +B.2 2cmC.218cmD.26cm +2. 棱长都是1的三棱锥的表面积为( )ABCD3.已知高为3的直三棱柱ABC —A 'B 'C '的底面边长为1的 正三角形(如图所示),则三棱锥B '—ABC 的体积为( ).(A)41 (B)21 (C)63 (D)432222俯视图侧视图正视图33CABC 'A 'B '4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A 25πB 50πC 125πD 都不对 5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A23 B 76 C 45 D 566.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A 224cm π,212cm π B 215cm π,212cmπC 224cm π,236cm π D 以上都不正确二、填空题:7. 球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍8.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________9.若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆, 则这个圆锥的底面的直径为_______________10.如图,一个简单空间几何体的三视图其主视图与左视图是边长 为2的正三角形、俯视图轮廓为正方形,则其体积是____.三、解答题:11.(如图)在底半径为2,母线长为4求圆柱的表面积12. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?13.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,CD =2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积14.一个几何体的三视图如右图所示,其中正视图和侧视 图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积; (Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论;正视图侧视图俯视图【能力训练】参考答案 一、选择题:1. A2. A3. D4. B5. D6. A 二、填空题:7. 88.316a 9.10. 334 三、解答题:11.解析:圆锥的高h =1r =,22(2S S S πππ=+=+=+侧面表面底面 12.解析:'1(),3V S S h h =+=319000075360024001600h ⨯==++.13.解析:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=V V V =-圆台圆锥222112211148()333r r r r h r h πππ=++-=. 14.解析::(Ⅰ)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的 正方形,高为CC 1=6,故所求体积是7266312=⨯⨯=V . (Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍, 故用3个这样的四棱锥可以拼成一个棱长为6的正方体, 其拼法如图2所示.证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的 正方形,于是D D AA C A ABB C ABCD C V V V 1111111---== 故所拼图形成立.BC DC 1图1A BC DD 1A 1B 1C 1 图2。
2018版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积理的全部内容。
第2讲空间几何体的表面积与体积一、选择题1.棱长为2的正四面体的表面积是().A. 3 B.4 C.4错误! D.16解析每个面的面积为:12×2×2×错误!=错误!。
∴正四面体的表面积为:4错误!.答案C2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的().A.2倍 B.2错误!倍 C。
错误!倍 D。
错误!倍解析由题意知球的半径扩大到原来的错误!倍,则体积V=错误!πR3,知体积扩大到原来的2错误!倍.答案B3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为 ( ).A.48 B.64 C.80 D.120解析据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如图,PE为侧面△PAB的边AB上的高,且PE=5.∴此几何体的侧面积是S=4S△PAB=4×错误!×8×5=80(cm2).答案C4.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( ).A。
错误!B。
错误! C.错误! D.错误!解析在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,∴SA=错误!=错误!;同理SB=3。
考点27 几何体的体积一、 知识储备汇总与命题规律展望 1.知识储备汇总: 1.1多面体的体积公式表中S 表示面积,',c c 分别表示上、下底面周长,h 表斜高,h′表示斜高,l 表示侧棱长. 1.2旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,12,r r 分别表示圆台 上、下底面半径,R 表示半径. 1.3求体积常见方法①直接法(公式法)直接根据相关的体积公式计算;②转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积;③分割法求和法:把所求几何体分割成基本几何体的体积;④补形法:通过补形化归为基本几何体的体积;⑤四面体体积变换法;⑥利用四面体的体积性质:(ⅰ)底面积相同的两个三棱锥体积之比等于其底面积的比;(ⅱ)高相同的两个三棱锥体积之比等于其底面积的比;(ⅲ)用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方.求多面体体积的常用技巧是割补法(割补成易求体积的多面体.补形:三棱锥⇒三棱柱⇒平行六面体;分割:三棱柱中三棱锥、四棱锥、三棱柱的体积关系是1:2:3和等积变换法(平行换点、换面)和比例(性质转换)法等. 1.4以三视图为载体的几何体的体积问题根据三视图,画出对应几何体的直观图,根据三视图确定几何体中点、线、面的位置关系及有关量的值,分析几何体的构成,根据几何体的构成特点,确定求体积的方法,求出几何体的体积.2.