中空纤维膜
- 格式:doc
- 大小:12.50 KB
- 文档页数:1
中空纤维式生物反应器的原理中空纤维式生物反应器是一种常见的生物反应器,其原理是利用中空纤维膜将反应器分隔成两部分,即反应区和分离区。
中空纤维膜是一种具有多孔结构的膜材料,其内部有许多微小的通道,可以允许液体和气体通过。
在中空纤维式生物反应器中,反应区位于中空纤维膜的内侧,其中含有生物反应所需的微生物、营养物质和氧气等。
分离区位于中空纤维膜的外侧,其中含有用于分离产物的液体。
当生物反应开始时,微生物在反应区内进行代谢活动,产生所需的产物。
产物通过中空纤维膜的微小通道进入分离区,与液体分离。
分离区内的液体可以通过泵等设备抽出,进行后续的处理和分离。
中空纤维式生物反应器具有许多优点,如占地面积小、操作简单、分离效率高、产物纯度高等。
它被广泛应用于生物制药、食品加工、环境保护等领域。
中空纤维膜原材料1 中空纤维膜是什么中空纤维膜是一种高科技新材料,以聚砜、聚丙烯等为主要原材料制成。
它具有独特的中空纤维结构,能够实现高效的分离、过滤、吸附、浓缩等功能。
中空纤维膜具有较高的表面积、良好的孔径分布、优异的化学稳定性、更广泛的应用领域等特点。
由于其物理结构和化学性质的特殊性,中空纤维膜在食品、生物制造、医药、化学、环保等领域得到了广泛的应用。
2 中空纤维膜的原材料中空纤维膜的原材料主要是聚合物材料,如聚砜、聚丙烯等。
这些材料具有较好的透过性和化学稳定性,适合用于制造中空纤维膜。
此外,中空纤维膜制造还需要一些助剂,如分散剂、酸碱调节剂等。
3 中空纤维膜的制造工艺中空纤维膜的制造工艺主要分为干法和湿法两种。
干法是指将聚合物粉末熔融后通过纺丝机制造中空纤维,这种方法适合于纯聚砜材料制造。
湿法则是在聚合物溶液中加入助剂后,在纺丝机中通过旋转、拉伸等方式制造中空纤维,这种方式适合于聚丙烯等材料的制造。
4 中空纤维膜的应用领域中空纤维膜具有较大的应用潜力,在食品、生物制造、医药、化学、环保等领域得到了广泛应用。
如在食品加工领域,中空纤维膜可用于果汁、酸奶等饮料的浓缩、分离;在生物制造领域,可用于细胞培养、蛋白质纯化等;在医药领域,可用于血液透析、药物分离等;在化学和环保领域,可用于有机物分离、废水处理等。
5 中空纤维膜的市场前景中空纤维膜作为一种新型高科技材料,具有广阔的市场前景。
随着人们对食品质量、环境污染等问题的越来越关注,中空纤维膜在食品加工、环境治理等领域的应用将越来越广泛,市场需求也会不断增加。
因此,中空纤维膜产业也将会得到快速发展。
中空纤维膜用途
中空纤维膜是一种常见的膜分离技术,具有许多应用场景。
其主要用途如下:
1.污水处理:中空纤维膜可以用于污水处理,有效地去除水中的悬浮物、胶体、微生物等污染物,实现污水净化。
2.饮用水处理:中空纤维膜具有良好的过滤性能,可以有效去除水中的微生物、重金属离子、有机物等污染物,确保饮用水安全。
3.浓缩与分离:中空纤维膜可用于溶液的浓缩、分离和提纯,具有能耗低、操作简便等优点。
4.生物制药:中空纤维膜可用于生物制药领域的分离、浓缩、纯化等工艺过程,提高药品的纯度和收率。
5.食品工业:中空纤维膜可用于食品工业中的脱盐、脱苦、脱辣等处理,提高食品的品质。
6.化工行业:中空纤维膜在化工行业中可用于溶剂的回收、有害物质的去除等工艺过程。
7.半导体制造:中空纤维膜可用于半导体制造过程中的湿式清洗、废水处理等环节,保证生产环境的洁净度。
8.医药领域:中空纤维膜可用于血液净化、腹水浓缩等医疗领域,挽救患者生命。
总之,中空纤维膜在多个领域具有广泛的应用前景,为我国
的环保、民生、科技发展等方面做出了重要贡献。
中空纤维膜原理
