一次函数复习(3)[上学期]--苏课版
- 格式:ppt
- 大小:491.50 KB
- 文档页数:9
苏科版八年级上一次函数复习教学案1.知识与技能(1)知道一次函数与正比例函数的意义.掌握一次函数的概念,了解一次函数和正比例函数的关系.(2)能写出实际问题中正比例关系与一次函数关系的解析式.(3)能结合图象理解一次函数(含正比例函数)的性质.2.过程与方法(1)初步掌握用待定系数法确定一次函数的解析式.(2)会选取两个适当点画一次函数(含正比例函数)的图象;(3)由函数的图象及性质进一步理解和掌握正比例函数与一次函数的概念.(4)培养分析、类比和综合、归纳的能力和用“数形结合”的思想与方法解决数学问题.3.情感、态度与价值观(1)渗透数学建模的思想,体会到数学的抽象性和广泛的应用性.(2)激发学习数学的兴趣,培养分析问题、解决问题的能力.培养应用、创新意识.二、知识结构三、要点梳理1.正比例函数如果y=kx(k是常数,k≠0),那么,y叫做x的正比例函数.正比例函数y=kx的图象是过(0,0),(1,K)两点的一条直线.性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小2.常数函数函数y=b,(b是常数)叫做常数函数即对自变量x不管取它的允值范围内的任何一个值,函数值都取同一个常数值,这样的函数叫常函数.3.一次函数如果y=kx+b(k,b是+常数,k≠0),那么y叫做x的一次函数.直线y=kx+b,与y轴的交点是(o,b),与x轴的交点是线在x轴上的截距,叫做横截距.即直线与y轴的交点的纵坐标叫做纵截距.直线与x轴的交点的横坐标叫做横截距.4.一次函数y=kx+b的图象两个一次函数y1=k1x+b1,y2=k2x+b2的图象当一次项系数相等(k1=k2)且常数项不等(b1≠b2)时,它们平行.反之,若它们的图象平行,必有k1=k2,且b1≠b2已知:L1∥L2结论:k1=k2,b1≠b2反之,已知:k1=k2,b1≠b2L1∥L2.四.重难点重点:一次函数(含正比例函数)的图象的画法及性质.因为函数图象是研究性质的前提,而函数性质又是研究其图象的基础.一次函数的图象虽然比较简单,但同学们对函数图象不太熟悉,在画图过程中还会出现一些问题.在不断的探索实践中,促成学生对规律性的总结.难点:①选取适当两点画一次函数y=Kx+b 的图象;②结合一次函数(含正比例函数)图象说出它们的性质.五.思想方法本章主要的数学思想方法有数形结合、联系与转化、待定系数法、分类讨论、图象的平移等方法. 六、典例解析 1.有关函数的概念对有关函数概念的考查,主要是考查考生是否理解正比例函数、一次函数等有关概念.有时单独命题专门考查,有时则结合其他题目来考查.【例1】 已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是图中的 ( )1.一次函数y=2x+3的图象不经过的象限是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知一次函数y=kx+b 的图象如图所示,则 ( ) A.k>0,b>0 B. k<0,b<0 C. k>0,b<0 D.k<0,b>03.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( )A.m>0B. m<0C. m>1D. m<1 4.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )xy 0xyyyy5.有下列函数:①y =6x-5, ②y =5x,③y =x +4, ④y =-4x +5。
第6章 一次函数知识结构:一次函数1.函数(1)概念:表示法-----列表法、图像法、函数表达式法 (2)常量、变量--------自变量的取值范围 (3)函数值 (4)函数的图像(1)正比例函数 2.一次函数的概念(2)用待定系数法求一次函数的表达式3.一次函数的图像(1)一条直线(2)画法-------列表,描点,连线1.Y=kx+b 中,当k >0时,y 随x 的增大而增大(3)性质2.Y=kx+b 中,当k <0时,y 随x 的增大而减小4.三个“一次”(1)一元一次不等式与一元一次方程 (2)一元一次不等式与一次函数 (3)一元一次方程与一次函数 (4)三个“一次”之间的关系5.应用1.求两直线的交点(1)二元一次方程组的图像解法2.求二元一次方程组的解(2)实际应用1.利用一次函数解决实际问题2.根据一次函数的图像解决实际问题6.1函数一、变量与常量二、函数的定义一般地,在一个变化过程中的两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么我们称y是x的函数,x是自变量。
三、函数的三种表示法1.函数表达式法:表示函数关系的式子叫做函数表达式,简称函数式。
