地铁供电系统
- 格式:doc
- 大小:72.50 KB
- 文档页数:29
地铁供电系统概述地铁供电系统主要技术标准:采用集中供电方式,二级电供电压等级制式,主变电站引入110kv 电源,然后以35kv为全线各牵降混合、降压变电站供电。
地铁供电系统电能质量电压允许偏差值:AC 110kv额定电压(-3%~+7%),即106.7kv~117.7kv。
AC35kv额定电压(±5%),即(33.25~36.75)kv。
AC 33额定电压(±5%),即(31.35~34.65)kv。
AC 10kv及以下额定电压(±7%),即9.3kv~10.7kv。
AC 400v额定电压(±7%),即372v~428v。
280V的线电压是380V。
DC 1500v额定电压(-33%~+20%),即500v~900v。
牵引整流器组高压侧额定电压为AC35KV,直流侧标称电压值为DC750V。
牵引接触网的电压波动范围为DC500V~DC900V。
降压变电站中压侧为AC35KV,低压侧为AC0.4/0.23KV。
供电系统设置远动(SCADA)系统,实现全现供电系统集中调度控制管理,并支持综合监控(ISCS)系统的集成。
设置杂散电流防护系统,包括杂散电流防堵阻措施、杂散电流收集系统、杂散电流监测系统。
防雷接地系统,110KV系统接地按电业部部门要求:35KV为小电阻接地系统:低压0.4/0.23KV采用TN-S制:1500V直流牵引系统正、负极不接地:地面建筑物防雷按照相关国家规范要求进行。
供电系统构成与功能:系统构成:供电系统组成部分:主变电站、中压供电网络、牵引变电站、降压变电站、牵引网系统、动力照明配电系统、电力监控系统(SCADA)、杂散电流防护系统。
系统功能:主变电站:从城市电网中的高压110KV经变压器变换为中压35KV电源。
中压供电网络:将主变电站的35KV中压电源经中压馈出供电网络分配到各牵引变电站及降压变电站。
牵引变电站及降压变电站:牵引变电站将35KV中压电源经整流变压器降压,再经整流器整流后变成供电客车使用的直流1500v电源:降压变电站将35KV中压电源经电力变压器降压后成低压0.4/0.23kv,供车站、区间动力及照明设备电源。
城市轨道交通供电系统城市轨道交通概论城市轨道交通供电系统是指为城市轨道交通(如地铁、轻轨等)提供电力的系统。
它是城市轨道交通运营的重要组成部分,直接关系到城市轨道交通的安全、稳定和高效运行。
城市轨道交通供电系统主要包括供电系统结构、供电方式、供电设备和供电管理等几个方面。
首先,城市轨道交通供电系统的结构主要分为集中式供电和分布式供电两种形式。
集中式供电是指将电力从电网供应给城市轨道交通线路,通过变电所进行电能转换和配电。
分布式供电是指将电力直接供应给城市轨道交通线路,不通过变电所进行中间转换。
其次,城市轨道交通供电系统的供电方式主要有直流供电和交流供电两种形式。
直流供电是将电力以直流形式供应给城市轨道交通线路,其中常见的有三轨供电和四轨供电两种形式。
交流供电是将电力以交流形式供应给城市轨道交通线路,其中常见的有接触网供电和无接触网供电两种形式。
再次,城市轨道交通供电系统的供电设备包括变电所、牵引变压器、接触网或四轨导线和车辆供电设备等。
变电所是供电系统的核心设备,负责将电力从电网转换成适合轨道交通运营的电能。
牵引变压器则将变电所输出的电能转换成适合轨道交通车辆牵引的电能。
接触网或四轨导线是将电能从供电系统传输到运行线路上的设备,通过接触网或四轨导线与车辆上的集电装置接触,实现车辆的供电。
车辆供电设备则是车辆上的设备,负责将来自接触网或四轨导线的电能传输到车辆的牵引装置。
最后,城市轨道交通供电系统的供电管理是保障系统正常运行的重要环节。
供电管理包括供电调度、供电维护、供电检修和故障处理等多个方面。
供电调度负责根据运行情况合理调配供电能力,确保供电系统能满足轨道交通的需求。
供电维护负责对供电设备进行定期维护,确保设备的正常运行和使用寿命。
