第1讲 合情推理与演绎推理
- 格式:ppt
- 大小:2.68 MB
- 文档页数:19
合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415= 4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xex ,…,照此规律,则f n (x )=________.[解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x.[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9,T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,(x2-x1)[f(x2)-f(x1)]>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.考点四逻辑推理问题[典例](2019·安徽示范高中联考)某参观团根据下列要求从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B 镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.图(1)图(2)图(3)[课时跟踪检测]1.下列三句话按三段论的模式排列顺序正确的是()①2 020能被2整除;②一切偶数都能被2整除;③2 020是偶数.A.①②③B.②①③C.②③①D.③②①解析:选C根据题意并按照演绎推理的三段论可知,大前提:一切偶数都能被2整除.小前提:2 020是偶数.结论:2 020能被2整除.所以正确的排列顺序是②③①.故选C.2.下列推理中属于归纳推理且结论正确的是()A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.3.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A .22项B .23项C .24项D .25项解析:选C 由题意可知,两数的和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为该列算式的第24项.故选C.4.(2018·南宁摸底联考)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:选C 由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.5.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC .T 2n -1=(2n -1)b nD .T 2n -1=b 2n -1n解析:选D 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n, …,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n.6.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1解析:选D 因为f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.7.在正整数数列中,由1开始依次按如下规则,将某些数染成红色:先染1;再染两个偶数2,4;再染4后面最近的3个连续奇数5,7,9;再染9后面的最近的4个连续偶数10,12,14,16;再染16后面最近的5个连续奇数17,19,21,23,25,…,按此规则一直染下去,得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974解析:选D 按照染色步骤对数字进行分组.由题意可知,第1组有1个数,第2组有2个数,…,根据等差数列的前n 项和公式,可知前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 019<64×(64+1)2=2 080,因此,第2 019个数是第64组的第3个数,由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,…,所以第n 组最后一个数是n 2,因此第63组最后一个数为632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972,第3个数为3 974,故选D.8.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:观察所给等式可知,每行最左侧的数分别为1,2,3,…,则第n 行最左侧的数为n ;每个等式左侧的数的个数分别为1,3,5,…,则第n 个等式左侧的数的个数为2n -1,而第n 个等式右侧为(2n -1)2,所以第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·上饶二模)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则其四维测度W =________.解析:∵二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W 满足W ′=V =12πr 3,∴W =3πr 4.答案:3πr 410.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *),其中λ>0,{a n }的通项公式是________________.解析:a 1=2,a 2=2λ+λ2+(2-λ)·2=λ2+22, a 3=λ(λ2+22)+λ3+(2-λ)·22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)·23=3λ4+24.由此猜想出数列{a n }的通项公式为a n =(n -1)λn +2n . 答案:a n =(n -1)λn +2n11.(2019·吉林实验中学测试)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB ⊥AB 时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可推出“黄金双曲线”的离心率e 等于________.解析:类比“黄金椭圆”,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB ―→=(c ,b ),AB ―→=(-a ,b ). 易知FB ―→⊥AB ―→,所以FB ―→·AB ―→=b 2-ac =0, 所以c 2-a 2-ac =0,即e 2-e -1=0, 又e >1,所以e =5+12. 答案:5+1212.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与A BCD 中,OE AE =h 1h =13S △BCD ·h 113S △BCD ·h=V O BCDV A BCD .同理有OF DF =V O -ABC V D -ABC ,OG BG =V O-ACD V B -ACD ,OH CH =V O-ABDV C -ABD .∴OE AE +OF DF +OG BG +OH CH=V O -BCD +V O -ABC +V O -ACD +V O -ABDV A -BCD =V A -BCD V A -BCD=1.。