中空纤维膜是一种特殊的膜分离技术,其原理基于中空纤维膜结构的特殊性质和分子扩散的原理。
中空纤维膜通常由高分子聚合物制成,具有类似于草帽的结构,中间是空心的。
这种结构使得中空纤维膜在分离过程中具有多个重要特点。
首先,中空纤维膜具有大的表面积。
因为中空纤维膜的结构是由很多纤维细丝组成的,这些细丝有很多个小孔隙。
这种结构使得总的表面积非常大,从而提高了分离效果。
其次,中空纤维膜具有可控的孔隙大小。
纤维膜制备过程中,可以通过调整聚合物溶液的浓度、孔隙形成剂等参数来控制纤维膜的孔隙大小。
这种可控性使得中空纤维膜可以用于不同尺寸的分离过程。
此外,中空纤维膜具有良好的机械强度和稳定性。
这种纤维膜的结构使得它具有高的抗拉强度和耐用性,能够承受高压的工作条件。
在分离过程中,中空纤维膜的原理主要是基于分子扩散。
当混合物经过纤维膜时,根据不同的分子尺寸和分子亲疏水性,某些分子可以通过纤维膜的孔隙进入到膜的内部,而其他较大的分子则无法通过。
这样,可以实现对混合物中不同分子尺寸的分离。
总的来说,中空纤维膜的原理是基于其结构特点和分子扩散的原理,通过调整纤维膜的孔隙大小和选择合适的工作条件,实现对混合物中不同分子的高效分离。
中空纤维膜孔径-概述说明以及解释1.引言1.1 概述概述中空纤维膜(Hollow Fiber Membrane)作为一种重要的分离膜材料,在膜分离领域中具有广泛的应用前景。
其独特的结构和优异的性能使其在水处理、气体分离、生物医药等领域得到了越来越多的关注和研究。
中空纤维膜由成千上万个微小的空心纤维组成,每根纤维的外层是固体膜材料,内部是空心的。
相比于传统的平板膜及空心纤维膜,中空纤维膜具有较大的表面积和更高的通量。
而中空纤维膜孔径的控制则是决定其分离性能的重要因素之一。
中空纤维膜孔径的大小直接影响着对不同颗粒物质的分离效果。
孔径较大的中空纤维膜可以实现高通量的分离过程,适用于对大分子物质和悬浮液等进行处理;而孔径较小的中空纤维膜则可以对细菌、病毒等微生物进行有效的拦截和分离。
因此,中空纤维膜孔径的控制非常关键,对于不同领域中的应用具有重要意义。
本文将重点探讨中空纤维膜孔径的重要性,包括其在水处理、气体分离以及生物医药等领域的具体应用。
同时,通过对中空纤维膜孔径的研究现状和发展趋势进行剖析,为进一步提高中空纤维膜的分离效率和应用性能提供有益的参考。
接下来,本文将从中空纤维膜的定义和特点出发,详细介绍中空纤维膜孔径的重要性,并对其应用前景、研究现状和发展趋势进行深入探讨,以期为中空纤维膜领域的研究者提供一些有价值的参考和启示。
1.2文章结构文章结构部分的内容可以描述整篇文章的组织结构和每个章节的主要内容。
以下是针对该文章目录的一个可能的描述:文章结构:本文主要包括引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的。
概述部分简要介绍了中空纤维膜孔径的重要性。
文章结构部分详细说明了整篇文章的组织结构。
目的部分阐述了本文的研究目标。
正文部分包括中空纤维膜的定义和特点以及中空纤维膜孔径的重要性两个章节。
其中,中空纤维膜的定义和特点章节介绍了中空纤维膜的基本概念和其独特的结构。
中空纤维膜孔径的重要性章节阐述了孔径对中空纤维膜性能的影响和应用意义。
中空纤维膜工作原理
中空纤维膜是一种多孔的膜材,其工作原理基于分子扩散和压力驱动。
中空纤维膜的结构由内核(内孔)和壳层(外侧的膜层)组成,内孔用于传输流体,而壳层则将具有特定大小和形状的孔隙封装在内部。
在膜分离过程中,混合物通过施加压力从膜的外侧进入,然后通过分子扩散的方式进入内孔。
在内孔内部,物质的分子根据其分子大小和溶解性质的不同,可以通过壳层的孔隙进一步传递或被拦截下来。