供电检修则是对供电设备进行故障排除和修复,及时处理供电系统的故障。
故障处理则是在供电系统故障发生时,采取相应措施,保障城市轨道交通的正常运行。
综上所述,城市轨道交通供电系统是为城市轨道交通提供电力的系统,它的结构、方式、设备和管理等方面都对轨道交通的运行质量和效率有着重要影响。
地铁供电系统供电系统为地铁的列车和各种用电设备提供电能,是保证地铁正常运行的重要组成部分,通常由供电电源、主变电所(集中供电方式时)、中压供电网络、牵引供电系统、动力照明配电系统、牵引网系统、电力监控(SCADA)系统、杂散电流腐蚀防护及接地系统和供电车间等组成。
(1)主变电所:集中供电方式下,负责向地铁沿线的各种用电设备提供电源。
每座主变电所从城市电网引入两路独立可靠的110kV电源,经主变压器降压后通过中压供电网络向地铁沿线的牵引变电所和降压变电所供电。
东延线工程利用地铁1号线续建工程的白石洲主变电所、地铁1号线的文化中心主变电所、城市广场主变电所一起供电。
(2)中压供电网络:负责将主变电所的中压馈电回路以分区环网方式向地铁沿线的牵引变电所和降压变电所提供两路可靠的电源。
(3)牵引变电所:负责将中压交流电降压整流为1500V直流电,并向沿线的牵引网提供电源。
全线正线设牵引变电所6座,停车场设1座。
(4)降压变电所:负责将中压交流电降压为0.4kV交流电,并通过低压开关柜和电缆馈出,向地铁各种用电设备提供电源。
东延线工程每个车站设1座降压所和1座跟随式降压所,全线共设16座降压变电所和15座跟随所,其中7座降压所与同站的牵引所合建为牵引降压混合变电所。
(5)牵引网系统:负责将牵引变电所提供的直流1500V牵引电源通过受流器供给地铁列车,并利用走行轨回流。
牵引网系统覆盖整个东延线正线以及停车场需要电化的股道,授流方式采用刚性悬挂,由支持结构及接触悬挂等部分组成。
本工程电化里程约48条公里。
(6)动力照明配电系统:负责将降压变电所馈出的0.4kV交流电源配给地铁沿线车站、区间、停车场等处所的动力及照明设备。
(7)电力监控(SCADA)系统:负责实施对地铁供电系统的主要电气设备的实时遥测、遥信、遥控和遥调,从而实现供电系统的远程集中调度管理,提高供电系统的自动化水平。
东延线工程按电力监控系统集成入综合监控系统中设计。
地铁供电系统供电系统是地铁所有用电用户的电能源泉,是机车和机电系统运行的动力保证。
一旦供电系统发生故障,将使整条线路失去运营能力,造成重大经济损失。
随着地铁线路的不断增多,地铁供电系统复杂程度越来越高,出现事故的可能性和故障波及的范围、造成的损失也不断增大。
供电系统能否安全可靠运行将直接关系到地铁的安全、稳定运营,为了保证地铁安全可靠地运行,探讨其供电系统安全措施是极其有意义的。
1 地铁供电系统分析1.1高压供电系统。
一般地,城市电网对城市轨道交通进行供电的方式有三种:集中式供电、分散式供电和混合式供电。
1.1.1集中供电方式。
沿城市轨道交通线路,根据用电量和线路的长短,建设城市轨道交通专用主变电所。
主变电所应有两路独立的110KV电源。
再由主变电所变压为城市轨道交通内部供电系统所需的电压级(35KV或10KV等)。
由主变电所构成的供电方案为集中式供电。
1.1.2分散供电方式。
分散供电方式是指不设主变电所,而直接由城市电网区域变电所的35(33)KV或10KV中压输电线直接向城市轨道交通沿线设置的牵引变电所、降压变电所供电并行车环网。
采用这种方式的环境必须是城市电网比较发达,在有关车站附近有符合可靠性要求的供电电源。
其中压网络的电压等级应与城市电网相一致。
在这种方式下,可设置电源开闭所,并可与车站变电所合建。
1.1.3混合供电方式。
即前两种供电方式的结合,以集中式供电方式为主,个别地段引入城市电网电源作为集中供电的补充,使供电系统更加完善和可靠。
武汉轨道交通、北京地铁1号线和环线即为此种供电方式。
1.2牵引供电系统及其运行方式。
1.2.1牵引供电系统组成。