合情推理与演绎推理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。
其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);③检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。
合情推理与演绎推理一、 知识讲解推理:由一个或几个事实(或假设)得出一个判断的思维方式前提为真,结论可能为真的推理称为合情推理.⎧⎧⎪⎨⎨⎩⎪⎩归纳推理合情推理推理类比推理演绎推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全 部对象都具有这些特征,或者由个别事实概括出一般性的结论,这样的推理 称为归纳推理(简称归纳).特征:从特殊现象到一般现象归纳推理的一般步骤:已知条件 观察归纳 大胆猜想 检验猜想(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已 知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 归纳推理和类比推理的过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 提出猜想 检验猜想(3)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论, 这种推理称为演绎推理.说明:1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论可表示为:大前提:M 是P小前提:S 是M结 论:S 是P二、典型例题例 根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图形中 有 个点.例 根据给出的数塔猜测123456×9+7等于1×9+2=1112×9+3=111123×9+4=11111234×9+5=11111……例 证明函数f (x )=-x 2+2x 在(-∞,1]上是增函数.三:小结思考 设(),(),22x x x xa a a a f x g x --+-== 其中 0,1a a >≠且 (1)5=2+3,请你推测(5)f 能否用(2),2(3),(3)f g f g (),来表示 ;(2)如果(1)中获得一个结论,请你推测能否将其推广.。
第十七章推理与证明★知识网络★第1讲合情推理和演绎推理★知识梳理★1.推理根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫结论.2、合情推理:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。
合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。
简言之,归纳推理是由部分到整体、由个别到一般的推理(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。
3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。
三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断。
★重难点突破★重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别与联系难点:发现两类对象的类似特征、在部分对象中寻找共同特征或规律重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性问题1:观察:«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;….对于任意正实数«Skip Record If...»,试写出使«Skip Record If...»成立的一个条件可以是 ____.点拨:前面所列式子的共同特征特征是被开方数之和为22,故«Skip Record If...»2、类比推理关键是要寻找两类对象的类似特征问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于«Skip Record If...»、«Skip Record If...»两点,则当«Skip Record If...»与抛物线的对称轴垂直时,«Skip Record If...»的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为.点拨:圆锥曲线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一直线与椭圆交于«Skip Record If...»、«Skip Record If...»两点,则当«Skip Record If...»与椭圆的长轴垂直时,«Skip Record If...»的长度最短(«Skip Record If...»)3、运用演绎推理的推理形式(三段论)进行推理问题3:定义[x]为不超过x的最大整数,则[]=点拨:“大前提”是在«Skip Record If...»找最大整数,所以[]=-3★热点考点题型探析★考点1 合情推理题型1 用归纳推理发现规律[例1 ] 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。
合情推理与演绎推理一、推理:1、推理的定义:从一个或几个已知命题得出另一个新命题的思维过程称为推理2、推理的结构:推理的前提:所依据的命题,它告诉我们已知的知识是什么;推理的结论:根据前提推得的命题,它告诉我们推出的知识是什么。
3、推理的一般形式:推理可看作是用连接词将前提和结论连结起来的一个逻辑连接。
常用的连接有:“因为…所以…”、“如果…那么…”、“根据…可知…”等等形式。
下面是三个推理案例:① 前提:当0=n 时,11112=+-n n ② 前提:矩形的对角线的平方等于长和宽的平方和当1=n 时,11112=+-n n 结论:长方体对角线的平方等于长、宽、高的平方和当2=n 时,13112=+-n n ③ 前提:所有的树都是植物,梧桐是树当3=n 时,17112=+-n n 结论:梧桐是植物当4=n 时,23112=+-n n当5=n 时,31112=+-n n31,23,17,13,11,11都是质数结论:对于所有的自然数11,2+-n n n 的值都是质数4、推理的分类:推理一般可分为“合情推理”和“演绎推理”两种类型。
二、合情推理:合情推理只有两种形式,那就是归纳推理和类比推理。
观察、比较、估算、联想是归纳和类比的方法;自觉、顿悟、灵感是产生合情推理的心理活动形式;归纳推理是由特殊到一般的推理,类比推理是特殊到特殊的推理。
