自动控制原理_线性系统时域响应分析
- 格式:doc
- 大小:170.00 KB
- 文档页数:7
实验一 线性系统时域特性分析一、实验目的1.掌握测试系统响应曲线的模拟实验方法。
2.研究二阶系统的特征参量ζ阻尼比和n ω自然频率对阶跃响应瞬态指标的影响。
二、实验设备与器件计算机一台,NI ELVIS Ⅱ多功能虚拟仪器综合实验平台一套,万用表一个,通用型运算放大器4个,电阻若干,电容若干,导线若干。
三、实验原理典型二阶系统开环传递函数为:)2()1()(2n ns s Ts s K s G ζωω+=+= ,一种是时间常数表达式,一种是零极点表达式。
时间常数表达式中包含三个环节:比例、积分和一阶惯性环节。
其中,K 开环放大系数,T 为一阶惯性环节的时间常数。
零极点表达式中包含两个特征参数:ζ阻尼比和n ω自然频率。
二阶系统的瞬态性能就由特征参数ζ和n ω决定。
典型二阶系统方块图如图1-1所示,系统闭环传递函数为:)()1()(2)()(10112101222T T K s T s T T K s s s R s C n n n ++=++=ωζωω ,图1-1典型二阶系统方块图阻尼比与自然频率为:11010111212121K T T T T K T T n ===ωζ, 101T T K n =ω典型环节与模拟电路的阻容参数的关系如下: 积分环节ST 01:000C R T = 一阶惯性环节111+S T K :f f C R T =1,if R R K =1四、实验内容Cf图1-2二阶系统闭环模拟电路图1.已知系统的模拟电路如图1-2所示,在NI ELVIS Ⅱ教学实验板上,利用运算放大器、电阻、电容自行搭建二阶模拟闭环系统。
阶跃信号由实验板模拟量输出接口AO0输出,接到二阶系统的输入端。
将二阶系统的输入端与输出端分别接实验板模拟量输入接口AI0(+)与AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。
搭建模拟电路时,应特别注意:运算放大器的Vcc 与Vee 分别接实验板的+15V 与-15V ,正输入端IN+应接实验板的Ground ,实验板模拟量输入接口AI0(-)与AI1(-)应接实验板的Ground ,电容负端接运放负端输入IN-。
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线xlabel('t/s'),ylabel('c(t)') %给坐标轴加上说明title('Unit-step Respinse of G(s)=25/(s^2+4s+25)') %给图形加上标题名则该单位阶跃响应曲线如图2-1所示:注意:在figure 中点鼠标右键,在右键菜单中选择“Characteristics”,其中包括四个系统性能指标:“Peak Response 峰值”、“Settling Time 调节时间”、“Rise Time”和“Steady State 稳态值”,选中其中的任何一个指标后,都会用大点点在图上标出指标对应的位置。
自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。
2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。
3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。
二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。
三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。
LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。
2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。
针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。
四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。
搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。
2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。
其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。
下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。
武汉工程大学 实验报告
专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析
一、实验目的
1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
1
4647
3)(2
342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。
2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。
3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。
4.单位负反馈系统的开环模型为
)
256)(4)(2()(2++++=
s s s s K
s G
试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验结果及分析
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
14647
3)(2342++++++=s s s s s s s G
可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。
方法一:用step( )函数绘制系统阶跃响应曲线。
程序如下:
num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10;