命题规律展望:几何体的体积是高考考查的重点和热点,主要以三视图为载体考查简单几何体的体积或以球与多面体、旋转体切接为载体考查几何体或球体的体积,难度为容易、中档或难题,题型为选择、填空题,分值为5-10分. 二、题型与相关高考题解读 1.多面体的体积 1.1考题展示与解读例1 【2017课标1,理16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【命题意图探究】本题主要考查锥体体积的计算及利用导数求体积的最值,是难题. 【答案】415【解析】如下图,设正三角形的边长为x ,则133OG =3=. ∴35FG SG ==, 222233566SO h SG GO x x ⎛⎫⎛⎫=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553⎛⎫=- ⎪ ⎪⎝⎭∴三棱锥的体积2113355333ABC V S h x x ∆⎛⎫=⋅=- ⎪ ⎪⎝⎭451535123x x -. 令()4535n x x =-,则()3453'20n x x x =-, 令()'0n x =,43403x = ,43x =, max 754854415V =-=【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对与几何体体积有关的综合问题,先根据题意设出量,根据几何体的性质求出几何体的体积,利用函数求最值的方法求出体积的最值.1.2【典型考题变式】【变式1:改编条件】在正方体中,为中点,为的中点,,则三棱锥的体积为__________.【答案】【变式2:改编结论】如图,圆柱内有一个三棱柱,三棱柱的底面为等腰直角三角形,且此三角形内接于圆柱的底面圆.如果圆柱的体积是V,那么三棱柱的体积是()A.2VπB.VπC.2V π D. 3V π【答案】C【解析】设圆的半径为R ,等腰直角三角形的边长为2R ,设三棱柱的体积为V 柱 ,则()221V=R ,=2R2h V h π柱 , 22R 1==V V h V V R h πππ=∴柱柱 ,故选B 【变式3:改编问法】将一张边长为6cm 的纸片按如图1所示的阴影部分截去四个全等的等腰三角形,将剩余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置,若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是( )A .cm 3B .cm 3C .cm 3D .cm 3【答案】A2.以三视图为背景的几何体体积问题 2.1考题展示与解读例2【2017课标II ,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π【命题意图探究】本题主要考查简单几何体的三视图及其体积的计算,是基础题. 【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V ππ=⨯⨯=,上半部分是一个底面半径为3,高为4的圆柱的一半,其体积()22136272V ππ=⨯⨯⨯=,该组合体的体积为:12362763V V V πππ=+=+=。
第五节 简单几何体的面积和体积【考纲下载】了解球体、柱体、锥体、台体的表面积和体积的计算公式(不要求记忆公式).2.多面体的侧面积和表面积 因为多面体的各个面都是平面,所以多面体的侧面积就是侧面展开图的面积,表面积是侧面积与底面积的和.将圆柱、圆锥、圆台的侧面沿任意一条母线剪开铺平,分别得到什么图形? 提示:分别得到矩形、扇形、扇环.1.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π解析:选C 设正方体的棱长为a ,则a 3=8,即a =2.故该正方体的内切球的半径r =1,所以该正方体的内切球的表面积S =4πr 2=4π.2.直角三角形两直角边AB =3,AC =4,以AB 为轴旋转一周所得的几何体的体积为( )A .12πB .16πC .9πD .24π解析:选B 以AB 为轴旋转一周所得到的几何体为圆锥,且底面圆的半径为4,圆锥的高为3.故体积V =13×π×42×3=16π.3. (2013·山东高考)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V =13×22×2=83. 4.(2013·陕西高考)某几何体的三视图如图所示,则其体积为________.解析:该几何体是底面圆半经为1,高为2的圆锥体的一半,故所求体积为V =12×13×(π×12)×2=π3.答案:π35.(2013·辽宁高考)某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图可知该几何体是一个底面半径为2,高为4的圆柱中间挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,所以其体积为π×22×4-22×4=16π-16.答案:16π-16[例1] (1)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+12 5(2)一个几何体的三视图如图所示,则该几何体的表面积为________.[自主解答] (1)该三棱锥的直观图如图所示.据俯视图知,顶点P 在底面上的投影D 在棱AB 上,且∠ABC =90°,据正、俯视图知,AD =2,BD =3,PD =4,据侧视图知,BC =4.综上所述,可知BC ⊥平面P AB ,PB =PD 2+BD 2=5,PC =BC 2+PB 2=16+25=41, AC =AB 2+BC 2=41,P A =PD 2+AD 2=2 5. ∵PC =AC =41,∴△P AC 的边P A 上的高为h =PC 2-⎝⎛⎭⎫P A 22=6.∴S △P AB =12AB ·PD =10,S △ABC =12AB ·BC =10,S △PBC =12PB ·BC =10,S △APC =12P A ·h =6 5.故三棱锥的表面积为S △P AB +S △ABC +S △PBC +S △APC =30+6 5. (2)该几何体的直观图如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱.∴S 表=2×(4+3+12)+2π-2π=38. [答案] (1)B (2)38【方法规律】空间几何体的表面积的求法技巧(1)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图如图所示,该几何体的表面积是()A.372 B.360 C.292 D.280解析:选B由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.