合情推理过程概括为:可见,归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理、我们把它们统称为合情推理1、归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论性的结论的推理,称为归纳推理(简称归纳)。
(2)特点:① 归纳推理是“由部分到整体,由个体到一般”的推理;② 归纳推理的前提是几个已知的特殊现象,结论是尚属未知的一般现象;③ 归纳推理具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验。
合情推理与演绎推理1.推理一般包括合情推理和演绎推理;2.合情推理包括和;归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、 .类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、 .3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是P,②,③S是P;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。
演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.例1. 已知:23150sin 90sin 30sin 222=++ ; 23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题:________________________________________=23( * )并给出( * )式的证明.解:一般形式: 23)120(sin )60(sin sin 222=++++ ααα证明:左边 = 2)2402cos(12)1202cos(122cos 1 +-++-+-ααα = )]2402cos()1202cos(2[cos 2123 ++++-ααα= -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 2123ααα]240sin 2sin α = ]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=23 (将一般形式写成 2223sin (60)sin sin (60),2ααα-+++=2223sin (240)sin (120)sin 2ααα︒︒-+-+=等均正确。
第1讲合情推理与演绎推理自主梳理1.归纳推理定义:根据一类事物中部分事物具有某种属性,推断,我们将这种推理方式称为归纳推理.2.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.3.归纳推理具有如下的特点:(1)归纳推理是由到,由到的推理;(2)由归纳推理得到的结论正确;(3)归纳推理是一种具有创造性的推理.4.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象,我们把这种推理过程称为类比推理.类比推理是之间的推理.5.合情推理:合情推理是根据和的结果、个人的和、和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果正确.6.在数学中,证明一个命题,就是根据命题的条件和已知的,利用的法则将命题推导出来.7.三段论探究点一归纳推理例1在数列{a n}中,a1=1,a n+1=2a n2+a n,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移1已知数列{a n}满足a1=1,a n+1=2a n+1(n=1,2,3,…)(1)求a2,a3,a4,a5;(2)归纳猜想通项公式a n.探究点二:归纳推理在图形变化中的应用例2 在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)=_;f(n)= (答案用含n的代数式表示).变式迁移2:在平面内观察:凸四边形有2条对角线, 凸五边形有5条对角线, 凸六边形有9条对角线, …由此猜想凸n (n ≥4且n ∈N *)边形有几条对角线? 探究点三:归纳推理在算式问题中的应用例3 观察下列等式,并从中归纳出一般法则.(1)1=12,1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52, ……(2)1=12,2+3+4=32,3+4+5+6+7=524+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92, ……变式迁移3:在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立.猜想在n 边形A 1A 2…A n 中成立的不等式为 探究点四:类比推理在几何中的应用例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高分别为h a ,h b ,h c ,则有p a h a +p b h b +p ch c=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22,将此结论类比到空间有_______________________________________________. 探究点五:定义、定理或性质中的类比例2 在等差数列{a n }中,若a 10=0,证明:等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式______成立. 变式迁移5:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4, , ,T 16T 12成等比数列. 探究点六:演绎推理三段论的应用例3 在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E的距离相等.变式迁移6已知:在空间四边形ABCD中,点E,F分别是AB,AD的中点,如图所示,求证:EF∥平面BCD.课后小试身手一、选择题1.数列5,9,17,33,x,…中的x等于() A.47 B.65 C.63 D.1282.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于() A.f(x) B.-f(x) C.g(x) D.-g(x)3.下列推理正确的是() A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin (x+y)类比,则有sin (x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把a(b+c)与a·(b+c)类比,则有a·(b+c)=a·b+a·c4.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④5.