地铁供电系统简介
- 格式:pptx
- 大小:611.87 KB
- 文档页数:12
城市轨道交通供电系统详解第一章电力牵引供电系统综述一、电力牵引的制式对牵引列车的电动车辆或电力机车特性的基本要求:1、起动加速性能要求起动加速力大而且平稳, 即恒定的大的起动力矩, 便于列车快速平稳起动。
2、动力设备容量利用对列车的主要动力设备——牵引电动机的基本性能要求为, 列车轻载时, 运行速度可以高一些, 而列车重载时运行速度可以低一些。
这样无论列车重载或轻载都可以达到牵引电动机容量的充分利用, 因为列车的牵引力与运行速度的乘积为其功率容量,这时近于常数。
3、调速性能列车运输,特别是旅客运输,要求有不同的运行速度,即调速。
在调速过程中既要达到变速, 还要尽可能经济, 不要有太大的能量损耗, 同时还希望容易实现调速。
低频单相交流制是交流供电方式, 交流电可以通过变压器升降压, 因此可以升高供电系统的电压, 到了列车以后再经车上的变压器将电压降低到适合牵引电动机应用的电压等级。
由于早期整流技术的关系, 这种制式采用的牵引电动机在原理上与直流串激电动机相似的单相交流整流子电动机。
这种电动机存在着整流换向问题,其困难程度随电源频率的升高而增大,因此采用了“低频”单相交流制,它的供电频率和电压有 25 HZ、 6.5~11 kV和 1632HZ 、 12~15 kV等类型。
由于用了低频电源使供电系统复杂化, 需由专用低频电厂供电, 或由变频电站将国家统一工频电源转变成低频电源再送出, 因此没有得到广泛应用, 只在少量国家的工矿或干线上应用。
“工频单相交流制” 。
这种制式既保留了交流制可以升高供电电压的长处, 又仍旧采用直流串激电动机作为牵引电动机的优点, 在电力机车上装设降压变压器和大功率整流设备, 它们将高压电源降压, 再整流成适合直流牵引电动机应用的低压直流电, 电动机的调压调速可以通过改变降压变压器的抽头或可控制整流装置电压来达到。
工频单相交流制是当前世界各国干线电气化铁路应用较普遍的牵引供电制式。
地铁列车辅助供电系统介绍一、地铁列车辅助供电系统概要目前从我国地铁列车的供电系统来看,我国大部分地铁列车辅助供电系统都是以输入电路、逆变器、输出电路、控制模块以及电池组成。
(一)输入电路辅助供电输入电路主要包括电路熔断器、输入虑波器等构成,其中荣电器负责当地铁列车后极电路产生过载或者出现短路的情况下及时断电的一种装置。
虑波器其主要作用在于控制以及过滤前极电路产生的共模高频干扰信号。
(二)逆变器逆变器中包括一个具有转变电压的受控三项电桥,通过该电桥将电压转地铁列车接触网电压转变成为列车工作需要的三项交流380V并且运用并联的方式进行电流输出,逆变器通常情况下一固定的频率进行工作。
受控三项电桥安装在一个具有散热功能的散热器上,散热器中装有开关、二极管以及驱动板等相应设备。
主控制器产生的驱动信号接入到驱动板,从而通过控制设备进行逆变器380V输出。
二极管用来关断瞬间输出变压器自感电动势反加到直流环节造成电源污染。
(三)输出电路在地铁列车的辅助输出电路中,辅助输出电路包括辅助输出变压器、正弦滤波器以及熔断器等相应设备组成。
其供电的过程是,列车接触网电压经过输出变压器后,将接触网电压转变成为列车使用电压,将输出电压经由正弦滤波器后,在经由输出接触器以及熔电器进行供电。
通常情况下,地铁列车通常都是将滤波器固定在变频器与电机之间,。
当系统检测到逆变器的输出电压同列车所用的380V 电压在同一频率之后,那么输出电路中的接触器将会闭合。
而熔断器主要负责电压过高以及过流等保护工作。
(四)控制模块地铁列车的辅助供电系统的控制模块主要包含主控制器、模块控制器以及输入输出节点等设备注重。
控制模块在辅助供电系统中负责对供电系统进行全方位控制,同时也负责上级控制通讯以及对不同变流器进行电压以及电流的控制与调节。
