参数的矩估计法
- 格式:pdf
- 大小:165.27 KB
- 文档页数:4
常用的参数估计方法参数估计是统计分析中的一个重要概念,指的是通过已有的样本数据来估计未知的参数。
常见的参数估计方法包括点估计和区间估计两种。
下面将分别介绍这两种方法及其常见的应用。
一、点估计点估计是通过样本数据来估计总体参数的方法之一,通常用样本的统计量(如样本均值、样本方差等)作为总体参数的估计值。
点估计的特点是简单直观,易于计算。
但是点估计的精度不高,误差较大,因此一般用在总体分布已知的情况下,用于快速估计总体参数。
常见的点估计方法包括最大似然估计、矩估计和贝叶斯估计。
1.最大似然估计最大似然估计是目前最常用的点估计方法之一。
其基本思想是在已知的样本信息下,寻找一个未知参数的最大似然估计值,使得这个样本出现的概率最大。
最大似然估计的优点是可以利用样本数据来估计参数,估计量具有一定的无偏性和效率,并且通常具有渐进正常性。
常见的应用包括二项分布、正态分布、泊松分布等。
2.矩估计矩估计是另一种常用的点估计方法,其基本思想是利用样本矩(如一阶矩、二阶矩等)与相应的总体矩之间的关系,来进行未知参数的估计。
矩估计的优点是计算简单,适用范围广泛,并且具有一定的无偏性。
常见的应用包括指数分布、伽马分布、weibull分布等。
3.贝叶斯估计贝叶斯估计是另一种常用的点估计方法,其基本思想是先对未知参数进行一个先验分布假设,然后基于样本数据对先验分布进行修正,得到一个后验分布,再用后验分布来作为估计值。
贝叶斯估计的优点是能够有效处理小样本和先验信息问题,并且可以将先验偏好考虑进去。
常见的应用包括正态分布、伽马分布等。
二、区间估计区间估计是通过样本数据来构造总体参数的置信区间,从而给出总体参数的不确定性范围。
区间估计的特点是精度高,抗扰动性强,但是计算复杂度高,需要计算和估计的样本量都很大。
常见的区间估计方法包括正态分布区间估计、t分布区间估计、置信区间估计等。
1.正态分布区间估计正态分布区间估计是一种用于总体均值和总体方差的区间估计方法,其基本思想是在已知样本数据的均值和标准差的情况下,根据正态分布的性质得到总体均值和总体方差的置信区间。
经典参数估计方法:普通最小二乘(OLS)、最大似然(ML)和矩估计(MM)普通最小二乘估计(Ordinary least squares,OLS)1801年,意大利天文学家朱赛普.皮亚齐发现了第一颗小行星谷神星。
经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。
随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。
奥地利天文学家海因里希.奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。
最大似然估计(Maximum likelihood,ML)最大似然法,也称最大或然法、极大似然法,最早由高斯提出,后由英国遗传及统计学家费歇于1912年重新提出,并证明了该方法的一些性质,名称“最大似然估计”也是费歇给出的。
该方法是不同于最小二乘法的另一种参数估计方法,是从最大似然原理出发发展起来的其他估计方法的基础。
虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要的地位,因为最大似然原理比最小二乘原理更本质地揭示了通过样本估计总体的内在机理。
计量经济学的发展,更多地是以最大似然原理为基础的,对于一些特殊的计量经济学模型,最大似然法才是成功的估计方法。
对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据;而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该是使得从模型中抽取该n组样本观测值的概率最大。
从总体中经过n次随机抽取得到的样本容量为n的样本观测值,在任一次随机抽取中,样本观测值都以一定的概率出现。
总体参数的点估计一 矩估计法如果总体中的未知参数θ恰好就是某个总体矩,那么相应的样本矩就是它的矩估计。
但是当总体中的未知参数θ不是某个总体矩时,通常按下面的步骤来求未知参数θ的矩估计。
问题:设总体X 中含有k 个参数k θθθ ,,21,n X X X ,,21是来自总体的样本,求k θθθ ,,21的矩估计。
不管未知参数k θθθ ,,21是不是总体矩,我们都可以按以下步骤来求它们的矩估计。
①求出总体X 的一阶直到k 阶原点矩()()()k X E X E X E ,,,2 (也可以是总体中心距),并且把它们表示成未知参数k θθθ ,,21的函数。
设求得:()()k a X E θθθ,,,211 =()()k a X E θθθ,,,2122 =………………………………()()k k k a X E θθθ,,,21 =②用样本矩替换相应的总体矩,即()k ni i a X n θθθ,,,12111=∑= ()k ni i a X n θθθ,,,121212 =∑=………………………()k k n i ki a X n θθθ,,,1211=∑= 这是k 个关于未知参数k θθθ ,,21的方程。