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.上表述正确的是()6.下列说法不正确的是() A.演绎推理是由一般到特殊的推理B.赋值法是演绎推理C.三段论推理的一个前提是肯定判断,结论为否定判断,则另一前提是否定判断D .归纳推理的结论都不可靠7. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin (x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确8.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 9. 下列几种推理过程是演绎推理的是( )A .5和22可以比较大小B .由平面三角形的性质,推测空间四面体的性质C .东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D .预测股票走势图10. 把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是( )A .如果一条直线与两条平行线中的一条相交,则也与另一条相交B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行 二、选择题11. f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________.12. 已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32. 通过观察上述两等式的规律,请你写出一个一般性的命题:____________________.13. 如图,观察图形规律,在其右下的的空格处画上合适的图形,应为________. 14. 在等差数列{a n }中,若a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是________. ①b 4+b 8>b 5+b 7;②b 5+b 7>b 4+b 8;③b 4+b 7>b 5+b 8;④b 4+b 5>b 7+b 8.15. 类比平面直角坐标系中△ABC 的重点G (x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x33y =y 1+y 2+y33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),猜想以A (x 1,y 1,z 1)、B (x 2,y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G (x ,y ,z )的公式为________.16.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如图(阴影区域及其边界):其中为凸集的是________(写出所有凸集相应图形的序号).三,解答题17.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n +2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.18.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.(1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f (n )部分,归纳出f (n +1)与f (n )的关系; (3)求出f (n ).19.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间 四面体性质的猜想.20.设a >0,f (x )=e x a +ae x 是R 上的偶函数,求a 的值.。
合情推理和演绎推理
合情推理是在已有数据的基础上推断出有关行为结果的一种技能,是一种不完
全有效的推理形式,有时也称为模糊推理。
它着重于考虑其他因素的影响,以洞察个体行为的潜在诱因,并根据这些判断或找到最优解决方案。
而演绎推理是一种基于已有信息推断出结论的逻辑推理方法,通常使用这种推
理推测某事物的成因,或判断某个案例时,用这种方法洞察案例关键信息,把一切密切相关而且重要的事实综合起来,以作出正确的判断。
在现代市场竞争中,行业竞争实践者越来越重视合情推理与演绎推理的结合,
也正因此它们逐步成为竞争中一个关键的部分。
首先,合情推理帮助分析市场行为,识别消费者在某些市场上的活动,有助于情境分析,指导发展和市场定位。
其次,演绎推理帮助从现有的价值观中总结出前提和假设,从而指导发展战略,确定营销活动,精准发掘客户与市场的关系,结合行业的实际情况行动,确保行业的顺利运营。
另外,合情推理与演绎推理结合在一起,可以进一步提升竞争力,发现新型机会。
合情推理能够洞察出合理的情景模式,它能根据现实环境和关联事件推出更全面的市场状况,为企业把握发展的重点提供影响;而演绎推理能够洞察涉及的各种因素,进一步分析影响这些因素在不同市场的表现,从而了解市场发展趋势,把握投资机会。
总之,只有结合合情推理与演绎推理,企业才能有效地严格分析市场信息,把
握市场动态,建立更有效的市场细分体系,实现可持续竞争优势。
第1节 合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知 识 梳 理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.[微点提醒]1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.答案(1)×(2)√(3)×(4)×2.(选修2-2P84A3改编)对于任意正整数n,2n与n2的大小关系为()A.当n≥2时,2n≥n2B.当n≥3时,2n≥n2C.当n≥4时,2n≥n2D.当n≥5时,2n≥n2解析当n=2时,2n=n2;当n=3时,2n<n2;当n=4时,2n=n2;当n=5时,2n>n2;归纳判断,当n≥4时,2n≥n2.故选C.答案 C3.(选修2-2P84A5改编)在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9+a2+…+a19-n=1,则存在的等式为________.解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)4.(2019·淄博一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.答案 A5.(2018·大连模拟)数列2,5,11,20,x,…中的x等于________.解析由5-2=3,11-5=6,20-11=9,推出x-20=12,故x=32.答案326.(2019·西安二模)将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第10行左数第10个数为________.解析由三角形数组可推断出,第n行共有2n-1个数,且最后一个数为n2,所以第10行共19个数,最后一个数为100,左数第10个数是91.