当控制模块检测到地铁列车发生辅助供电系统故障时,那么控制模块将下达关闭辅助逆变器的命令。
主模块控制器通常情况下配备两个微处理器。
地铁供电科普文章地铁作为一种重要的城市交通工具,为了能够正常运行,需要有稳定可靠的供电系统。
地铁供电系统是地铁运营中的重要组成部分,它为地铁列车提供所需的电力。
本文将对地铁供电系统进行科普介绍,帮助读者更好地了解地铁供电的工作原理和相关设备。
一、直流供电系统地铁供电系统一般采用直流供电,其主要原因是直流供电具有稳定性好、传输损耗小等优点。
直流供电系统由供电变电所、接触网、牵引变流器等组成。
1. 供电变电所:地铁供电系统的起点是供电变电所,它将电网中的交流电转换为地铁所需的直流电。
供电变电所还负责控制和保护地铁供电系统的正常运行。
2. 接触网:接触网是地铁供电系统中的一个关键部件,它位于地铁轨道上方,由一根根金属导线组成。
接触网上方悬挂着地铁列车的集电弓,当列车行驶时,集电弓与接触网接触,从而实现电能的传输。
3. 牵引变流器:牵引变流器是地铁供电系统中的关键设备,它将接触网提供的直流电转换为适合地铁列车使用的电能。
牵引变流器可以根据列车的需要进行电流和电压的调整,确保地铁列车能够平稳运行。
二、地铁供电系统的特点地铁供电系统具有以下特点:1. 稳定可靠:地铁供电系统需要保证供电的稳定性和可靠性,以确保地铁列车的正常运行。
供电系统中的各个设备都经过严格的设计和测试,以应对各种复杂的工作环境。
2. 安全性高:地铁供电系统需要满足严格的安全标准,以确保乘客和工作人员的安全。
供电系统中设备的绝缘性能和防火性能都要达到一定的要求,以防止意外事故的发生。
3. 节能环保:地铁供电系统需要尽可能地减少能源的消耗,以降低对环境的影响。
供电系统中的设备需要具备良好的能效,以减少能源的浪费。
4. 维护成本低:地铁供电系统的设备需要具备良好的可维护性,以降低运营成本。
供电系统中的设备需要方便维修和更换,以减少维护所需的时间和成本。
三、地铁供电系统的发展趋势随着科技的不断进步,地铁供电系统也在不断发展和改进。
未来地铁供电系统的发展趋势主要体现在以下几个方面:1. 新能源的应用:随着新能源技术的不断发展,未来地铁供电系统可能会采用更多的新能源,如太阳能、风能等,以减少对传统能源的依赖。
城市轨道交通供电系统城市轨道交通概论城市轨道交通供电系统是指为城市轨道交通(如地铁、轻轨等)提供电力的系统。
它是城市轨道交通运营的重要组成部分,直接关系到城市轨道交通的安全、稳定和高效运行。
城市轨道交通供电系统主要包括供电系统结构、供电方式、供电设备和供电管理等几个方面。
首先,城市轨道交通供电系统的结构主要分为集中式供电和分布式供电两种形式。
集中式供电是指将电力从电网供应给城市轨道交通线路,通过变电所进行电能转换和配电。
分布式供电是指将电力直接供应给城市轨道交通线路,不通过变电所进行中间转换。
其次,城市轨道交通供电系统的供电方式主要有直流供电和交流供电两种形式。
直流供电是将电力以直流形式供应给城市轨道交通线路,其中常见的有三轨供电和四轨供电两种形式。
交流供电是将电力以交流形式供应给城市轨道交通线路,其中常见的有接触网供电和无接触网供电两种形式。
再次,城市轨道交通供电系统的供电设备包括变电所、牵引变压器、接触网或四轨导线和车辆供电设备等。
变电所是供电系统的核心设备,负责将电力从电网转换成适合轨道交通运营的电能。
牵引变压器则将变电所输出的电能转换成适合轨道交通车辆牵引的电能。
接触网或四轨导线是将电能从供电系统传输到运行线路上的设备,通过接触网或四轨导线与车辆上的集电装置接触,实现车辆的供电。
车辆供电设备则是车辆上的设备,负责将来自接触网或四轨导线的电能传输到车辆的牵引装置。
最后,城市轨道交通供电系统的供电管理是保障系统正常运行的重要环节。
供电管理包括供电调度、供电维护、供电检修和故障处理等多个方面。