∵下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+2×8×2+2×6×2=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×6×2=360.高频考点考点二空间几何体的体积1.空间几何体的体积是每年高考的热点,题型为选择题和填空题.2.高考对空间几何体的体积的考查常有以下几个命题角度:(1)求简单几何体的体积;(2)求组合体的体积;(3)求以三视图为背景的几何体的体积.[例2](1)(2013·湖北高考)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4(2)(2013·浙江高考)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm3.(3)(2012·江苏高考)如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.[自主解答] (1)由题意可知,由于上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体.根据三视图可知,最上面一个简单几何体是上底面圆的半径为2,下底面圆的半径为1,高为1的圆台,其体积V 1=13π×(12+22+1×2)×1=73π;从上到下的第二个简单几何体是一个底面圆半径为1,高为2的圆柱,其体积V 2=π×12×2=2π;从上到下的第三个简单几何体是边长为2的正方体,其体积V 3=23=8;从上到下的第四个简单几何体是一个棱台,其上底面是边长为2的正方形,下底面是边长为4的正方形,棱台的高为1,故体积V 4=13×(22+2×4+42)×1=283,比较大小可知答案选C.(2)根据几何体的三视图可知,所求几何体是一个三棱柱削去一个三棱锥,则几何体的体积V =12×3×4×5-13×12×4×3×3=24 cm 3.(3)由题意,四边形ABCD 为正方形,连接AC ,交BD 于O ,则AC ⊥BD .由面面垂直的性质定理,可证AO ⊥平面BB 1D 1D .四棱锥底面BB 1D 1D 的面积为32×2=62,从而VA -BB 1D 1D =13×OA ×S 长方形BB 1D 1D =6.[答案] (1)C (2)24 (3)6空间几何体体积问题的常见类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.1.(2013·广东高考)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163D .6解析:选B 由四棱台的三视图可知,台体上底面积S 1=1×1=1,下底面积S 2=2×2=4,高h =2,代入台体的体积公式V =13(S 1+S 1S 2+S 2)h =13×(1+1×4+4)×2=143.2.一几何体的三视图如图所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π解析:选A 这个几何体由上、下两部分组成,下半部分是一个长方体,其中长、宽、高分别为6+2+2=10,1+2+1=4,5;上半部分是一个横放的半圆柱,其中底面半径为62=3,母线长为2,故V =10×4×5+12π×32×2=200+9π.[例3] (2014·沈阳模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310[自主解答] 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA = ⎝⎛⎭⎫522+62=132. [答案] C 【互动探究】侧棱和底面边长都是32的正四棱锥的外接球半径是多少? 解:依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.【方法规律】与球有关的组合体的类型及解法(1)球与旋转体的组合通常作出它们的轴截面解题.(2)球与多面体的组合,通常过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.(2013·新课标全国卷Ⅰ)如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 设球半径为R cm ,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4 cm ,球心到截面的距离为(R -2)cm ,所以由42+(R -2)2=R 2,得R =5,所以球的体积V =43πR 3=43π×53=500π3cm 3.—————————[课堂归纳——通法领悟]———————————————— 1种思想——转化与化归思想计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2种方法——割补法与等积法(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.2个注意点——求空间几何体的表面积应注意两点(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.易误警示(十一)对几何体的形状判断不准致误[典例] (2013·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C .200D .240 [解题指导] 将三视图还原为几何体,然后再选用相关公式求解.[解析] 由三视图可得该几何体是直四棱柱,其底面为上底为2,下底为8,高为4的等腰梯形,棱柱高为10,如图所示,故体积V =12×(2+8)×4×10=200.[答案] C[名师点评] 1.本题易误认为几何体为四棱台而造成解题错误. 2.正确解决此类问题应注意以下两点:(1)确认几何体的形状时,要紧扣各类几何体的定义,不能凭感觉去确定.(2)要熟练掌握常见的几何体的正视图,并善于从不同角度观察几何体的结构特征,要知道三视图中的实线与虚线的原因,明确为什么有这些线或没有某些线,对于正视图,侧视图中的直角,更要弄清楚它们是直角的原因.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A 该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12π×22×4=16+8π.[全盘巩固]1.设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.2.