答案91考点一归纳推理多维探究角度1与图形变化有关的推理【例1-1】(2018·石家庄模拟)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.答案55角度2与数字或式子有关的推理【例1-2】(2019·安阳一模)如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,……,以此类推,则标2 0192的格点的坐标为()A.(1 010,1 009)B.(1 009,1 008)C.(2 019,2 018)D.(2 018,2 017)解析点(1,0)处标1,即12;点(2,1)处标9,即32;点(3,2)处标25,即52;……,由此推断点(n+1,n)处标(2n+1)2,当2n+1=2 019时,n=1 009,故标2 0192的格点的坐标为(1 010,1 009).故选A.答案 A规律方法归纳推理问题的常见类型及解题策略形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴,…,则第2 018个图形用的火柴根数为()A.2 014×2 017B.2 015×2 016C.3 024×2 018D.3 027×2 019(2)对大于或等于2的自然数m 的n 次方幂有如下分解方式:22=1+3;32=1+3+5;42=1+3+5+7;23=3+5;33=7+9+11;43=13+15+17+19.根据上述分解规律,则52=1+3+5+7+9,若m 3(m ∈N *)的分解中最小的数是73,则m 的值为________.解析 (1)由题意,第1个图形需要火柴的根数为3×1;第2个图形需要火柴的根数为3×(1+2);第3个图形需要火柴的根数为3×(1+2+3);…由此,可以推出第n 个图形需要火柴的根数为3×(1+2+3+…+n ).所以第 2 018个图形所需火柴的根数为3×(1+2+3+…+2 018)=3×2 018×(2 018+1)2=3 027×2 019. (2)根据23=3+5,33=7+9+11,43=13+15+17+19,从23起,m 3的分解规律恰为数列3,5,7,9…中若干连续项之和,23为前两项和,33为接下来三项和,故m 3的首个数为m 2-m +1.因为m 3(m ∈N *)的分解中最小的数是73,所以m 2-m +1=73,解得m =9.答案 (1)D (2)9考点二 类比推理【例2】 (1)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( ) A.-5-12 B.5-12 C.1+52 D.1-52(2)若点P0(x0,y0)在椭圆x2a2+y2b2=1(a>b>0)外,过点P0作该椭圆的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为x0xa2+y0yb2=1.那么对于双曲线x2a2-y2b2=1(a>0,b>0),类似地,可以得到一个正确的切点弦方程为________.解析(1)令1+11+11+…=x(x>0),即1+1x=x,即x2-x-1=0,解得x=1+52(x=1-52舍),故1+11+11+…=1+52,故选C.(2)若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,过点P0作该双曲线的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为x0xa2-y0yb2=1.答案(1)C(2)x0xa2-y0yb2=1规律方法 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(1)(2018·孝感模拟)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3,应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=()A.2πr4B.3πr4C.4πr4D.6πr4(2)在平面上,设h a,h b,h c是△ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为P a,P b,P c,我们可以得到结论:P ah a+P bh b+P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________________________. 解析(1)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,(πr2)′=2πr,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3,⎝ ⎛⎭⎪⎫43πr 3′=4πr 2,四维空间中,“超球”的三维测度V =8πr 3, ∵(2πr 4)′=8πr 3,∴“超球”的四维测度W =2πr 4,故选A.(2)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a+P b h b +P c h c +P d h d=1. 答案 (1)A (2)P a h a +P b h b +P c h c +P d h d=1 考点三 演绎推理 多维探究角度1 与逻辑推理有关的问题【例3-1】 (1)(2018·石家庄一模)甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委大,甲与体委的年龄不同,体委比乙的年龄小.据此推断班长是________.(2)2019年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为________.解析 (1)根据“甲与体委的年龄不同,体委比乙的年龄小”可得丙是体委; 根据“丙的年龄比学委大,体委比乙的年龄小”可得乙的年龄>丙的年龄>学习委员的年龄,由此可得,乙不是学习委员,那么乙是班长.(2)由乙说:我没去过茶卡天空之境,可知乙可能去过陆心之海青海湖和海北百里油菜花海两个地方,但甲说:我去过的地方比乙多,但没去过海北百里油菜花海,则甲去过陆心之海青海湖和茶卡天空之境两个地方,乙只去过陆心之海青海湖和海北百里油菜花海中的一个地方,再由丙说:我们三人去过同一地方,可推知乙去过的地方为陆心之海青海湖.答案 (1)乙 (2)陆心之海青海湖角度2 与证明有关的问题【例3-2】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提) 又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】 (1)(2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩(2)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品的获奖情况预测如下:甲说:“C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品均未获得一等奖”;丁说:“C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是________.