这种分离过程是基于选择性透过膜的原理。
具体来说,当混合物通过中空纤维膜时,较小分子和溶质可以通过膜的孔隙,而较大的分子或具有较低的溶解性的物质则会被膜拦截下来,从而实现物质的分离。
此外,中空纤维膜还可以利用溶剂逐渐流出膜内孔,以增加溶质在内核中的浓缩。
这样,在连续的操作过程中,可以逐渐浓缩溶质,从而实现分离和浓缩物质的目的。
总之,中空纤维膜通过分子扩散和压力驱动的方式,利用其内核和壳层的结构特点实现物质的分离和浓缩。
MBR工艺类型1. 介绍MBR(膜生物反应器)工艺是一种先进的污水处理技术,通过使用膜技术和生物反应器结合,能够高效地去除污水中的有机物、氮、磷等污染物,产生出高质量的处理水。
MBR工艺类型主要包括中空纤维膜(HFM)和平板膜(PFM)两种。
2. 中空纤维膜(HFM)2.1 原理中空纤维膜(HFM)是一种多孔膜,由许多微小的纤维组成。
通过在膜内部施加负压,将水从膜的外部抽吸到膜孔内,使水通过膜孔的壁层,从而实现固液分离。
膜孔的尺寸可以控制在微米级别,可以有效地截留污染物。
2.2 优点•高效固液分离:中空纤维膜具有独特的分离效果,能够高效地去除污水中的悬浮物、胶体物质等。
•占地空间小:中空纤维膜可以紧密堆叠在一起,从而减小了处理设备的占地面积。
•操作简单:中空纤维膜的操作相对简单,只需要定期进行清洗和维护即可。
•处理水质量高:中空纤维膜可以实现高效固液分离,产生出的处理水质量较高,可以直接回用或排放到环境中。
2.3 应用领域中空纤维膜广泛应用于各个领域的污水处理,包括工业废水处理、生活污水处理、水回用等。
其高效的固液分离效果使得中空纤维膜在处理高浓度、高固体含量的污水时具有优势。
3. 平板膜(PFM)3.1 原理平板膜(PFM)是一种通过将膜片堆叠在一起形成一个膜组件来实现固液分离的膜工艺。
膜片可以是平板状或者管状,通过施加正压力将污水推动通过膜片的孔隙,从而实现固液分离。
3.2 优点•处理能力强:平板膜可以通过增加膜片的数量来增加处理能力,适用于大规模的污水处理。
•抗污染性好:平板膜具有较好的抗污染性能,可以减少膜的堵塞和污染,延长使用寿命。
•维护方便:平板膜的维护相对简单,可以通过清洗和更换膜片来保持膜组件的正常运行。
•处理效果稳定:平板膜的处理效果稳定,能够稳定地去除污水中的有机物、氮、磷等污染物。
3.3 应用领域平板膜广泛应用于工业废水处理、城市污水处理、海水淡化等领域。
其处理能力强,抗污染性好的特点使得平板膜在大规模污水处理项目中得到广泛应用。
中空纤维膜的通量
摘要:
1.中空纤维膜的概念和结构
2.中空纤维膜的通量及其影响因素
3.提高中空纤维膜通量的方法
4.中空纤维膜的应用领域
正文:
一、中空纤维膜的概念和结构
中空纤维膜是一种具有自支撑作用的膜,其外形像纤维状。
它是非对称膜的一种,致密层可位于纤维的外表面(如反渗透膜),也可位于纤维的内表面(如微滤膜、纳滤膜和超滤膜)。
在中空纤维膜组件中,大量中空纤维膜被弯成U 形装入圆筒型耐压容器内。
纤维束的开口端用环氧树脂浇铸成管板,纤维束的中心轴部安装一根原料液分布管。
使原液径向均匀流过纤维束,纤维束的外部包以网布使纤维束固定并促进原液的湍流状态。
二、中空纤维膜的通量及其影响因素
中空纤维膜的通量是指单位时间内通过单位膜面积的流体量。
中空纤维膜的通量受多种因素影响,如膜的材质、结构、操作条件等。
其中,膜的材质和结构对通量的影响最为显著。
三、提高中空纤维膜通量的方法
提高中空纤维膜通量的方法主要有:
1.减小结晶度:通过热处理或其他聚合物混合,降低膜的结晶度,从而提
高通量。
2.改变膜的结构:如在膜制备过程中加入纳米颗粒,以改变膜的结构,提高通量。
