2011年中考总复习2-整式的加减
- 格式:ppt
- 大小:9.14 MB
- 文档页数:60
中考数学一轮复习讲义2 代数式代数式的定义:整式的乘法整式的乘除与因式公解幂的运算法则同底数幂的乘法法则:a m·a n=a m+n(m,n都是正整数)幂的乘方法则:(a m)n=a mn(m,n是正整数)积的乘方法则:(ab)n=a n b n(n是正整数)单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘以多项式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加同底数幂的除法法则:a m÷a n=a m-n(a≠0,m,n都是正整数且m>n)零指数幂的意义:a0=1(a≠0)单项式除以单项式法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加乘法公式平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2整式的除法因式分解概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式方法公式法平方差公式:a2-b2=(a+b)(a-b)完全平方公式a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2题型一整式的加减运算例1 已知与是同类项,则a b 的值为. 例2 计算:(7x 2+5x -3)-(5x 2-3x +2). 题型二整式的求值例3 已知(a +2)2+|b +5|=0,求3a 2b 一[2a 2b -(2ab -a 2b )-4a 2]-ab 的值.例例5例例7例8例9A.解析:第二个图案中正三角形的个数为: 第三个图案中正三角形的个数为:..,;第n 个图案中正三角形的个数为: 题型四:幂的运算法则及其逆运用 例1 计算2x 3·(-3x )2= .例2 计算[a 4(a 4-4a )-(-3a 5)2÷(a 2)3]÷(-2a 2)2.3313a x y --533b y x -85a +题型五: 整式的混合运算与因式分解例3 计算[(a -2b )(2a -b )-(2a +b )2+(a +b )(a -b )-(3a )2]÷(-2a ).例4 分解因式. (1)m 3-m ; (2)(x +2)(x +3)+x 2-4.例5 分解因式a 2-2ab +b 2-c 2.例6 (1)已知x +y =7,xy =12,求(x -y )2; (2)已知a +b =8,a -b =2,求ab 的值.15.(2011•临沂,2,3分)下列运算中正确的是( ) A 、(﹣ab )2=2a 2b 2B 、(a+b )2=a 2+1C 、a 6÷a 2=a 3D 、2a 3+a 3=3a 316.(2011泰安,2,3分)下列运算正确的是( ) A .3a 2+4a 2=7a 4B .3a 2-4a 2=-a 2C .3a ×4a 2=12a 2D .2222434)3(a a a -=÷17.(2011四川眉山,2,3分)下列运箅正确的是( ) A .2a 2﹣a=aB .(a+2)2=a 2+4C .(a 2)3=a 6D .3)3(2-=-19.(2011•南充,11,3分)计算(π﹣3)0=.20.(2011四川攀枝花,3,3分)下列运算中,正确的是( ) A 、2+3=5 B 、a 2•a=a 3C 、(a 3)3=a 6D 、327=-3中考真题精选21.(2011泰安,5,3分)下列等式不成立的是( ) A .m 2-16=(m -4)(m +4)B .m 2+4m =m (m +4)C .m 2-8m +16=(m -4)2D .m 2+3m +9=(m +3)22.(2011•丹东,4,3分)将多项式x 3﹣xy 2分解因式,结果正确的是( ) A 、x (x 2﹣y 2)B 、x (x ﹣y )2C 、x (x+y )2D 、x (x+y )(x ﹣y )4.(2011天水,4,4)多项式2a 2﹣4ab +2b 2分解因式的结果正确的是( ) A 、2(a 2﹣2ab +b 2)B 、2a (a ﹣2b )+2b 2C 、2(a ﹣b )2D 、(2a ﹣2b )25.(2011江苏无锡,3,3分)分解因式2x 2﹣4x+2的最终结果是( ) A .2x (x ﹣2)B .2(x 2﹣2x+1) C .2(x ﹣1)2D .(2x ﹣2)26.(2011•台湾5,4分)下列四个多项式,哪一个是2x 2+5x ﹣3的因式( ) A 、2x ﹣1B 、2x ﹣3C 、x ﹣1D 、x ﹣37.(2011台湾,24,4分)下列四个多项式,哪一个是33x +7的倍式( ) A .33x 2-49B .332x 2+49C .33x 2+7xD .33x 2+14x10.(2011梧州,6,3分)因式分解x 2y ﹣4y 的正确结果是( ) A 、y (x+2)(x ﹣2)B 、y (x+4)(x ﹣4)C 、y (x 2﹣4)D 、y (x ﹣2)211.(2011河北,3,2分)下列分解因式正确的是( ) A .-a +a 3=-a (1+a 2) B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)213.(2011,台湾省,25,5分)若多项式33x 2﹣17x ﹣26可因式分解成(ax+b )(cx+d ),其中a 、b 、c 、d 均为整数,则|a+b+c+d|之值为何?