优选多重均值比较与方差分析前提假设的检验
- 格式:ppt
- 大小:652.00 KB
- 文档页数:39
第六章方差分析第五章所介绍的t检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。
这时,若仍采用t检验法就不适宜了。
这是因为:1、检验过程烦琐例如,一试验包含5个处理,采用t检验法要进行=10次两两平均数的差异显著性检验;若有k个处理,则要作k(k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。
若用t检验法作两两比较,由于每次比较需计算一个,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见,在用t检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I型错误率大即使利用资料所提供的全部信息估计了试验误差,若用t检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I型错误的概率,降低推断的可靠性。
由于上述原因,多个平均数的差异显著性检验不宜用t检验,须采用方差分析法。
方差分析(analysis of variance)是由英国统计学家R.A.Fisher于1923年提出的。
这种方法是将k个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
多重比较可信性的度量原假设多重比较(multiple comparisons)是指方差分析后对各样本平均数间是否有显著差异的假设检验的统称。
方差分析只能判断各总体平均数间是否有差异,多重比较可用来进一步确定哪两个平均数间有差异,哪两个平均数间没有差异。
为什么不能用t检验而用多重比较了?我们来举个栗子,比如研究者想要探究不同的受教育程度的收入情况之间是否有差异。
方差分析研究结果已经表明高中、本科、硕士三种受教育程度的收入是有显著性差异的,需要进一步去探究哪两者是有差异,哪两者之间是没有差异的。
三种情况两两之间需要进行三次比较,如果采用t检验,每次比较我们犯“弃真”错误的概率是5%,那比较三次,我们累计犯“弃真”错误的概率约等于0.14。
也就是说,我们在一次试验中比较的次数越多,犯一类错误的概率就越大,那也就是为什么会选择多重比较。
多重比较方法的选择,真的无迹可寻吗?SPSS给分析者提供了多种多重比较的方法,根据方差是否齐性分成两部分,其中方差齐性提供了14种方法,方差不齐提供了4种方法。
在众多选择中该如何进行选择了?LSD法:最小显著性差异法(Least Significance Difference),它实质是t检验,并未对检验水准做出任何校正,所以它对差异最为敏感,但当你比较的次数非常多的时候,比如超过三组之间的比较,我们是不太建议使用LSD方法,因为没有对检验水准α进行校准,所以当比较次数过多时会增大I类错误的概率。
为解决该问题,便出现了Sidak法和Bonferroni法。
Sidak法和Bonferroni法:都为LSD的修正,其灵敏度为LSD法>Sidak法>Bonferroni 法。
所以Bonferroni法建议在比较组别数量较少时使用,当比较的次数较多,比如10次以上,不太建议使用该方法,会出现较多的假阴性结果。
Tukey法:其思想和LSD法类似,但比LSD方法保守,即灵敏度不如LSD。
方差分析(ANOV A)、多重比较(LSD Duncan)、q检验(student)实际研究中,经常需要比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a>0.05)。
故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。
方差分析可调用此过程可完成。
Least-significant difference(LSD):最小显著差法。
a可指定0~1之间任何显著性水平,默认值为0.05;Bonferroni:Bonferroni修正差别检验法。
a可指定0~1之间任何显著性水平,默认值为0.05;Duncan’s multiple range test:Duncan多范围检验。
只能指定a为0.05或0.01或0.1,默认值为0.05;Student-Newman-Keuls:Student-Newman-Keuls检验,简称N-K检验,亦即q 检验。
a只能为0.05;(以前都以SNK法最为常用,但研究表明,当两两比较的次数极多时,该方法的假阳性非常高,最终可以达到100%。
因此比较次数较多时,包括SPSS和SAS在内的权威统计软件都不再推荐使用此法。
) Tukey’s honestly significant difference:Tukey显著性检验。
a只能为0.05;Tukey’s b:Tukey另一种显著性检验。
a只能为0.05;Scheffe:Scheffe差别检验法。
a可指定0~1之间任何显著性水平,默认值为0.05。
根据对相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照如下标准:如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferoni(LSD)法;若需要进行的是多个平均数间的两两比较(探索性研究),且各组样本数相等,宜用Tukey法,其他情况宜用Scheffe法。
多重比较(Multiple Comparisons)是统计学中的一种方法,用于在进行方差分析(ANOVA)或其他假设检验后,对多个均值之间的差异进行细致的比较,以确定哪些组之间的差异是显著的。
以下是多重比较的基本步骤:1.进行初步分析:o首先进行一个总体的统计分析,如单因素或双因素方差分析(One-way ANOVA或Two-way ANOVA),以确定是否存在至少两个组别之间均值的显著差异。
2.选择多重比较方法:o根据研究目的和样本大小,选择合适的多重比较方法。
常见的多重比较方法包括:▪LSD(Least Significant Difference)法▪Tukey’s HSD(Honestly Significant Difference)法▪Bonferroni校正▪Dunnett’s test(主要用于与对照组比较)▪Sidak校正▪Šidák校正▪Benjamini-Hochberg校正(用于控制假阳性率)3.计算比较:o应用选定的方法,对所有可能的组间比较进行计算,得出每一对比较的p值和置信区间。
4.调整显著性水平:o为了控制I型错误(假阳性)的发生概率,通常会对原始的显著性水平(如α=0.05)进行调整。