在城市轨道交通牵引供电系统中,电能从牵引变电所经馈电线、接触网输送给电动列车,再从电动列车经钢轨(称轨道回路)、回流线流回牵引变电所。
由馈电线、接触网、轨道回路及回流线组成的供电网络称为牵引网。
牵引供电系统即由牵引变电所和牵引网组成,其中牵引变电所和接触网是牵引供电系统的主要组成部分。
城市轨道交通供电系统概述城市轨道交通供电系统是城市轨道交通运营的重要基础设施之一。
它负责为城市的地铁、轻轨等轨道交通提供稳定可靠的电力供应。
供电系统的设计与运营对于轨道交通系统的正常运行和乘客的出行安全至关重要。
本文将重点介绍城市轨道交通供电系统的组成和原理、供电方式以及相关设备和技术等内容。
组成和原理城市轨道交通供电系统主要由以下几个组成部分组成:电源系统是城市轨道交通供电系统的核心组成部分,负责为整个供电系统提供稳定的电力。
常见的电源系统包括接触网供电系统和第三轨供电系统。
•接触网供电系统:通过架设在轨道上方的接触网,通过配电设备提供电力给列车供电。
•第三轨供电系统:在轨道的一侧或两侧铺设一根导电轨,列车通过集电装置与导电轨接触,实现电能传递。
2. 配电系统配电系统负责将电源系统提供的电能,在整个轨道交通线路上进行合理分配。
配电系统通常包括变电站、变压器、开关设备等,在供电过程中起到调节电能和保护设备的作用。
线路系统是城市轨道交通供电系统的输电线路,包括主干线、支线和馈电线等。
这些线路通过导线将电能输送到不同的供电区域,确保整个供电系统的稳定性和可靠性。
4. 集电装置集电装置是连接列车和供电系统的关键设备,由于列车在运行过程中需要实时获得电力供应,因此集电装置可以通过与接触网或第三轨建立导电接触来获取电能,并将其传送到列车的牵引设备中。
供电方式根据城市轨道交通供电系统的不同设计和实际情况,可以有以下几种常见的供电方式:1.直供直流供电方式(常用于地铁):以直流电方式供电,电压较高,通常为600V、750V或1500V,通过第三轨或接触网提供电能。
2.直供交流供电方式(常用于轻轨):以交流电方式供电,电压较低,通常为380V或750V,通过接触网提供电能。
3.高速铁路供电方式:通常使用交流电方式供电,电压较高,通常为25kV,通过接触网提供电能。
相关设备和技术城市轨道交通供电系统涉及到的设备和技术非常多样化,其中一些关键的设备和技术包括:•变电站:用于将电网的高压电能转换为供电系统所需的低压电能。
地铁供电系统概述电网供电系统是地铁供电系统的起点,它负责将电能从电厂输送到变电所。
电网供电系统通常包括输电线路、变电站和配电网等。
输电线路将高压电能从电厂输送到变电站,变电站则将高压电能变压并降低电压传输到地铁供电系统。
接触网系统是地铁供电系统的重要组成部分,它负责将电能从变电所传输到地铁列车。
接触网系统主要由接触网支柱、悬挂装置、接触网线路、接触网触头等组成。
接触网支柱起到支撑接触网线路和触头的作用,悬挂装置用于悬挂接触网线路和触头。
接触网线路是输送电能的主要通道,接触网触头则与地铁列车上的集电装置接触,将电能传递给地铁列车。
变电所是地铁供电系统的核心设施,它将电网供电系统的电能进行变压和分配。
变电所通常包括变压器、低压开关设备、保护设备等。
变压器起到变压作用,将高压电能变为适用于地铁的运行电压。
低压开关设备用于实现对供电线路的开关和保护控制。
保护设备用于保护地铁供电系统的安全和可靠运行。
牵引供电系统是地铁供电系统的重要组成部分,它负责将电能从接触网系统传送到地铁车辆上的电动机。
牵引供电系统包括牵引变流器、牵引变压器、牵引电机以及牵引电缆等。
牵引变流器将交流接触网电能转换为直流电能供给地铁列车牵引电机。
牵引变压器起到变压作用,将高压牵引电能变为适用于地铁列车的运行电压。
牵引电机通过电缆与牵引变流器和牵引变压器相连,将电能转换为动力,驱动地铁列车运行。
地铁供电系统的设计和运行需要充分考虑能效和环保。
一方面,地铁供电系统要尽可能降低能量损耗,提高供电效率。