3.优化操作条件:如提高操作压力、调整原料液的流速和组成等,以提高通量。
四、中空纤维膜的应用领域
中空纤维膜广泛应用于气体分离、水处理、医药、食品等领域。
中空纤维膜面积-回复中空纤维膜(Hollow Fiber Membrane)是一种可分离和纯化液体、气体和溶质的高效分离技术。
它的应用范围广泛,包括水处理、生物医药、食品加工等领域。
而中空纤维膜的面积是决定其分离效率和产能的重要因素之一。
本文将一步一步回答“中空纤维膜面积”这个问题,从中空纤维膜的基本结构、扩散与过滤机制,到面积计算方法及其影响因素进行探讨。
一、中空纤维膜的基本结构中空纤维膜由一个外壳(Shell)和一个内壳(Lumen)组成,类似于一个小管道。
外壳是膜的主体,用来滤除溶质,内壳则用于收集和提取滤出的产物。
外壳与内壳之间有许多小孔,称为孔径(Pore Size),其中的孔径大小和分布密度会影响膜的分离性能。
此外,中空纤维膜的壁厚(Wall Thickness)也是一个重要的参数,影响膜的机械强度和使用寿命。
二、中空纤维膜的扩散与过滤机制中空纤维膜的分离过程主要涉及两种机制:扩散和过滤。
扩散是指溶质通过膜孔径间隙间的非定向随机运动;过滤是指大分子被阻挡在膜表面而无法通过。
扩散是影响分离效率的关键因素之一,而过滤机制则是决定膜面积大小的主要原因之一。
三、中空纤维膜面积的计算方法中空纤维膜的面积可以通过以下公式进行计算:A = π* D * L * n其中,A表示中空纤维膜的有效面积,单位为平方米;D表示纤维外径,单位为米;L表示纤维长度,单位为米;n表示纤维束数。
四、影响中空纤维膜面积的因素1. 中空纤维膜的纤维束数:纤维束数决定了中空纤维膜所能容纳的纤维数量,从而影响膜的有效面积。
2. 纤维的长度:纤维的长度决定了中空纤维膜纤维的延伸程度,影响膜的有效面积的大小。
3. 中空纤维膜的密度:纤维的密度是通过控制纤维之间的距离和分布来调节的,密度的增加会增加中空纤维膜的面积,提高膜的分离效率。
4. 中空纤维膜的孔径和分布:孔径大小和分布密度直接影响溶质的扩散速率和过滤效果,从而影响膜的分离性能。
中空纤维膜通量中空纤维膜通量概述中空纤维膜是一种具有高通量、高选择性和高稳定性的分离技术,已被广泛应用于水处理、生物制药、食品加工等领域。
中空纤维膜通量是评价该技术性能的重要指标之一,本文将从中空纤维膜的定义、结构、制备方法及其影响因素等方面进行详细介绍。
一、中空纤维膜的定义和结构1. 中空纤维膜的定义中空纤维膜是由聚合物或无机材料制成的具有孔隙结构的管状材料,其内部为空心,外部为多孔壳层。
其孔径大小可以根据需要调节,通常在0.01-10微米之间。
2. 中空纤维膜的结构中空纤维膜由内向外分别包括孔径较小且密度较高的内层支撑层、孔径逐渐变大且密度逐渐降低的过滤层和孔径最大且密度最低的外层支撑层三部分组成。
其中,内层支撑层主要起支撑作用,外层支撑层则可以提高膜的机械强度和稳定性。
过滤层是中空纤维膜的主要功能区,其孔径大小和分布决定了膜的分离性能。
二、中空纤维膜的制备方法1. 溶液浸渍法该方法是将聚合物或无机材料溶解在有机溶剂中,形成溶液后通过浸渍、干燥、热处理等步骤制备中空纤维膜。
该方法适用于制备多种材料的中空纤维膜。
2. 相转移法该方法是将聚合物或无机材料在水相和有机相之间进行相转移反应,形成胶体后通过拉伸、烘干等步骤制备中空纤维膜。
该方法适用于制备高分子材料的中空纤维膜。
3. 空气喷射法该方法是利用高压气体将聚合物或无机材料喷射到旋转的收集器上,形成中空纤维膜。
该方法适用于制备较大孔径的中空纤维膜。
三、影响中空纤维膜通量的因素1. 膜材料中空纤维膜的材料种类和质量直接影响其通量。