③解由这k 个方程构成的方程组,得到k θθθ ,,21的解k θθθˆ,ˆ,ˆ21 ,这k 个解就是相应的未知参数的矩估计。
注意:(1)在上面的第一个步骤中,如果计算总体中心矩比较方便,也可以把部分总体原点矩换成总体中心矩。
(2)在上面的三个步骤中,把步骤②和③颠倒也可以。
二 最大似然估计法求总体中的未知参数k θθθ ,,21的最大似然估计可以归结为求似然函数的最大值点。
一般情况下可以按照以下三个步骤来做:①求似然函数()k n x x x L θθθ ,,;,,,2121 ②对似然函数取自然对数,并列似然方程()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂=∂∂=∂∂0,,,;,,,ln 0,,,;,,,ln 0,,,;,,,ln 21212212112121k k n k n k n x x x L x x x L x x x L θθθθθθθθθθθθ ②解似然方程,得到k θθθ ,,21的解k θθθˆ,ˆ,ˆ21 ,这k 个解就是未知参数k θθθ ,,21的最大似然估计值。
参数估计的方法有
以下几种方法:
1. 最大似然估计(Maximum Likelihood Estimation, MLE):利用数据样本的信息,寻找参数的取值,使得样本出现的概率最大。
2. 最小二乘估计(Least Squares Estimation, LSE):在一组在某些方面“不完美"的观测值与模型估计值之间,寻找一个最佳拟合直线(或其他曲线),使得它们之间的残差平方和最小。
3. 贝叶斯估计(Bayesian Estimation):在先验分布和数据的基础之上,利用贝叶斯公式推导出后验分布,从而得到参数的估计值。
4. 矩估计(Moment Estimation):以样本矩估计总体矩的方法来估计参数。
5. 似然比检验估计(Likelihood Ratio Estimation):将最大似然值与模型的交集和样本容差进行比较,从而确定参数的估计值。
6. 非参数估计方法(Nonparametric Estimation):不需要对总体分布进行任何假设,在方法上不依赖于总体的形式。
矩估计估计方差全文共四篇示例,供读者参考第一篇示例:矩估计是一种常用的参数估计方法,它通过样本矩和理论矩之间的对应关系来估计参数。
在统计学中,我们通常关心的是总体的均值、方差、协方差等参数,矩估计方法可以帮助我们估计这些参数的值。
在本文中,我们将重点讨论矩估计方法用于估计方差的情况。
让我们简要回顾一下矩估计的基本原理。
设总体的分布函数为F(x;θ),其中θ是待估参数。
我们希望估计的参数是总体的方差,记为σ^2。
总体的方差可以用总体的二阶矩来表示,即E(X^2) - [E(X)]^2。
我们需要找到样本矩和理论矩之间的对应关系来估计总体的方差。
对于方差的矩估计,我们可以利用样本的二阶矩来估计总体的二阶矩。
设我们有一个含有n个观测值的样本,记为{X1, X2, ..., Xn}。
样本的方差可以用样本的二阶矩来表示,即S^2 = Σ(Xi - X̄)^2 / (n-1),其中X̄是样本的均值。
我们可以将样本的二阶矩与总体的二阶矩对应起来,从而得到关于总体方差的矩估计。
在进行方差的矩估计时,我们通常会假设总体是一种特定的分布,比如正态分布、均匀分布等。
在这种情况下,我们可以利用总体的分布特性来推导总体的二阶矩,并与样本的二阶矩进行对应。
以正态分布为例,总体的二阶矩可以用其均值和方差来表示,即E(X^2) = μ^2+ σ^2,其中μ是总体的均值,σ是总体的方差。
我们可以通过最大似然估计或矩估计方法来估计总体的均值和方差,进而得到总体的二阶矩。
在实际应用中,我们常常使用矩估计方法来估计总体的方差。
矩估计方法简单易用,且不需要对总体分布做过多的假设。
对于样本容量较大的情况,矩估计的效果通常比较好。
在样本容量较小或总体分布比较偏态的情况下,矩估计的精确性可能会受到影响。
在实际应用中,我们需要根据具体的情况选择合适的参数估计方法。
矩估计是一种常用的参数估计方法,可以帮助我们估计总体的各种参数,包括方差。
在进行参数估计时,我们需要注意选择合适的估计方法,并对估计结果进行有效的检验和评估。
矩估计法原理
嘿,今天咱来聊聊矩估计法原理。
你可以把它想象成是一个找东西的游戏。
比如说,我们有一堆不知道具体情况的数据,就好像是一堆乱七八糟的玩具混在一起。
矩估计法呢,就像是我们要通过一些特征来猜出这堆玩具大概是什么样子。
我们知道,平均数、方差这些统计量就像是玩具的某些特点。
矩估计法就是利用这些已知的或者容易算出来的特点,去推测那些我们不知道的总体参数。
就好比我们通过观察几个玩具的颜色、形状等,来估计这堆玩具整体的情况。
有时候可能不是那么精确,但却能给我们一个大概的了解。
在生活中也有类似的情况呀。
比如你去买水果,你通过看几个水果的样子,大概就能猜到这一批水果质量怎么样。
这其实就有点像矩估计法在起作用呢。
它虽然不是完美的,但却是一种很实用的方法,能让我们在面对大量复杂的数据时,找到一个相对靠谱的方向,不至于完全摸不着头脑。
是不是还挺有意思的呀!。