供电调度负责根据运行情况合理调配供电能力,确保供电系统能满足轨道交通的需求。
供电维护负责对供电设备进行定期维护,确保设备的正常运行和使用寿命。
供电检修则是对供电设备进行故障排除和修复,及时处理供电系统的故障。
故障处理则是在供电系统故障发生时,采取相应措施,保障城市轨道交通的正常运行。
综上所述,城市轨道交通供电系统是为城市轨道交通提供电力的系统,它的结构、方式、设备和管理等方面都对轨道交通的运行质量和效率有着重要影响。
地铁供电系统供电系统为地铁的列车和各种用电设备提供电能,是保证地铁正常运行的重要组成部分,通常由供电电源、主变电所(集中供电方式时)、中压供电网络、牵引供电系统、动力照明配电系统、牵引网系统、电力监控(SCADA)系统、杂散电流腐蚀防护及接地系统和供电车间等组成。
(1)主变电所:集中供电方式下,负责向地铁沿线的各种用电设备提供电源。
每座主变电所从城市电网引入两路独立可靠的110kV电源,经主变压器降压后通过中压供电网络向地铁沿线的牵引变电所和降压变电所供电。
东延线工程利用地铁1号线续建工程的白石洲主变电所、地铁1号线的文化中心主变电所、城市广场主变电所一起供电。
(2)中压供电网络:负责将主变电所的中压馈电回路以分区环网方式向地铁沿线的牵引变电所和降压变电所提供两路可靠的电源。
(3)牵引变电所:负责将中压交流电降压整流为1500V直流电,并向沿线的牵引网提供电源。
全线正线设牵引变电所6座,停车场设1座。
(4)降压变电所:负责将中压交流电降压为0.4kV交流电,并通过低压开关柜和电缆馈出,向地铁各种用电设备提供电源。
东延线工程每个车站设1座降压所和1座跟随式降压所,全线共设16座降压变电所和15座跟随所,其中7座降压所与同站的牵引所合建为牵引降压混合变电所。
(5)牵引网系统:负责将牵引变电所提供的直流1500V牵引电源通过受流器供给地铁列车,并利用走行轨回流。
牵引网系统覆盖整个东延线正线以及停车场需要电化的股道,授流方式采用刚性悬挂,由支持结构及接触悬挂等部分组成。
本工程电化里程约48条公里。
(6)动力照明配电系统:负责将降压变电所馈出的0.4kV交流电源配给地铁沿线车站、区间、停车场等处所的动力及照明设备。
(7)电力监控(SCADA)系统:负责实施对地铁供电系统的主要电气设备的实时遥测、遥信、遥控和遥调,从而实现供电系统的远程集中调度管理,提高供电系统的自动化水平。
东延线工程按电力监控系统集成入综合监控系统中设计。
地铁车站动力照明供配电系统介绍地铁车站是现代城市交通系统的重要组成部分,为了保障乘客的安全和舒适,地铁车站的动力照明供配电系统起到了至关重要的作用。
本文将详细介绍地铁车站动力照明供配电系统的组成和功能。
一、供电系统地铁车站的供电系统主要包括两部分:总线供电和备用供电。
总线供电是指通过地铁网供电系统向车站提供电力,并通过配电柜将电力分配到各个用电设备。
备用供电则是为了应对紧急情况而设置的备用电源,如发电机组等。
这样,即使主电源发生故障,车站的照明系统也能正常运行,保障乘客的安全。
二、照明系统地铁车站的照明系统主要包括室内照明和室外照明。
室内照明主要用于车站大厅、站台、通道等区域,以确保乘客在车站内部能够清晰地看到周围的环境。
室外照明主要用于车站出入口、候车亭、楼梯等区域,以提供良好的视觉导向和安全保障。
为了节约能源,地铁车站的照明系统通常采用LED灯具,具有高效节能、寿命长等特点。
三、动力系统地铁车站的动力系统主要包括电梯、扶梯、自动售票机等设备的供电。
电梯和扶梯是地铁车站重要的乘客运输工具,它们的正常运行对于乘客的出行至关重要。
而自动售票机则是为了方便乘客购票,减少人工操作。
为了保证这些设备的正常运行,地铁车站的动力系统需要提供稳定可靠的电力。
四、安全系统地铁车站的安全系统主要包括监控系统、报警系统等。