( ) A 、3B 、10C 、25D 、2914.(2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是() A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +415.(2011浙江丽水,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A 、x 2+1 B 、x 2+2x ﹣1 C 、x 2+x +1D 、x 2+4x +4综合验收评估测试题1一、选择题l. 在代数式-2x 2,3xy ,,,0,mx -ny 中,整式的个数为() A .2 B .3 C .4 D. 5 2. 二下列语句正确的是()A .x 的次数是0B .x 的系数是0 C. -1是一次单项式 D .-1是单项式 3.4.5. 6. 7. 8. C .m ≠-1,n 为大于3的整数 D .m ≠-1,n =5二、填空题9. -mx n y 是关于x ,y 的一个单项式,且系数是3,次数是4,则m =,n =. 10. 多项式ab 3-3a 2b 2-a 3b -3按字母a 的降幂排列是.按字母b 的升幂排列是. 11. 当b =时,式子2a +ab -5的值与a 无关. 12. 若-7xy n +1 3x m y 4是同类项,则m +n .13.多项式2ab -5a 2+7b 2加上等于a 2-5ab .b a 3xy -三、解答题14.先化简,再求值:,其中m =-l ,n =.综合验收评估测试题2一、选择题(每小题3分,共30分) 1.计算(a 3)2的结果是 ( ) A .a 5 B .a 6 C .a 8 D .a 9 2.下列运算正确的是 ( )A .a 2·a 3=a 4B .(-a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5 3.已知x -3y =-3,则5-x +3y 的值是 ( ) A .0 B .2 C .5 D .8 4.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( ) A .12 B .6 C .3 D .05.如图15-4所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分拼成一个矩形,根据两个图形中阴影部分的面积相等,可以验证 ( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.下列各式中,与(a -b )2一定相等的是 ( )A .a 2+2ab +b 2B .a 2-b 2C .a 2+b 2D .a 2-2ab +b 0 7.已知x +y =-5,xy =6,则x 2+y 2的值为 ( ) A .1 B .13 C .17 D .25 8.下列从左到右的变形是因式分解的是 ( )A .ma +mb -c =m (a +b )-cB .(a -b )(a 2+ab +b 2)=a 3-b 3C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)D .4x 2-25y 2=(2x +5y )(2x -5y ) 9.下列各式中,能用平方差公式分解因式的是 ( ) A .-a 2+b 2 B .-a 2-b 2 C .a 2+b 2 D .a 3-b 3 10.如果(x -2)(x -3)=x 2+px +q ,那么p ,q 的值是 ( )A .p =-5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-622222212(52)3(2)2m n mn m n mn mn m n ⎛⎫+---- ⎪⎝⎭13二、填空题(每小题3分,共30分) 11.已知10m =2,10n =3,则103m+2n=.12.当x =3,y =1时,代数式(x +y )(x -y )+y 2的值是 . 13.若a -b =1,ab =-2,则(a +1)(b -1)= . 14.分解因式:2m 3-8m = . 15.已知y =31x -1,那么31x 2-2xy +3y 2-2的值为. 16.计算:5752×12-4252×12= .17 18192021 22(1)m 2n (m23.已知a ,b 是有理数,试说明a 2+b 2-2a -4b +8的值是正数.24.先化简,再求值:(a +b )(a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =2,b =1.25.(1)计算.①(a -1)(a +1);②(a -1)(a 2+a +1);③(a -1)(a 3+a 2+a +1);④(a -1)(a 4+a 3+a 2+a +1). (2)根据(1)中的计算,你发现了什么规律?用字母表示出来. (3)根据(2)中的结论,直接写出下题的结果. ①(a -1)(a 9+a 8+a 7+a 6+a 5+a 4+a 3+a 2+a +1)=; ②若(a -1)·M =a 15-1,则M =; ③(a -b④(226(1) (2) (3) (4)(5)答案:1.D 解析:不是整式,故选D . 2.D 解析:x 的次数是1,系数是1;-1是单项式.故选D .3.C 解析:所含字母相同,并且相同字母的指数也相同的项叫做同类项.