用函数表达式表示函数的方法叫函数表达式法。
2.列表法:把自变量x的一系列值和函数y的对应值列成一个表,这种表示函数关系的方法是列表法。
3.图像法:一般地,对于一个函数,把自变量x与函数y的每一对对应值分别作为点的横、纵坐标,在平面直角坐标系内描出相应的点,由这些点组成的图像,就叫做这个函数的图像。
用图像来表示函数关系的方法叫做图像法。
有的函数用以上三种方法都能表示,有的函数只能用其中的一种或两种方法表示。
四、确定自变量的取值范围温馨提示:(1)在一个函数解析式中,自变量的取值必须使函数解析式有意义。
当一个函数解析式中出现不止一种上述情况时,自变量的取值是使各式成立的公共解;(2)具有实际意义或几何意义的函数,自变量的取值范围除应使函数解析式有意义外,还必须符合实际意义或几何意义。
一次函数知识要点与典型例题一.函数函数定义的:一般地,在一个变化过程中,如果有两个变量X与y ,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b ,那么b叫做当自变量的值为a时的函数值.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例:L在匀速运动公式s = W中,口表示速度」表示时间,s表示在时间/内所走的路程,则变量是,常量是2.在圆的周长公式C=2m中,变量是,常量是.函数概念*(一)、注意理解"在一个变化过程中,有两个变量"自变量因变量例、在函数关系式)'=4"中,自变量为,常量为,当*=3时,函数值y为(二)、注意理解"x的每一个确定的值"1自变量x的取值不能使对应关系无意义,如y =, X的取值不能为1 ;(三)、注意理解"X的每一个确定的值,y都有唯一确定的值与其对应" 例:y = ±X , y x的函数(填"是〃或"不是")(四)、注意正确判断"谁是谁的函数"通常,函数因变量写在等号左边。
例、下列等式中,y是x的函数的是()A、y 二|x|B、y2 = x &1川=因D v y = ±x(五)、注意正确确定"自变量的取值范围"L自变量的取值必须使含自变量的代数式有意义(1)整式型:其自变量的取值范围是全体实数.例、函数y=3x+l, y=x2+x - 4中自变量x的取值范围是.(2)分式型:其自变量的取值范围是使得分母不为零的实数. 2例、函数丫=工一1中变量x的取值范围是.(3)二次根式型:其自变量的取值范围是使得被开方式为非负数的实数.例、函数丫:瓦万中自变量x的取值范围是.(4)复合型:即自变量同时含有上述两种或三种情况时,自变量的取值范围是它们的公共解.y/x-2例、函数y= x - 3中自变量X的取值范围是.函数的三要素:自变量的取值范围、函数的取值范围和两个变量的对应关系【例题】:1 ,下列函数中,自变量x 的取值范围是XN2的是() ] A . y= J2T B . y= & -2 Q . y= \l^-x 2 .函数)'=中自变量格)取值范围是.1 cy = ——x + 23,已知函数. 2 ,当Tvx 〈l 时,通取值范围是()2、自变量的取值必须使实际问题有意义例、1、一个正方形的边长为3cm ,它的各边长减少xcm 后,所得新正方形的周长为ycm.则y 与x 的关系式为,自变量x 的取值范围是 0 < x < 3.2、 .如果一个等腰三角形的周长为30 ,则底边长y 与腰长x 之间成一函数关系,y 与x 的关系式为, 自变量x 的取值范围是函数的图像一般分为三步:①列表;②描点;③连线.函数的表示方法函数有三种表示方法:(1)列表法;(2 )图象法;⑶表达式法(峥关系式或解析式).二、一次函数的概念若两个变量x , y 间的关系式可以表示成y = kx + b ( k , b 为常数,k#0 )的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b = 0时,关系式变为y = kx ,称y 是x 的正比例函数.R 注意H :(1) 一次函数y = kx + b ( k#0 )特征:①kxo ②x 指数为工③b 取任意实数(2 )正比例函数y = kx ( k#0 )特征:①kwo ②x 次数是1③常数项b = 0.(3 )正比例函数是一次函数的特殊形式.【例题】:21 .若函数,V =(〃L2)d ' + 2是一次函数,则m=。