另一方面,地铁供电系统要选择环保的能源并采取相应的节能措施。
例如,可以选择清洁能源供电,减少对化石能源的依赖;可以采用能量回收技术,将制动能量转化为电能并反馈回电网;还可以优化供电系统的设计和运行,减少电能损耗。
总而言之,地铁供电系统是地铁运行的重要组成部分,它负责为地铁列车提供稳定可靠的电力供应。
地铁供电系统的设计和运行需要充分考虑能效和环保,尽可能降低能量损耗,并选择环保的能源。
地铁供电系统第一节概述一、地铁供电方式地铁的供电电源要求安全可靠,通常由城市电网供给。
目前,国内各城市对地铁及城市轨道交通的供电一般有三种方式,即分散供电方式、集中供电方式、分散与集中相结合的混合供电方式。
分散供电方式是指沿地铁线路的城市电网(通常是10KV电压等级)分别向各沿线的地铁牵引变电所和降压变电所供电。
其前提条件是城市电网在地铁沿线有足够的变电站和备用容量,并能满足地铁牵引供电的可靠性要求。
如早期的北京地铁采取的就是这种供电方式。
集中供电方式是指城市电网(通常是110KV或66KV电压等级)向地铁的专用主变电所供电,主变电所再向地铁的牵引变电所和降压变电所供电,地铁自身组成完整的供电网络系统。
近几年新建的地铁系统多采用集中供电方式,如上海、广州、深圳地铁等。
分散与集中相结合的供电方式是上述两种供电方式的结合,可充分利用城市电网的资源,节约投资,但供电可靠性不如集中供电方式,管理亦不够方便。
集中和分散两种不同供电方式的比较如表1-3-1所示,分散与集中相结合的供电方式优缺点介于两者之间。
表1-3-1地铁供电方式的比较供电方优点缺点式集中供电方式l 供电可靠性高,受外界因素影响较小;l 主变电所采用110/35KV 有载自动调压变压器,并有专用供电回路,供电质量好;l 地铁供电可独立进行调度和运营管理;检修维护工作相对独立方便;l 可提高地铁供电的可靠性和灵活性;l 牵引整流负荷对城市电网的影响小;l 只涉及城市电网几个220KV 变电站的增容改造,工程量较小,相对易于实现。
l 投资较大。
分散供电方式 l 投资较小;l 便于城市电网进行统一规划和管理。
l 因同时受110KV 和10KV 电网故障影响,故受外界因素影响较多;l 10KV 电网直接向一般用户供电,引起的故障几率大,可靠性较低;l 与城市电网的接口多,调度和运营管理环节增多,故障状态下的转电不方便;l 牵引整流机组产生的高次谐波直接进入10KV电网对其他用户的影响较大;l 要求城市电网的变电所应具有足够的备用容量,以满足地铁牵引供电的要求;涉及较多110KV变电站的增容改造,工程量较大。
地铁车站供电系统常见问题地铁作为现代城市交通的重要组成部分,其安全、稳定的运行离不开可靠的供电系统。
地铁车站供电系统就如同地铁的“心脏”,为列车的运行和车站内的各种设备提供源源不断的动力。
然而,在实际运行过程中,地铁车站供电系统也会面临一些常见的问题。
首先,电力设备故障是一个较为常见的问题。
比如变压器,作为供电系统中的关键设备,长时间运行可能会出现过热、绝缘老化等问题。
过热可能导致变压器内部的绕组损坏,影响其正常工作;绝缘老化则可能引发短路,甚至造成严重的电气事故。
开关柜也是容易出现故障的设备之一,其操作机构可能会因为机械磨损、部件松动等原因而无法正常分合闸,影响电力的输送。
其次,供电线路的问题不容忽视。
地铁车站供电线路通常较为复杂,包括电缆、母线等。
电缆可能会因为外力破坏、绝缘受损等原因发生短路或断路。
例如,在施工过程中,如果不小心挖断了地下电缆,就会导致供电中断。
母线则可能因为长期的电流过载、接触不良等出现过热现象,影响供电的稳定性。
再者,继电保护装置的误动作或拒动作也是一个棘手的问题。
继电保护装置的作用是在供电系统发生故障时迅速切断故障部分,以保护其他设备不受影响。
但如果保护装置的整定值设置不合理、设备老化或者受到外界干扰,就可能出现误动作,即正常运行时错误地切断电路;或者拒动作,即在故障发生时未能及时切断故障,从而扩大事故范围。
