函数 f(x)=x3-3x+1 在闭区间 [-3,0]上的值域及最大值、最小 值。
八、导数法
综合
设函数f(x)=x3―x2/2―2x+5,当 x∈[1,2]时,f(x)<m恒成立, 求实数m的取值范围。
求函数值域的方法:
1、数形结合 2、反函法
3、 Δ法
4、单调法
5、换元法 6、复合函数
7、结构分析 8、导数法
形如:y ax b cx d 的函数可令 cx d t(t 0), 则 x t 2 d 转化为关于t的二次函数求值。
c
形如含有 a2 x2 的结构的函数,可用三角换元令
x=acosθ求解。
①反函数法或分离常数法:{y y 1 且y R}
2
例2.求下列函数的值域
① y 1 x 2x 5
⑧求导法:当一个函数在定义域上可导时,可据其导数求 最值,再得值域; ⑨几何意义法:由数形结合,转化斜率、距离等求值域。
应用举例 例1.求下列函数的值域
① y 4 3 2x x2 ①配方法[2,4]
② y 2x 1 2x ③ y x 1 x2
②换元法:(, 5]
4
③三角换元法:[1, 2]
综合2
y 1 x2 x 在[m,n]的值域 2
为[2m,2n],求m,n=?
求y x 的值域 x 1
适用于一 次分式
二、反函法:适用于便于解出x(用y表示)
化代分式回归基础
分母除以分子
y 1 1 x 1
图象法: y 1 如何平移 y 1 1
x
x 1
界线法: x≠-1 , y≠1
2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中 实数y的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的 定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题 的实际意义确定。