初中数学苏科版八年级上学期期末复习专题(10)一次函数及其应用一、单选题(本大题共10题,共30分)1.一次函数y=2x+1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y1=ax+b与一次函数y2=bx−a在同一平面直角坐标系中的图象大致是()A. B. C. D.3.为了改善生态环境,政府决定绿化荒地,计划第一年先植树2万亩,以后每年都植树2.5万亩,则植树的总面积y(万亩)与时间x(年)的函数关系式是()A.y=2.5x+2B.y=2.5x−0.5C.y=2.5x−2D.y=2.5x+0.54.A (x1,y),B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若t=(x1- x2)(y1-y2),则()A.t<1B.t>0C.t=0D.t≤15.把直线y=2x-1向下平移1个单位,平移后直线得关系式为()A.y=2x-2B.y=2x+1C.y=2xD.y=2x+26.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n <27.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.乙出发()分钟后追上甲.A.24B.4C.5D. 68.如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min9.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法错误的是()A.A,B两地之间的距离为180千米B.乙车的速度为36千米/时C.a的值为3.75D.当乙车到达终点时,甲车距离终点还有30千米10.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:① A,B两城相距300千米;①乙车比甲车晚出发1小时,却早到1小时;①乙车出发后2.5小时追上甲车;①当甲、乙两车相距50千米时, t=54或154其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共8题,共16分)11.下列函数:①y=7x;① y=πx;①y=-x2;① y=1x2;①y=7-x;其中是一次函数的是:________; (填序号)12.若点(m,n)若在直线y=3x−2上,则代数式2n-6m+1的值是________.13.已知直线y=2x−3经过点(2+m,1+k),其中m≠0,则km的值为________.14.已知点(−4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1,y2的大小关系为y1 ________ y2(填“ >,=,或<”)15.将长为30cm,宽为10cm的长方形白纸,按如图所示的方发粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的总长度为ycm,则y与x的函数关系式________.16.为节约用水,某市居民生活用水按级收费,具体收费标准如下表:设李红家某月的为x吨(15<x①25),应付水费为y元,则y关于x的函数表达式为________.17.定义:在平面直角坐标系中,把任意点A(x1,y1)与点B(x2,y2)之间的距离d(A,B)= |x1−x2|+|y1−y2|叫做曼哈顿距离(ManℎatanDistance),则原点O与函数y=2x+1(−12≤x≤0)图象上一点M的曼哈顿距离d(O,M)=23,则点M的坐标为________.18.如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为________.三、综合题(本大题共8题,共84分)19.一次函数图象经过(3,1),(2,0)两点.(1)求这个一次函数的解析式;(2)求当x=6时,y的值.20.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(ℎ)之间的函数关系,如图中线段AB所示.慢车离乙地的路程y2(km)与行驶的时间x(ℎ)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.(1)快车的速度是________ km/ℎ,慢车的速度是________ km/ℎ;(2)求AB与OC的函数关系式.(3)何时快车离乙地的距离大于慢车离乙地的距离?21.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为10000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A店铺:"双11"当天购实所有商品可以享受8折优惠:B店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x(个),若王阿姨在“双11"当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元)。