监控系统通过安装在车站各个角落的摄像头,实时监控车站内外的情况,以提供安全保障。
报警系统则通过设置报警装置,及时发出警报,以应对突发事件。
这些安全系统的正常运行离不开稳定的电力供应。
为了确保地铁车站动力照明供配电系统的正常运行,需要进行定期检查和维护。
一旦发现故障或异常,应及时采取措施进行修复。
此外,地铁车站的动力照明供配电系统还需要与其他系统进行协调,如通信系统、自动控制系统等,以实现整个地铁车站的正常运行。
地铁车站的动力照明供配电系统是地铁运营安全和乘客舒适的重要保障。
通过供电系统、照明系统、动力系统和安全系统的有机组合,地铁车站能够提供稳定可靠的电力供应,确保乘客在车站内部的安全和便利。
城市轨道交通供电系统一、城市轨道交通供电系统介绍城市轨道交通供电系统是为城市轨道交通运营提供所需电能的系统,不仅为城市轨道交通电动列车提供牵引用电,而且还为城市轨道交通运营服务的其他设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等,应具备安全可靠、技术先进、功能齐全、调度方便和经济合理等特点。
在城市轨道交通的运营中,供电一旦中断,不仅会造成城市轨道交通运输系统的瘫痪,还会危及乘客生命与财产安全。
因此,高度安全可靠而又经济合理的电力供给是城市轨道交通正常运营的重要保证和前提。
城市轨道交通的用电负荷按其功能不同可分为两大用电群体。
一是电动客车运行所需要的牵引负荷。
二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。
在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷,有固定负荷、有时刻在变化的运动负荷。
每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。
城市轨道供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。
二、城市轨道交通供电系统的组成城市轨道交通供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照明供电系统、电力监控系统。
其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。
城市轨道交通供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、降压变电所及牵引降压混合变电所。
主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供给牵引变电所和降压变电所的一种地铁变电所,是专为城市轨道交通系统提供能源的枢纽。
降压变电所:从主变电所(电源开闭所)获得电能并降压变成低压交流电,为车站、隧道动力照明负荷提供电源。
城市轨道交通供电系统概述城市轨道交通供电系统是城市轨道交通运营的重要基础设施之一。
它负责为城市的地铁、轻轨等轨道交通提供稳定可靠的电力供应。
供电系统的设计与运营对于轨道交通系统的正常运行和乘客的出行安全至关重要。
本文将重点介绍城市轨道交通供电系统的组成和原理、供电方式以及相关设备和技术等内容。
组成和原理城市轨道交通供电系统主要由以下几个组成部分组成:电源系统是城市轨道交通供电系统的核心组成部分,负责为整个供电系统提供稳定的电力。
常见的电源系统包括接触网供电系统和第三轨供电系统。
•接触网供电系统:通过架设在轨道上方的接触网,通过配电设备提供电力给列车供电。
•第三轨供电系统:在轨道的一侧或两侧铺设一根导电轨,列车通过集电装置与导电轨接触,实现电能传递。
2. 配电系统配电系统负责将电源系统提供的电能,在整个轨道交通线路上进行合理分配。