step(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')
Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1)
t/s (sec)
c (t )
方法二:用impulse( )函数绘制系统阶跃响应曲线。
程序如下:
num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10;
impulse(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')
Unit-im pulse Response of G(s)/s=s 2+3s+7/(s 5+4s 4+6s 3+4s 2+s)
t/s (sec)
c (t )
2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1) 分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标
ss s p r p e t t t ,,,,σ。
程序如下:
num= [0 0 4]; den1=[1 0 4]; den2=[1 1 4]; den3=[1 2 4]; den4=[1 4 4]; den5=[1 8 4]; t=0::10; step(num,den1,t)
xlabel('t/s'),ylabel('c(t)') grid
text,,'Zeta=0'); hold
step(num,den2,t) text ,,'')
step(num,den3,t) text ,,'')
step(num,den4,t) text ,,'')
step(num,den5,t) text ,,'')
title('Step-Response Curves for G(s)=4/[s^2+4(zeta)s+4]')
0.20.40.60.81
1.2
1.41.6
1.82Step-R esponse C urves f or G(s)=4/[s 2+4(zeta)s+4]
t/s (sec)
c (t )
s
w w t n d r 94.025
.01225
.0arccos 1arccos 2
2
≈-----=
=
=πζζπβπ
s
w w t n d
p 62.125
.01212
2
≈-=
-=
=
π
ζ
π
π
()05.075
.05
.35.35.3=∆====
s w t n s σζ 2.05
.02
1121111=+=+=+=
ζn ss w K e 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω 对系
统的影响。
程序如下:
num1=[0 0 1]; den1=[1 1];
num2=[0 0 4]; den2=[1 1 4]; num3=[0 0 16]; den3=[1 2 16]; num4=[0 0 36]; den4=[1 3 36]; t=0::10;
step(num1,den1,t); hold on grid;
text,,'wn=1')
step(num2,den2,t); hold on text,,'wn=2')
step(num3,den3,t); hold on text,,'wn=4')
step(num4,den4,t); hold on text,,'wn=6')
xlabel('t/s'), ylabel('c(t)')
title('Step-Response Curves for G(s)=Wn^2/[s^2+(Wn)s+Wn^2]')
012345678910
0.5
1
1.5
Step-Response Curves for G(s)=Wn 2/[s 2+0.5(Wn)s+Wn 2]
t/s (sec)
c (t )
分析:根据图像可知,在ζ一定时,自然频率n
ω越大,则上升时间r t ,峰值时间p t ,
调节时间s t 将会越小,但峰值不变。
3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。
方法一:直接求根判稳roots( ) >> roots([2,1,3,5,10]) ans = + - + -
特征方程的根不都具有负实部,因而系统不稳定。
方法二:劳斯稳定判据routh () r =
0 0
0 0 0 0 info =
所判定系统有 2 个不稳定根!
4.单位负反馈系统的开环模型为
)
256)(4)(2()(2++++=
s s s s K
s G
试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
闭环特征方程020*********
34=+++++k s s s s ,按劳斯表稳定判据的要
求,列出劳斯表:
4s 1 69 200+k 3s 12 198 0 2s 200+k 0 1s
5
.52)200(121985.52k +⨯-⨯
0s 200+k
根据劳斯表稳定判据,令劳斯表第一列各元为正则
52.519812(200)
52.5
200k 0k ⨯-⨯+>+>
解得 -200<k<
所以当 -200<k<时,闭环系统稳定
总结:判断闭环系统稳定有两种方法。
方法一:直接将闭环特征方程的根直接求出来,如果闭环特征方程所有根都有负实部,则可判断闭环系统稳定。
方法二:可以使用劳斯稳定判据列劳斯表,然后根据劳斯表第一列是否全部为正来确定系统是否稳定。
开环增益ζ2n
w
K=
,因为开环增益与n w和ζ都有关,则通过改变n w和ζ适当选择开环增益K,便可更好的改善系统稳态性能指标。
心得体会:通过本次实验,我初步了解了step( )函数和impulse( )函数的使用方法,通过在MATLAB中编程作出一阶系统、二阶系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应曲线。
通过观测响应曲线明显看出特征参量ζ和n
ω对二阶系统性能的影响。
并用Roots函数和劳斯判据方便直观的判断系统的稳定性。
这让我感觉到MATLAB的强大功能,虽然在实验中遇到很多问题,但主要是对软件不熟练,如果能灵活运用,则在以后便能很快捷的解决各种复杂的传递函数。