一般来说,高分子材料的中空纤维膜通量较低,而无机材料的中空纤维膜通量较高。
2. 膜孔径中空纤维膜的孔径大小和分布也是影响其通量的重要因素。
一般来说,孔径越小、分布越均匀的中空纤维膜其通量越低。
3. 操作条件操作条件如进水流速、压力、温度等也会影响中空纤维膜的通量。
一般来说,进水流速越大、压力越高、温度越低,中空纤维膜的通量越高。
中空纤维膜工作原理
中空纤维膜是一种用于膜分离过程的膜材料,其工作原理是通过膜的微孔(也称为孔径)来实现物质分离。
中空纤维膜由聚合物材料制成,具有中空管状结构,内部有一系列的微孔。
当混合物(例如水溶液)通过中空纤维膜时,根据溶质的大小和性质,溶质分子可以被分离。
较小的溶质分子可以穿过微孔并通过膜的内部进一步传递,而较大的溶质分子则无法通过微孔,被阻挡在膜表面。
这种分离过程基于一系列传质机制,其中包括纳滤、超滤和逆渗透。
纳滤是指通过选择性阻挡较大分子和颗粒来分离较小分子的过程。
超滤则将分子根据其分子量和形状的不同分开。
逆渗透则是通过产生高压使溶质逆向移动,从而分离出溶质。
这些机制可以根据溶质和溶剂的性质以及应用需求进行调节。
中空纤维膜广泛应用于水处理、污水处理、饮料生产、生物医药等领域,具有高效、可靠、可控制的优点。
其工作原理的理解对于膜分离技术的应用和优化具有重要意义。
中空纤维膜参数二级标题1:中空纤维膜的概述中空纤维膜是一种新型的薄膜材料,具有特殊的孔隙结构和较大的比表面积。
该膜由许多微细的中空纤维组成,形成复杂的网络结构。
中空纤维膜在许多领域中广泛应用,如水处理、气体分离和生物医药等。
在不同应用中,中空纤维膜参数的选择对膜的性能具有重要影响。
二级标题2:中空纤维膜参数的种类中空纤维膜的参数可以分为几个方面:孔径大小、孔道结构、壁厚、孔隙率和表面形态等。
这些参数直接影响膜的通透性、选择性和稳定性。
三级标题1:孔径大小孔径大小是中空纤维膜参数中最重要的一个因素。
孔径决定了溶质分子能否顺利通过膜的孔隙。
一般来说,较大的孔径可增加膜的通透性,但可能牺牲选择性。
较小的孔径则具有更好的选择性,但通透性较差。
因此,在选择孔径大小时需要根据应用的具体要求进行权衡。
三级标题2:孔道结构孔道结构是指中空纤维膜中孔道的排列方式和连接形态。
孔道结构直接影响着膜的通透性和分离性能。
常见的孔道结构有直通型、分支型和网状型等。
直通型孔道结构具有较高的通透性,但选择性较差;分支型孔道结构可以提高膜的选择性,但通透性较低。
三级标题3:壁厚壁厚是指中空纤维膜孔道壁的厚度。
较薄的壁厚可以提高膜的通透性,但相应地会降低膜的稳定性和机械强度。
较厚的壁厚可以提高膜的机械强度和耐用性,但也会降低膜的通透性和选择性。
三级标题4:孔隙率和表面形态孔隙率是指中空纤维膜中孔隙的占空比例。
较高的孔隙率可以增加膜的通透性,但可能降低选择性。
表面形态是指中空纤维膜表面的形貌结构,如平滑、粗糙或多孔等。
表面形态会影响膜的通透性和分离性能。
二级标题3:中空纤维膜参数的影响因素中空纤维膜参数的选择受到多个因素的影响。
三级标题1:应用需求具体的应用需求是选择中空纤维膜参数的关键因素之一。
不同的应用对膜的性能要求不同,例如水处理需要高通透性和分离性能,而生物医药领域更注重膜的生物相容性和抗污染性能。
因此,在选择参数时需要充分考虑应用需求。
中空纤维膜是一种具有微孔结构的薄膜材料,其在氧气透过率方面具有重要的应用价值。
本文将从中空纤维膜的定义和特点出发,系统性地介绍中空纤维膜在氧气透过率方面的研究现状、影响因素和应用前景,以期对中空纤维膜氧气透过率的理解提供全面而深入的认识。