例如,如果进行了k个比较,可能需要将每个比较的显著性水平设定为α/k(如使用Bonferroni校正)。
5.解释结果:o根据调整后的显著性水平,解释每对比较的结果,指出哪些组之间的差异在统计上是显著的。
6.报告结果:o报告每一对比较的统计量、p值和结论,必要时可以绘制图表直观展示显著差异。
7.评估假设检验结果:o评估所有比较结果的整体一致性,以及是否符合研究的假设和目标。
请注意,多重比较可能导致假阳性率增加,因此选择合适的校正方法很重要。
同时,分析结果不仅要基于统计显著性,还要结合实际研究背景和意义进行解读。
均值⽐较(T检验,⽅差检验,⾮参数检验汇总)⼀、T检验⽤途:⽐较两组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1H1: µ0≠µ1SPSS中对应⽅法:1、单样本T检验(One-sample Test)(1)⽬的:检验单个变量的均值与给定的某个常数是否⼀致。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
2、独⽴样本T检验(Indpendent-Samples T Test)(1)⽬的:检验两个独⽴样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
3、配对样本T检验(Paired-Samples T Test)(1)⽬的:检验两个配对样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
⼆、⽅差分析⽤途:⽐较多组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1=……H1: µ0,µ1,……不全相等SPSS中对应⽅法:1、单因素⽅差分析(One-way ANOVA)(1)⽬的:检验由单⼀因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
2、多因素⽅差分析(Univariate)(1)⽬的:检验由多个因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
三、⾮参数检验⽤途:⽐较多组数据之间的差异,独⽴性等前提:没有严格限制,适⽤于母体不服从正态分布或分布情况不明时,亦可以适⽤于离散和连续数据。
SPSS中对应⽅法:1、卡⽅检验(Chi-Square)(1)⽬的:检验某个连续变量是否与理论的某种分布相⼀致;检验某个分类变量出现的概率是否等于给定的概率;检验两个分类变量是否相互独⽴;检验两种⽅法的结果是否⼀致;检验控制某种或某⼏种分类因素的作⽤后,另两个分类变量是否相互独⽴。
第三章多组均数间比较的方差分析在统计学中,方差分析是一种用来比较两个或更多组之间均数差异的方法之一、它可以用于分析实验设计或观察研究中的多组数据,并确定这些组之间的差异是否显著。
本文将重点介绍第三章多组均数间的方差分析。
方差分析有两种类型:单因素方差分析和多因素方差分析。
单因素方差分析主要用于比较一个因素(自变量)在不同组之间的均数差异,而多因素方差分析则用于比较多个因素对组间均数的影响。
在多组均数间的方差分析中,我们首先要确定所要比较的多个组是否具有显著的差异,这可以通过计算组间差异的方差来实现。
如果组间差异显著,则说明这些组有明显的均数差异,可以进一步进行事后的比较。
进行多组均数间的方差分析时,首先需要建立一个原假设和备择假设。
原假设通常是假定多个组之间没有均数差异,而备择假设则认为至少有一组与其他组有显著的均数差异。
在进行方差分析之前,还需要进行一些前提检验,如正态性检验和方差齐性检验,以确保数据符合进行方差分析的假设。
接下来,可以使用各种统计软件进行方差分析的计算。
常见的方差分析方法包括单因素方差分析、双因素方差分析和重复测量方差分析等。
这些方法的具体计算过程和统计指标略有不同,但都可以提供组间差异的显著性水平。
在进行多组均数间的方差分析时,还需要注意事后比较的问题。
如果方差分析结果显示组之间有显著差异,那么需要进一步比较各个组之间的均数差异。
常用的事后比较方法包括Tukey HSD法、Duncan法和Bonferroni法等。
这些方法可以提供详细的组间均数差异情况,帮助研究者更好地理解结果。
总之,多组均数间的方差分析是一种常用的统计方法,可以用于比较多个组之间的均数差异。
通过进行方差分析,我们可以确定这些组之间是否存在显著差异,并进行事后的比较分析。
研究者在进行多组均数间分析时,需要注意数据的前提检验以及使用合适的方法和指标进行分析。
多个样本均数比较的方差分析多个样本均数比较的方差分析指的是一种统计方法,用于对多个样本的均数进行比较。
它可以帮助我们确定是否有显著的差异存在于不同样本的均数之间。
在进行方差分析时,我们通常将样本分为不同的组,然后通过比较组均数的差异来确定它们之间是否存在显著差异。
方差分析是基于方差的假设检验方法。
通过方差分析,我们可以计算组内和组间的方差,然后通过比较这些方差之间的差异来判断它们之间是否有显著差异。
如果方差之间的差异足够大,则可以得出结论:不同样本的均数之间存在显著差异。
在进行方差分析时,需要满足以下假设:1.观察数据是独立且来自正态分布的。
2.不同样本的方差相等。
方差分析可以通过计算F统计量来进行。
F统计量是组间均方与组内均方的比值。
组间均方是由组间方差得出的,而组内均方是由组内方差得出的。
F统计量越大,表示组间差异越大,也就意味着不同样本的均数之间存在显著差异的可能性越大。
进行方差分析之前,我们首先需要进行方差齐性检验。
这可以通过Levene检验或Bartlett检验来完成。
方差齐性检验的目的是验证不同样本的方差是否相等。
如果方差齐性假设未被满足,则意味着方差之间的差异不可忽略,我们需要使用更为复杂的方法来处理比较。
一旦我们确认了方差齐性假设,我们就可以进行方差分析了。
在方差分析中,可以使用ANOVA(Analysis of Variance)表,它可以帮助我们计算组间平方和、组内平方和、总平方和和相应的均方值。
随后,我们可以使用F分布表或统计软件来确定F统计量所对应的显著性水平。
如果F统计量非常小,那么我们可以得出结论:不同样本的均数之间不存在显著差异。
而如果F统计量超过了给定的临界值,那么我们可以得出结论:不同样本的均数之间存在显著差异。
需要注意的是,方差分析只能告诉我们是否存在显著差异,却不能告诉我们哪些均数之间具体存在差异。
如果方差分析的结果是显著的,我们需要进一步使用事后多重比较方法(如Tukey's HSD test)来确定具体存在差异的样本均数对。