解析(1)由甲说不知道自己成绩且看过乙和丙的成绩,可推出乙和丙一优一良,又因为乙看过丙的成绩,所以乙可以推测出自己的成绩.因为已经推出乙和丙一优一良,所以甲和丁也是一优一良,并且条件已给出丁看过甲的成绩,所以丁也可以推出自己的成绩,故选D.(2)若A获得一等奖,则甲,乙,丙,丁的说法均错误,故不满足题意;若B获得一等奖,则乙,丙的说法正确,甲,丁的说法错误,故满足题意;若C获得一等奖,则甲,丙,丁的说法均正确,故不满足题意;若D获得一等奖,则只有甲的说法正确,故不满足题意.故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.答案(1)D(2)B[思维升华]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:35分钟)一、选择题1.已知数列{a n}中,a1=1,n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1B.a n=4n-3C.a n=n2D.a n=3n-1解析a1=1,a2=4,a3=9,a4=16,猜想a n=n2.答案 C2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D3.按照图①~图③的规律,第10个图中圆点的个数为()A.36B.40C.44D.52解析因为根据图形,第一个图有4个点,第二个图有8个点,第三个图有12个点,…,所以第10个图有10×4=40个点.故选B.答案 B4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论()①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.A.①②B.②③C.③④D.①④解析①垂直于同一个平面的两条直线互相平行,正确;②垂直于同一条直线的两条直线不一定平行,也可能是相交直线、异面直线,故不正确;③垂直于同一个平面的两个平面不一定平行,也可能是相交平面,如墙角,故不正确;④垂直于同一条直线的两个平面互相平行,正确.故选D.答案 D5.下面四个推理,不属于演绎推理的是()A.因为函数y=sin x(x∈R)的值域为[-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也为[-1,1]B.昆虫都有6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地面的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论解析C中的推理属于合情推理中的类比推理,A,B,D中的推理都是演绎推理. 答案 C6.(2019·长春质量监测)中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如3 266用算筹表示就是,则8 771用算筹可表示为()解析由题意知8 771用算筹可表示为,故选A.答案 A7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C8.(2019·武汉一模)某学校计划在周一至周四的艺术节上展演《雷雨》《茶馆》《天籁》《马蹄声碎》四部话剧,每天一部,受多种因素影响,话剧《雷雨》不能在周一和周四上演,《茶馆》不能在周一和周三上演,《天籁》不能在周三和周四上演,《马蹄声碎》不能在周一和周四上演,那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演解析由题目可知,周一上演《天籁》,周四上演《茶馆》,周三可能上演《雷雨》或《马蹄声碎》,故选C.答案 C二、填空题9.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 1410.(2018·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:________________ ____________________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n11.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)24 12.(2019·呼和浩特模拟)某煤气站对外输送煤气时,用1~5号5个阀门控制,且必须遵守以下操作规则:(1)若开启2号,则必须同时开启3号并且关闭1号;(2)若开启1号或3号,则关闭5号;(3)禁止同时关闭4号和5号.现要开启2号,则同时开启的另外2个阀门是________.解析 由题意,若开启2号,则关闭1号,开启3号,开启4号,关闭5号.故答案为3号和4号.答案 3号和4号能力提升题组(建议用时:15分钟)13.(2019·广东六校第三次联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是( )A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟解析 设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A ,B ,C ,D ,报考自主招生的总学生为U ,则由题意,知A ∩B =∅,B ⊆C ,D ∩C =∅,∁U D =B ,∴A ⊆D ,B =C ,B ∩D =∅.选项A ,B ∩D =∅,正确;选项B ,B =C ,正确;选项C ,A ⊆D ,正确,故选D.答案 D14.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sinA +B +C 3=3sin π3=332.答案 332 15.(2018·赣州联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原来持金多少?”若将“5关所收税金之和,恰好重1斤,问原来持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x 3×4;…第8关收税金:x 8×9=x 72. 答案 17216.(2019·成都诊断)正整数数列{a n }满足a n +1=⎩⎪⎨⎪⎧12a n ,a n 是偶数,3a n +1,a n 是奇数,已知a 7=2,{a n }的前7项和的最大值为S ,把a 1的所有可能取值按从小到大排成一个新数列{b n },{b n }所有项的和为T ,则S -T =________.解析 ∵正整数数列{a n }满足a n +1=⎩⎪⎨⎪⎧12a n ,a n 是偶数,3a n +1,a n 是奇数,故可采用逆推的方法求解,如图所示:则{a n }的前7项和的最大值S =2+4+8+16+32+64+128=254,{b n }所有项的和T =2+3+16+20+21+128=190,故S -T =254-190=64.答案 64古今中外有学问的人,有成就的人,总是十分注意积累的。