一、中空纤维膜的定义和特点中空纤维膜是一种由微孔结构组成的薄膜材料,其具有高比表面积、多孔性和高孔隙率等特点。
中空纤维膜通常由聚合物等材料制备而成,其微孔结构可以通过调控工艺参数和材料组成来实现对膜的性能进行调整,从而满足不同领域的需求。
由于其独特的结构特点,中空纤维膜被广泛应用于气体分离、膜蒸馏、膜反应器等领域。
二、中空纤维膜在氧气透过率方面的研究现状1. 实验研究:许多学者通过实验方法对中空纤维膜的氧气透过率进行了研究。
他们通过搭建不同类型的透气装置,测量不同条件下中空纤维膜的氧气透过率,并对其透过机理进行了深入探讨。
2. 模拟计算:一些研究者运用计算模拟手段,对中空纤维膜的微孔结构和表面性质进行建模和仿真,以期揭示其对氧气透过率的影响规律,并为进一步优化中空纤维膜的设计提供理论指导。
三、中空纤维膜氧气透过率的影响因素1. 膜材料:中空纤维膜的氧气透过率受制于其所采用的膜材料,包括聚酰胺、聚碳酸酯、聚醚醚酮等。
不同的材料具有不同的孔隙结构和表面性质,因而对氧气透过率产生显著影响。
2. 膜结构:中空纤维膜的结构参数,如孔径、孔隙率、壁厚等,对其氧气透过率具有重要影响。
合理设计和调控中空纤维膜的结构参数,有助于提高其氧气透过率。
3. 操作条件:操作条件,如温度、压力、气体浓度等,对中空纤维膜的氧气透过率也有一定影响。
在实际应用中,需要充分考虑这些操作条件对膜性能的影响。
四、中空纤维膜在氧气透过率方面的应用前景中空纤维膜在氧气透过率方面具有广阔的应用前景。
首先,在医疗领域,中空纤维膜可以应用于人工肺、氧气供给系统等医疗设备中,提高氧气输送效率,改善患者生命体征。
其次,在工业领域,中空纤维膜可用于氧气制备、氧气纯化等领域,提高工业生产效率,降低能耗成本。
中空纤维膜是—类高分子分离膜,具有不对称结构和对称结构。
中空纤维膜的外径一般为0.5-1.0mm,内径一般为0.2mm-0.7mm[8],多功能层(即外压型)一般为外表面(即外压型),布满微孔表面的平均孔隙为3~l00mn。
它有纤维状的外形,具有自支撑作用。
它的致密层既位于纤维的内表面(如微滤膜和超滤膜),也可位于纤维的外表面(如反渗透膜)。
气体分离膜的致密层可以在内表面,也可以在外表面。
中空纤维膜是特殊纤维的组成部分,并且中空纤维膜在这三十年中发展极快,它用的范围越来越广泛,已经受到全世界的关注。
中空纤维膜常用的高聚物原料:聚砜(PSF)、硝化纤维类(NC)、聚四氟乙烯(PTFE)、再生纤维素(RC)、聚甲基丙烯酸甲酯(PMMA)、醋酸纤维素(CA)、聚丙烯腈(PAN)、三醋酸纤维素、芳香聚酰胺、聚苯并咪唑(PBI)、聚氯乙烯(PVC)、聚醚、聚酯、聚烯烃、聚碳酸酯、磺化聚砜(SPSF)、聚醚砜(PES)等。
中空纤维膜是—类高分子分离膜,具有不对称结构和对称结构。
中空纤维膜的外径一般为0.5-1.0mm,内径一般为0.2mm-0.7mm[8],多功能层(即外压型)一般为外表面(即外压型),布满微孔表面的平均孔隙为3~l00mn。
它有纤维状的外形,具有自支撑作用。
它的致密层既位于纤维的内表面(如微滤膜和超滤膜),也可位于纤维的外表面(如反渗透膜)。
气体分离膜的致密层可以在内表面,也可以在外表面。
中空纤维膜是特殊纤维的组成部分,并且中空纤维膜在这三十年中发展极快,它用的范围越来越广泛,已经受到全世界的关注。
中空纤维膜常用的高聚物原料:聚砜(PSF)、硝化纤维类(NC)、聚四氟乙烯(PTFE)、再生纤维素(RC)、聚甲基丙烯酸甲酯(PMMA)、醋酸纤维素(CA)、聚丙烯腈(PAN)、三醋酸纤维素、芳香聚酰胺、聚苯并咪唑(PBI)、聚氯乙烯(PVC)、聚醚、聚酯、聚烯烃、聚碳酸酯、磺化聚砜(SPSF)、聚醚砜(PES)等。