第五章 假设检验与方差分析
- 格式:ppt
- 大小:1.84 MB
- 文档页数:6
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
统计分析中的假设检验与方差分析统计分析是一种科学的方法,通过对数据进行收集、整理、分析和解释,帮助我们了解现象背后的规律和关系。
在统计分析中,假设检验和方差分析是两个重要的概念和工具。
本文将介绍这两个概念的基本原理和应用。
一、假设检验假设检验是统计学中的一种常用方法,用于判断样本数据是否能够反映总体的特征。
在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后通过对样本数据的分析,判断是否拒绝原假设。
在假设检验中,我们需要进行以下几个步骤:1. 确定原假设和备择假设:原假设通常是我们要证伪的观点,备择假设则是我们要支持的观点。
例如,我们想要检验某个新药物是否有效,原假设可以是“该药物无效”,备择假设可以是“该药物有效”。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的错误概率。
通常情况下,我们选择的显著性水平为0.05或0.01。
如果计算得到的p值小于显著性水平,则我们拒绝原假设。
3. 计算检验统计量:检验统计量是根据样本数据计算得到的一个数值,用于判断样本数据是否支持备择假设。
常见的检验统计量包括t值、F值等。
4. 判断拒绝或接受原假设:根据计算得到的检验统计量和显著性水平,我们可以判断是否拒绝原假设。
如果p值小于显著性水平,则我们拒绝原假设,否则我们接受原假设。
假设检验在实际应用中具有广泛的应用,例如医学研究、市场调查、工程设计等。
通过假设检验,我们可以对研究结果进行客观的评估和判断,从而做出更准确的决策。
二、方差分析方差分析是一种用于比较多个样本均值是否存在显著差异的统计方法。
在方差分析中,我们将总体分为若干个独立的组,然后通过计算组间方差和组内方差的比值,来判断不同组之间的均值是否存在显著差异。
方差分析的基本原理是利用方差的性质来比较样本均值之间的差异。
具体步骤如下:1. 确定独立变量和因变量:独立变量是我们要比较的不同组别,而因变量是我们要研究的特征或指标。
六西格玛绿带:假设检验与方差分析课后测试•1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A•1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C•2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B•3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D•4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B•5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D•1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10分)A正确B错误正确答案:错误•2、在假设检验中,原假设和备择假设必须设置为一致的。
(10分)A正确B错误正确答案:错误•3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)A正确B错误正确答案:正确•4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
六西格玛绿带:假设检验与方差分析六西格玛绿带:假设检验与方差分析1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10 分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A多选题1、基础统计学中的描述性统计可以分为(10 分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10 分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10 分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10 分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10 分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D判断题1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10 分)A正确B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10 分)A正确B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)? A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
六西格玛绿带:假设检验与方差分析1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10 分)✔ AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A多选题1、基础统计学中的描述性统计可以分为(10 分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10 分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10 分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10 分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10 分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D判断题1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10 分)A正确✔ B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10 分)A正确✔ B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)✔ A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)✔ A正确B错误正确答案:正确。
管理工程学院硕士生《应用统计方法》课程作业I 假设检验与方差分析一、假设检验:(配对均值检验)1、某药厂最近研制出一种新的降压药,为了验证其疗效,选择15个高血压病人进行实验。
数据表是服药前后的血压值。
选用适当的统计方法验证该药是否有效。
patient 1 2 3 4 5 6 7 8 before 115 135 127 130 103 90 101 104 after 109 120 125 130 105 94 90 100patient 9 10 11 12 13 14 15before 109 89 120 113 118 130 120after 90 90 110 103 100 121 108二、方差分析:1、对于硅酸盐水泥的抗折强度,用四种不同的配方方法收集了以下数据:配方法抗折强度1 3129 3000 2865 28902 3200 3300 2975 31503 2800 2900 2985 30504 2600 2700 2600 2765(1)检验配方法影响水泥砂浆强度的假设。
(2)选择一种比较方法对均值进行比较。
2、纺织厂有很多织布机,设每台机器每分钟织出同样的布,为了研究这一假设,随机选取5台织布机并测定它们在不同时间的产量,得出数据:织布机产量1 14.0 14.1 14.2 14.0 14.12 13.9 13.8 13.9 14.0 14.03 14.1 14.2 14.1 14.0 13.94 13.6 13.8 14.0 13.9 13.75 13.8 13.6 13.9 13.8 14.0(1)说明为什么这是一种随机效应实验。
织布机的产量相等吗?(2)估计织布机间的变异。
(3)估计实验的误差方差。
3、电视机厂感兴趣于对彩色显像管四种不同的涂层对显像管的电导率是否有影响。
测得电导率的数据如下:涂层电导率1 143 141 150 1462 152 149 137 1433 134 136 132 1274 129 127 132 129 (1)涂层使电导率有差异吗?(2)估计总均值与处理效应。
统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。
方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。
本文将介绍方差分析的基本原理和假设检验的步骤。
一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。
方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。
方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。
通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。
二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。
3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。
统计学是一门研究收集、分析、解释和展示数据的学科,它在科学研究、商业分析、政府决策以及医学等领域中发挥着重要作用。
其中,假设检验与方差分析是统计学中常用的两种方法。
假设检验是通过对数据进行统计分析,来验证研究者提出的关于总体特征的假设是否成立的方法。
假设检验分为参数检验和非参数检验,其中参数检验是根据总体参数的已知或假设值,利用样本观测值计算检验统计量,并对其进行显著性检验;非参数检验则在不考虑总体参数的情况下,利用样本观测值直接进行显著性检验。
在假设检验中,我们假设一个“原假设”(H0),通常是认为不存在任何关系或差别,以及一个“备择假设”(H1),通常是认为存在某种关系或差别。
然后,利用样本数据计算检验统计量,根据统计学原理和假设检验的显著性水平,计算P值(P-value),P值小于显著性水平时,我们会拒绝原假设,否则接受原假设。
方差分析(ANOVA)是一种用于比较两个或多个样本均值是否存在显著差异的统计方法。
方差分析通过计算组间差异与组内差异的比值来判断均值之间的差异是否显著。
在方差分析中,我们将总平方和分解为组间平方和和组内平方和,然后计算组间平方和与组内平方和的比值(F值),根据F值与显著性水平的比较来判断均值是否存在显著差异。
假设检验与方差分析在数据分析中有着广泛的应用。
举一个例子来说明。
假设我们想研究不同年龄段的人的身高差异。
我们可以做一个假设,即不同年龄段的人的身高是相同的(H0)。
然后我们收集不同年龄段的人的身高数据,并计算样本均值和样本标准差。
通过假设检验和方差分析,我们可以比较不同年龄段的身高是否存在显著差异,并得出结论。
在实际应用中,假设检验和方差分析也需要注意一些问题。
首先,需要选择适当的统计方法,确保数据的分布符合所选方法的假设。
其次,需要确定显著性水平,通常选择0.05或0.01作为界限。
最后,需要进行假设检验和方差分析的正确解读,避免错误地推断结果。
综上所述,假设检验与方差分析是统计学中重要的方法,可以用于研究不同总体特征之间的差异。