已知一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .4 C.23 D.43解析:选C 由三视图可知,该几何体为四棱锥,且侧棱SC ⊥底面ABCD ,如图所示.SC =2,四边形ABCD 为正方形,且AB =1,则该几何体的体积V =13×1×1×2=23.3.已知某几何体的三视图如图所示,其中正视图中半圆的半径为1,则该几何体的体积为( )A .24-3π2B .24-π3C .24-πD .24-π2解析:选A 据三视图可得该几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.4.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 解析:选C 该几何体的上下部分为长方体,中间部分为圆柱.S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2. 5.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3 解析:选D 如图设球的半径为R ,由43πR 3=323π,得R =2.∴正三棱柱的高h =4.设其底面边长为a ,则13·32a =2,∴a =4 3.∴V =34×(43)2×4=48 3.6.如图是一个几何体的三视图,根据图中的数据(单位:cm),可知此几何体的表面积是( )A .24 cm 2 B.643cm 2C .(6+25+22)cm 2D .(24+85+82)cm 2 解析:选D 如图所示,依题意可知四棱锥P -ABCD 是此几何体的直观图,在四棱锥P - ABCD中,平面P AB 与底面ABCD 垂直,底面ABCD 是正方形,△P AD ≌△PBC ,△P AB 是等腰三角形,设M 是AB 的中点,N 是CD 的中点,连接PM 、PN 、MN ,由题知PM =AB =4,MN =4,则PN =42,故此几何体的表面积为S =S 正方形ABCD +S △P AB +2S △PBC +S △PCD =4×4+12×4×4+2×12×4×25+12×4×42=(24+85+82)cm 2. 7.(2013·新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.解析:如图所示,设截面小圆的半径为r ,球的半径为R ,因为AH ∶HB =1∶2,所以OH =13R .由勾股定理,有R 2=r 2+OH 2,又由题意得πr 2=π, 则r =1,故R 2=1+⎝⎛⎭⎫13R 2,即R 2=98.由球的表面积公式,得S =4πR 2=9π2. 答案:9π28.某四棱锥的三视图如图所示,则该四棱锥的体积为________.解析:由三视图可知直观图是一个底面为边长等于3的正方形,高为1的四棱锥,由棱锥的体积公式得V 四棱锥=13×32×1=3. 答案:39.如图所示,某几何体的正视图,侧视图和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为________.解析:由三视图知,该几何体为四棱锥,如图所示.依题意AB =23,菱形BCDE 中BE =EC =2,故BO =22-12=3, 则AO =AB 2-BO 2=3,因此V A -BCDE =13·AO ·S 四边形BCDE =13×3×2×232=2 3. 答案:2 310. 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解:连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a .由题意得,V C 1-B 1EDF =V B 1-C 1EF +V D -C 1EF =13·S △C 1EF ·(h 1+h 2)=16a 3. 11.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S .解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形,所以S =2×(1×1+1×3+1×2)=6+2 3.12.如图,在平行四边形ABCD 中,BC =2,BD ⊥CD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD .记CD =x ,V (x )表示四棱锥F -ABCD 的体积.(1)求V (x )的表达式;(2)求V (x )的最大值.解:(1)∵平面ADEF ⊥平面ABCD ,交线为AD 且F A ⊥AD ,∴F A ⊥平面ABCD .∵BD ⊥CD ,BC =2,CD =x ,∴F A =2,BD =4-x 2(0<x <2), S ▱ABCD =CD ·BD =x 4-x 2,∴V (x )=13S ▱ABCD ·F A =23x 4-x 2(0<x <2). (2)V (x )=23x 4-x 2=23-x 4+4x 2=23-(x 2-2)2+4. ∵0<x <2,∴0<x 2<4,∴当x 2=2,即x =2时,V (x )取得最大值,且V (x )max =43. [冲击名校]1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22解析:选A 由于三棱锥S -ABC 与三棱锥O -ABC 的底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍.所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63, 故V S -ABC =2V O -ABC =2×13×34×63=26. 2.如图所示,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是()解析:选B显然,只有当P移动到中心O时,MN有唯一的最大值,排除选项A、C;P点移动时,取AA1的中点E,CC1的中点Q,平面D1EBQ垂直于平面BB1D1D,且M、N 两点在菱形D1EBQ的边界上运动,故x与y的关系应该是线性的,排除选项D,选B.[高频滚动]如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点.(1)证明:OF∥平面BCC1B1;(2)证明:平面DBC1⊥平面ACC1A1.证明:(1)∵四边形ABCD为菱形且AC∩BD=O,∴O是BD的中点.又点F为DC1的中点,∴在△DBC1中,OF∥BC1,∵OF 平面BCC1B1,BC1 平面BCC1B1,∴OF∥平面BCC1B1.(2)∵四边形ABCD为菱形,∴BD⊥AC,又BD⊥AA1,AA1∩AC=A,且AA1,AC 平面ACC1A1,∴BD⊥平面ACC1A1.∵BD 平面DBC1,∴平面DBC1⊥平面。