一次函数复习(3)教学目标1、能根据实际问题中变量之间的关系,确定一次函数的关系式,并能确定自变量的取值范围;2、能用一次函数解决实际问题,会结合对函数的分析,尝试对变量的变化规律进行初步预测;3、感受函数是研究现实世界数量变化及变化规律的重要数学模型,体验函数是处理和解决实际问题的有力根据,并具有广泛应用性,逐步深化对函数思想的理解.重点、难点重点:应用一次函数解决实际问题.教学过程一 知识要点1、根据实际问题列出函数关系式,再利用一次函数解决问题:例1:小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.请你根据以上信息解答下列问题: (1) 求销售收入y (元)与售出草莓重量x (千克) 之间的函数关系式;并画出其函数图象; (2) 小强共批发购进多少千克草莓?小强决定将这次卖 草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款 为多少元?例2:已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y (元)与x (套)的函数关系式,并求出自变量的取值范围;(2)当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?2、根据问题中的表格、图象求出函数关系式,再利用一次函数解决问题:例3:某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件) 之间的关系如下表:若日销售量y 是销售价x 的一次函数。
(1)求出日销售量y (件)与销售价x (元)的函数关系式:(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?x (元) 15 20 30 …… Y (件) 25 20 10 …… y O (千克) 5 10 10 20 3040 50 6015 20 (元)例4、教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y (升)与放水时间x (分钟)的函数关系如图所示:(1)求出饮水机的存水量y (升)与放水时间x (分钟)(x ≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?二、巩固练习1、某单位计划10月份组织员工到外地旅游,估计人数在6~15人之间。
初中数学试卷 鼎尚图文**整理制作第六章《一次函数》单元复习(满分:100分 时间:60分钟)一、选择题(每题2分,其16分)1.函数y =1x +x 的图像在 ( ) A .第一象限 B .第一、三象限 C .第二象限 D .第二、四象限 2.一次函数y =mx +1m 的图像过点(0,2),若y 随x 的增大而增大,则m 的值是 ( )A .-1B .3C .1D .-1或33.在下列图像中,函数y =mx +m 的图像可能是 ()4.如图所示是直线y =x -3的图像,若点P(2,m)在该直线的上方,则m 的取值范围是( )A .m>-3B .m>-1C .m>0D .m<35.若一次函数y =kx +b 的图像如图所示,则方程kx +b =0的解为 ( )A .x =2B .y =2C .x =-1D .y =-16.给出下面四条直线,其中直线上每个点的坐标都是二元一次方程x -2y =2的解的是( )7.如图所示是邻居张大爷去公园锻炼及原路返回时离家的距离y(km)与时间t(min)之间的函数关系图像,则下列说法正确的是 ( )A .张大爷去时所用的时间少于回家的时间B .张大爷在公园锻炼了40minC .张大爷去时走上坡路D .张大爷去时的速度比回家时的速度慢8.如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =BC =4,DE ⊥BC , 垂足为点E ,且E 是BC 的中点.动点P 从点E 出发沿路径ED →DA →AB 以每 秒1个单位长度的速度向终点B 运动.若设点P 的运动时间为t 秒,△PBC 的面 积为S ,则下列能反映S 与t 的函数关系的图像是 ( )二、填空题(每题2分,共20分)9.写出一个图像经过第一、三象限的正比例函数的解析式_______.10.如果点P 1(3,y 1),P 2(2,y 2)在一次函数y =2x -1的图像上,那么y 1_______y 2.(填“>”、“<”或“=”)11.若点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则5a b 的值为_______. 12.若函数y =-x +m 2与y =4x -1的图像交于x 轴,则m =_______.13.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移,与x 轴、y 轴分别交于点C 、点D .若DB =DC ,则直线CD 的函数解析式为_______.14.如图,若函数y =ax -1的图像过点(1,2),则不等式ax -1>2的解集是_______.15.如图,直线l 1,l 2交于点A .