故选C :4.D 解析:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.故选D .5.6.B . 7.2n +38.910 1112137b 2. 142×=1.15 50πa 2+100ab .答:美化这块空地共需资金(50πa 2+100ab )元.点拨:根据题意,可以先求出建造花台及种花所需费用,再求出种草的费用,两者相加即为美化这块空地共需的资金.ba1314π4a ⨯参考答案1.B2.B[提示:选项A :a 2·a 3=a 5;选项C :a 2和a 3不能合并;选项D :(a 2)3=a 6.] 3.D[提示:5-x +3y =5-(x -3y )=5-(-3)=8.]4.A [提示:2m 2+4mn +2n 2-6=2(m +n )2-6=2×32-6=12.]5.6.7.8.9.10111213141531(x -3y )2-216] 17181920] 21+1)(2x -1)-=20002-(200022(x +y -8)2.232)2≥0,∴(a -1)=a 2-b 2+b 2-25n -2+…+a 3+a 2+a +1)=a n +1-1. (3)①a 10-1 ②a 14+a 13+a 12+a 11+…+a 3+a 2+a +1 ③a 6-b 6④32x 5-126.解:(1)各层对应的点数依次为:4,8.12,16,20,24;所有层的总点数依次为:4,12,24,40,60.84. (2)4n . (3)2n (n +1). (4)第24层. (5)有,第25层.。
2、整式的加减要点一:列代数式表示数量关系 一、选择题1.(2008·镇江中考)用代数式表示―a 的3倍与b 的差的平方‖,正确的是( )A.2(3)a b -B.23()a b -C.23a b - D.2(3)a b -【解析】选A.B 项表示a 与b 差的平方的3倍,C 项表示a 的3倍与b 的平方的差,D 项表示a 与b 的3倍差的平方2.(2009·山西中考)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2mD .2n答案:选A3.(2010·常德中考)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在―十一五规划‖中提出―到2010年全年GDP 过千亿元‖的目标.如果按此增长速度,那么我市今年的GDP 为( )A.1050×(1+13.2%)2B.1050×(1-13.2%)2C.1050×(13.2%)2D.1050×(1+13.2%)【解析】选A 。
根据题中的各量之间的相等关系可以得出我市今年的GDP 为1050×(1+13.2%)2 。
4.(2009·眉山中考)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( ) A .1019a b +B .1019a b -C .1017a b -D .1021a b -【解析】选B.观察式子得第几个式子a 的指数就是几,第奇数个式子―+‖,第偶数个式子―-‖,ba 的指数是a 的指数的2倍少1,因此第10个式子是1019a b -.m nnn (2)(1)二、填空题5.(2010·嘉兴中考)用代数式表示―a 、b 两数的平方和‖,结果为_______。
中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a A O (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··2212 3.a b ab ab b a ab b a ∴=+=-=-=- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<,即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b 355315a a --22b a b a a b a b+++-的值. 【思路点拨】本题中根据b =355315a a --可以求出a ,b ,2b a a b ++2b a a b +-开方数进行配方、化简.【答案与解析】由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0, 22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-+++-=+-=+-⎛=- ⎝=当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块, 黑色瓷砖(4n+6)块(均用含n 的代数式表示);(2)依题意得:n 2+5n+6=1056,整理得:n 2+5n ﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n 的值为30;(3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。