另外,电源质量问题也会给地铁车站供电系统带来困扰。
例如,电压波动、谐波干扰等。
电压波动可能导致设备运行不稳定,甚至损坏;谐波干扰则会使电气设备发热增加、损耗增大,降低设备的使用寿命。
在实际运行中,自然灾害也可能对地铁车站供电系统造成破坏。
比如雷击可能会损坏电力设备的绝缘,引发短路;暴雨可能导致地下配电室进水,造成设备短路或损坏。
针对以上常见问题,我们可以采取一系列的措施来加以应对。
对于电力设备故障,定期的巡检和维护至关重要。
通过定期检查设备的温度、声音、外观等,可以及时发现潜在的问题,并进行维修或更换部件。
地铁供电原理
地铁供电原理是通过直流电将电能传输到车辆上,实现车辆的运行。
地铁供电系统由三部分组成:电源系统、供电系统和接触网系统。
电源系统是地铁供电的核心,主要由变电所和配电装置组成。
变电所将市电的交流电转换成直流电,并提供给地铁供电系统使用。
配电装置则将电能分配到各个供电系统。
供电系统包括集电装置和集电靴。
集电装置安装在地铁车辆顶部,通过接触网系统与集电靴连接。
当地铁车辆行驶时,集电装置与接触网产生接触,并从接触网上获得电能。
接触网系统是地铁供电的传输通道。
它由钢索和悬挂装置组成,沿地铁线路悬挂在上方。
钢索上通有直流电,并与地铁车辆的集电装置接触。
当地铁车辆行驶过接触网时,集电装置接触钢索,从而获取电能。
地铁供电原理的关键是直流电的传输和接触网系统的悬挂与接触。
通过科学、安全、可靠地进行供电,地铁车辆得以持续运行,为城市的交通出行提供便利。
地铁供电系统
第一节概述
一、地铁供电方式
地铁的供电电源要求安全可靠,通常由城市电网供给。
目前,国内各城市对地铁及城市轨道交通的供电一般有三种方式,即分散供电方式、集中供电方式、分散与集中相结合的混合供电方式。
分散供电方式是指沿地铁线路的城市电网(通常是10KV电压等级)分别向各沿线的地铁牵引变电所和降压变电所供电。
其前提条件是城市电网在地铁沿线有足够的变电站和备用容量,并能满足地铁牵引供电的可靠性要求。
如早期的北京地铁采取的就是这种供电方式。
集中供电方式是指城市电网(通常是110KV或66KV电压等级)向地铁的专用主变电所供电,主变电所再向地铁的牵引变电所和降压变电所供电,地铁自身组成完整的供电网络系统。
近几年新建的地铁系统多采用集中供电方式,如上海、广州、深圳地铁等。
分散与集中相结合的供电方式是上述两种供电方式的结合,可充分利用城市电网的资源,节约投资,但供电可靠性不如集中供电方式,管理亦不够方便。
集中和分散两种不同供电方式的比较如表1-3-1所示,分散与集中相结合的供电方式优缺点介于两者之间。
表1-3-1 地铁供电方式的比较
供电方式
优 点 缺 点
集中供
电方式
l 供电可靠性高,受外界因素影响较小;
l 主变电所采用110/35KV 有载自动调压变压器,并有专用供电回路,供电质量好;
l 地铁供电可独立进行调度和运营管理;
检修维护工作相对独立方便;
l 可提高地铁供电的可靠性和灵活性;
l 牵引整流负荷对城市电网的影响小;
l 只涉及城市电网几个220KV 变电站的增容改造,工程量较小,相对易于实现。
l 投资较大。
分散供电方式
l 投资较小;
l 便于城市电网进行统一规划和管理。
l 因同时受110KV 和10KV 电网故障影响,故受外界因素影响较多;
l 10KV 电网直接向一般用户供电,引起的故障几率大,可靠性较低;
l 与城市电网的接口多,调度
和运营管理环节增多,故障状态下的转电不方便;
l 牵引整流机组产生的高次谐波直接进入10KV 电网对其他用户的影响较大;
l 要求城市电网的变电所应具有足够的备用容量,以满足地铁牵引供电的要求;涉及较多110KV 变电站的增容改造,工程量较大。
对于某一城市究竟应采用哪种供电方式,需要根据地铁和城轨交通用电负荷并结合该城市电网的具体情况进行分析。
若该城市的电力资源缺乏,变电站较少,采用分散供电方式时由于需要新建多个地区。