观察图像,点A 的坐标可以看作方程组_______的解.16.一次函数y =-2x +b ,若当x -1时,y<1;当x =-1时,y>0.则b 的取值范围是_______.17.观察下列各正方形图案,每条边上有n (n>2)个圆点,每个图案中圆点的总数是S .按此规律推断出S 与n 的函数关系式为_______.18.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷,图中两条线段分别表示小强和爷爷离开山脚的距离s(m)与爬山所用时间t(min)的关系.请计算小强到山顶前追到爷爷的时间是_______mm .三、解答题(共64分)19.(本题6分)已知y 是x 的一次函数,当x =2时,y =-3;当x =-2时,y =1.(1)试求y 与x 之间的函数关系式并画出图像;(2)在图像上标出与x 轴、y 轴的交点坐标;(3)当x 取何值时,y =5?20.(本题6分)已知一次函数y =kx +3的图像经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5)、点C(0,3)、点D(2,1)是否在这个一次函数的图像上.21.(本题6分)如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.22.(本题6分)如图,一次函数y =-23x +2的图像分别与x 轴、y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过B ,C 两点的直线的解析式.23.(本题9分)如图,在平面直角坐标系中画出了函数y =kx +b 的图像.(1)根据图像,求k ,b 的值;(2)在图中画出函数y =-2x +2的图像;(3)求x 的取值范围,使函数y =kx +b 的函数值大于函数y =-2x +2的函数值.24.(本题9分)某面粉厂有工人20名,为获得更多利润,增设了加工面条项目,用本厂生产的面粉加工成面条(生产1千克面条需用面粉1千克).已知每人每天平均生产面粉600千克,或生产面条400千克.将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利润0.6元.若每个工人一天只能做一项工作,且不计其他因素,设安排x名工人加工面条.(1)求一天中加工面条所获利润y1(元);(2)求一天中剩余面粉所获利润y2(元);(3)当x为何值时,该厂一天中所获总利润y(元)最大?最大利润为多少元?25.(本题9分)已知点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S.(1)试用x表示y,并写出x的取值范围;(2)求S关于x的函数解析式;(3)△OAP的面积是否能够达到30?为什么?26.(本题9分)甲、乙两地相距300km,-辆货车和一辆轿车先后从甲地出发开往乙地,如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCD表示轿车离甲地的距离y (km)与x(h)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;(3)轿车到达乙地后,马上沿原路以CD段的速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).27.(本题9分)如图所示,直线L与x轴,y轴分别交于A(6,0),B(0,3)两点,C(4,0)为x轴上一点,点P在线段AB(包括端点)上运动.(1)求直线L的解析式.(2)当点P的纵坐标为1时,按角的大小进行分类,请你确定△PAC是哪一类三角形,并说明理由.(3)是否存在这样的点P ,使△POC 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题1.A2.B3.D4.B5.C6.C7.D8.B二、填空题9.答案不唯一17.S =4n -4 18.6三、解答题19.(1)y =-x -1图像略 (2)(0,-1),(-1,0)图像略 (3)x =-620.(1)y =x +3 (2)点B 不在该一次函数的图像上;点C 在该一次函数的图像上;点D 不在该一次函数的图像上21.(1)y =2x -2 (2)(2,2)22.y =15x +2 23.(1)k =1,b =2. (2)如图 (3)x>024.(1)y 1=400x×0.6=240x (2)y 2=2400-200 x (3)2880元25.(1)0<x<4 (2)-6x +24 (3)不能够达到26.(1)30km (2)y =110x -195(2.5≤x ≤4.5) (3)4.68h27.(1)y =-12x +3.(2)直角三角形. (3)存在,P 1(4,1),P 2(0,3),P 3(2,2),P 4(185,65)。