配电系统通常包括变电站、变压器、开关设备等,在供电过程中起到调节电能和保护设备的作用。
线路系统是城市轨道交通供电系统的输电线路,包括主干线、支线和馈电线等。
这些线路通过导线将电能输送到不同的供电区域,确保整个供电系统的稳定性和可靠性。
4. 集电装置集电装置是连接列车和供电系统的关键设备,由于列车在运行过程中需要实时获得电力供应,因此集电装置可以通过与接触网或第三轨建立导电接触来获取电能,并将其传送到列车的牵引设备中。
供电方式根据城市轨道交通供电系统的不同设计和实际情况,可以有以下几种常见的供电方式:1.直供直流供电方式(常用于地铁):以直流电方式供电,电压较高,通常为600V、750V或1500V,通过第三轨或接触网提供电能。
2.直供交流供电方式(常用于轻轨):以交流电方式供电,电压较低,通常为380V或750V,通过接触网提供电能。
3.高速铁路供电方式:通常使用交流电方式供电,电压较高,通常为25kV,通过接触网提供电能。
相关设备和技术城市轨道交通供电系统涉及到的设备和技术非常多样化,其中一些关键的设备和技术包括:•变电站:用于将电网的高压电能转换为供电系统所需的低压电能。
地铁供电系统概述电网供电系统是地铁供电系统的起点,它负责将电能从电厂输送到变电所。
电网供电系统通常包括输电线路、变电站和配电网等。
输电线路将高压电能从电厂输送到变电站,变电站则将高压电能变压并降低电压传输到地铁供电系统。
接触网系统是地铁供电系统的重要组成部分,它负责将电能从变电所传输到地铁列车。
接触网系统主要由接触网支柱、悬挂装置、接触网线路、接触网触头等组成。
接触网支柱起到支撑接触网线路和触头的作用,悬挂装置用于悬挂接触网线路和触头。
接触网线路是输送电能的主要通道,接触网触头则与地铁列车上的集电装置接触,将电能传递给地铁列车。
变电所是地铁供电系统的核心设施,它将电网供电系统的电能进行变压和分配。
变电所通常包括变压器、低压开关设备、保护设备等。
变压器起到变压作用,将高压电能变为适用于地铁的运行电压。
低压开关设备用于实现对供电线路的开关和保护控制。
保护设备用于保护地铁供电系统的安全和可靠运行。
牵引供电系统是地铁供电系统的重要组成部分,它负责将电能从接触网系统传送到地铁车辆上的电动机。
牵引供电系统包括牵引变流器、牵引变压器、牵引电机以及牵引电缆等。
牵引变流器将交流接触网电能转换为直流电能供给地铁列车牵引电机。
牵引变压器起到变压作用,将高压牵引电能变为适用于地铁列车的运行电压。
牵引电机通过电缆与牵引变流器和牵引变压器相连,将电能转换为动力,驱动地铁列车运行。
地铁供电系统的设计和运行需要充分考虑能效和环保。
一方面,地铁供电系统要尽可能降低能量损耗,提高供电效率。
另一方面,地铁供电系统要选择环保的能源并采取相应的节能措施。
例如,可以选择清洁能源供电,减少对化石能源的依赖;可以采用能量回收技术,将制动能量转化为电能并反馈回电网;还可以优化供电系统的设计和运行,减少电能损耗。
总而言之,地铁供电系统是地铁运行的重要组成部分,它负责为地铁列车提供稳定可靠的电力供应。
地铁供电系统的设计和运行需要充分考虑能效和环保,尽可能降低能量损耗,并选择环保的能源。
地铁供电系统第一节概述一、地铁供电方式地铁的供电电源要求安全可靠,通常由城市电网供给。
目前,国内各城市对地铁及城市轨道交通的供电一般有三种方式,即分散供电方式、集中供电方式、分散与集中相结合的混合供电方式。
分散供电方式是指沿地铁线路的城市电网(通常是10KV电压等级)分别向各沿线的地铁牵引变电所和降压变电所供电。
其前提条件是城市电网在地铁沿线有足够的变电站和备用容量,并能满足地铁牵引供电的可靠性要求。
如早期的北京地铁采取的就是这种供电方式。
集中供电方式是指城市电网(通常是110KV或66KV电压等级)向地铁的专用主变电所供电,主变电所再向地铁的牵引变电所和降压变电所供电,地铁自身组成完整的供电网络系统。
近几年新建的地铁系统多采用集中供电方式,如上海、广州、深圳地铁等。
分散与集中相结合的供电方式是上述两种供电方式的结合,可充分利用城市电网的资源,节约投资,但供电可靠性不如集中供电方式,管理亦不够方便。
集中和分散两种不同供电方式的比较如表1-3-1所示,分散与集中相结合的供电方式优缺点介于两者之间。
表1-3-1 地铁供电方式的比较供电方式优 点 缺 点集中供电方式l 供电可靠性高,受外界因素影响较小;l 主变电所采用110/35KV 有载自动调压变压器,并有专用供电回路,供电质量好;l 地铁供电可独立进行调度和运营管理;检修维护工作相对独立方便;l 可提高地铁供电的可靠性和灵活性;l 牵引整流负荷对城市电网的影响小;l 只涉及城市电网几个220KV 变电站的增容改造,工程量较小,相对易于实现。
l 投资较大。
分散供电方式l 投资较小;l 便于城市电网进行统一规划和管理。
l 因同时受110KV 和10KV 电网故障影响,故受外界因素影响较多;l 10KV 电网直接向一般用户供电,引起的故障几率大,可靠性较低;l 与城市电网的接口多,调度和运营管理环节增多,故障状态下的转电不方便;l 牵引整流机组产生的高次谐波直接进入10KV 电网对其他用户的影响较大;l 要求城市电网的变电所应具有足够的备用容量,以满足地铁牵引供电的要求;涉及较多110KV 变电站的增容改造,工程量较大。
第二章城市轨道交通供电系统描述●第一节供电系统的组成与功能●地铁供电系统是为地铁运营提供所需电能的系统,它不仅为地铁电动列车提供牵引用电,而且还为地铁运营服务的其它设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等。
●地铁供电系统一般包括外部电源、主变电所〔或电源开闭所〕、牵引供电系统、动力照明供电系统、电力监控系统。
其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。
幻灯片26●地铁系统是一个重要的用电负荷。
按规定应为一级负荷,即应由两路电源供电,当任何一路电源发生故障中断供电时,另一路应能保证地铁重要负荷的全部用电需要。
在地铁供电系统中牵引用电负荷为一级负荷,而动力照明等用电负荷根据它们的实际情况可分为一级、二级或三级负荷。
地铁外部电源供电方案,可根据实际情况不同分为集中供电方式、分散供电方式和混合供电方式。
幻灯片27第二节变电所的分类●地铁供电系统中一般设置三类变电所,即主变电所〔分散式供电方式为电源开闭所〕、降压变电所及牵引降压混合变电所。
●主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供应牵引变电所和降压变电所的一种地铁变电所。
●降压变电所从主变电所〔电源开闭所〕获得电能并降压变成低压交流电。
●幻灯片28●牵引变电所从主变电所〔电源开闭所〕获得电能,经过降压和整流变成电动列车牵引所需要的直流电。
●主变电所:专为城市轨道交通系统提供能源的枢纽。
●牵引变电所:为列车提供适应的电源。
●降压变电所〔配电变电所〕:为车站、隧道动力照明负荷提供电源。
幻灯片29第四节供电系统主要运行方式● 1 10kV系统运行方式● 1.1 正常运行方式●变电所10kV母联开关和开闭所间联络开关均处于打开状态,每座变电所由2回电源供电,两段10kV母线分列运行。
变电所由开闭所按不同的供电分区供电。
1.2 其它运行方式1.2.1 故障或检修运行方式开闭所一回10kV外电源退出时的运行方式时,合上开闭所母联开关,由另一回10kV外电源向该开闭所供电范围内所有变电所供电。
第二节 城市轨道交通供电系统一、城市轨道交通供电系统概况城市轨道交通供电系统是城市轨道交通的能源补给线,它的安全可靠运行应被放在第一位,它对城市轨道交通的影响是全面的。
一旦供电系统出现问题,将会导致城市轨道交通的混乱和瘫痪。
因此,建立一个安全可靠的城市轨道交通供电系统是非常重要的。
(一)电源组成城市轨道交通供电系统的电能来源于国家电网,而国家电网的电能来源于各种发电厂。
(二)外部电源系统 ── 城市电网电力网简称电网,由输电线路、配电线路和变电所组成。
输电线路是向用户传输电能的通道,一般来说其电压较高,即采用高压传输,其特点是线路较长,覆盖区域广。
配电线路是向用户分配电能的通道,其电压相对较低,也就是通常说的低压配电线路,其特点是线路较短。
由此可见,不同的电网,其电压等级也不一样。
我国规定的电网标称电压(或者说额定电压)为3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV、750 kV、1 000 kV。
高压又细分为中压(3~75 kV)、高压(110~220 kV)、超高压(330~750 kV)、特高压(1 000 kV)。
高压电器设备是指输配电系统中用于控制和保护的设备,对电力设备的安全可靠运行至关重要。
城市轨道交通供电系统从城市电网引入高压或中压电源,再将引入的外部电源进行电压转换或直接分配至轨道交通的牵引变电所或降压变电所,由牵引变电所和降压变电所分别为轨道交通运行主体的车辆和辅助用电设备(动力、照明负荷)供电。
轨道交通从外部电源引入的形式上一般分为集中式供电、分散式供电和混合式供电三种模式。
国内大部分采用集中式供电,一些城市采用分散式供电,部分线路采用混合式供电。
1.集中式供电集中式供电指轨道交通从城市电网引入较高电压等级的电源(如110 kV、220 kV),经主变电站进行电压转换,将外部电源降压(如35 kV或10 kV)后,由主变电站集中向牵引变电所和降压变电所供电的外部电源引入模式。
地铁供电系统供电系统是地铁所有用电用户的电能源泉,是机车和机电系统运行的动力保证。
一旦供电系统发生故障,将使整条线路失去运营能力,造成重大经济损失。
随着地铁线路的不断增多,地铁供电系统复杂程度越来越高,出现事故的可能性和故障波及的范围、造成的损失也不断增大。
供电系统能否安全可靠运行将直接关系到地铁的安全、稳定运营,为了保证地铁安全可靠地运行,探讨其供电系统安全措施是极其有意义的。
1 地铁供电系统分析1.1高压供电系统。
一般地,城市电网对城市轨道交通进行供电的方式有三种:集中式供电、分散式供电和混合式供电。
1.1.1集中供电方式。
沿城市轨道交通线路,根据用电量和线路的长短,建设城市轨道交通专用主变电所。
主变电所应有两路独立的110KV电源。
再由主变电所变压为城市轨道交通内部供电系统所需的电压级(35KV或10KV等)。
由主变电所构成的供电方案为集中式供电。
1.1.2分散供电方式。
分散供电方式是指不设主变电所,而直接由城市电网区域变电所的35(33)KV或10KV中压输电线直接向城市轨道交通沿线设置的牵引变电所、降压变电所供电并行车环网。
采用这种方式的环境必须是城市电网比较发达,在有关车站附近有符合可靠性要求的供电电源。
其中压网络的电压等级应与城市电网相一致。
在这种方式下,可设置电源开闭所,并可与车站变电所合建。
1.1.3混合供电方式。
即前两种供电方式的结合,以集中式供电方式为主,个别地段引入城市电网电源作为集中供电的补充,使供电系统更加完善和可靠。
武汉轨道交通、北京地铁1号线和环线即为此种供电方式。
1.2牵引供电系统及其运行方式。
1.2.1牵引供电系统组成。
在城市轨道交通牵引供电系统中,电能从牵引变电所经馈电线、接触网输送给电动列车,再从电动列车经钢轨(称轨道回路)、回流线流回牵引变电所。
由馈电线、接触网、轨道回路及回流线组成的供电网络称为牵引网。
牵引供电系统即由牵引变电所和牵引网组成,其中牵引变电所和接触网是牵引供电系统的主要组成部分。