整式的加减综合复习一.选择题(共12小题)1.下列式子a+b,S=ab,5,m,8+y,m+3=2,中,代数式有()A.6个 B.5个 C.4个 D.3个2.下列代数式中符合书写要求的是()A.ab2×4 B.C.D.6xy2÷33.代数式“a2+b2”用文字语言叙述,其中叙述不正确的是()A.a、b两数的平方和B.a与b的和的平方C.a2与b2的和D.边长为a的正方形与边长为b的正方形的面积和4.下列判断错误的是()A.多项式5x2﹣2x+4是二次三项式B.单项式﹣a2b3c4的系数是﹣1,次数是9 C.式子m+5,ab,﹣2,都是代数式D.多项式与多项式的和一定是多项式5.已知3﹣x+2y=0,则2x﹣4y的值为()A.﹣3 B.3 C.﹣6 D.66.下列代数式:,,2x﹣y,(1﹣20%)x,ab,,,其中是整式的个数是()A.2 B.3 C.4 D.57.如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.38.多项式是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣49.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2,则()A.m=﹣5,n=﹣1 B.m=5,n=1 C.m=﹣5,n=1 D.m=5,n=﹣110.设A,B,C均为多项式,小方同学在计算“A﹣B"时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x11.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则a+b的值为()A.﹣1 B.1 C.﹣2 D.212.求1+2+22+23…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1,仿照以上推理,计算出1+5+52+53+…+52017的值为()A.52017﹣1 B.52018﹣1 C.D.二.填空题(共8小题)13.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是.14.一种电脑,买入价a千元/台,提价10%后出售,这时售价为千元/台,后又降价5%,降价后的售价又为千元/台.15.一个两位数,个位数字是n,十位数字为m,则这个两位数可表示为.16.若单项式2a x+2b2与﹣3ab y的和仍是一个单项式.则x y等于.17.三个连续整数,设中间一个为2n+1,则这三个整数的和是.18.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对",则代数式m﹣[n+(6﹣12n﹣15m)]的值为.19.有这样一组数据a1,a2,a3,…a n,满足以下规律:a1=,a2=,a3=,…,a n=(n≥2且n为正整数),则a2017的值为(结果用数字表示)20.找出下列各图形中数的规律,依此,a的值为.三.解答题(共8小题)21.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.22.化简下列各式:(1)2(3a+6b)+(﹣5a﹣7a )(2)5x3+4x2y﹣10﹣4x2y+6x3﹣8.23.已知多项式﹣3x2y m+1+x3y﹣3x4﹣1是五次四项式,且单项式3x2n y3﹣m与多项式的次数相同.(1)求m、n的值;(2)把这个多项式按x的降幂排列.24.化简:(1)﹣9y+6x2+3(y﹣x2);(2)5(a2b﹣3ab2)﹣2(a2b﹣7ab2);(3)3x2﹣[7x﹣(4x﹣3)﹣2x2];(4)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].25.(1)化简:(4x+2y)﹣2(x﹣y)(2)先化简再求值:﹣(a2﹣6ab+9)+2(a2+4ab+4。
2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。
整式的加减、乘除及因式分解整式加减一、知识点回顾1、单项式:由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a ,5……单项式系数和次数:系数:次数:2、多项式:几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式4、整式的概念:单项式与多项式统称整式二、整式的加减1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类 项的系数相加,字母和字母的指数保持不变。
2、去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 .3、整式加减的运算法则(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
整式乘除及因式分解一、幂的运算:1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
注n m n m a a a +=∙n m ,意底数可以是多项式或单项式。
2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。
如: mn n m a a =)(n m ,10253)3(=-幂的乘方法则可以逆用:即 如:m n n m mn a a a )()(==23326)4()4(4==3、积的乘方法则:(是正整数)。
积的乘方,等于各因数乘方的积。
n n n b a ab =)(n 4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不n m n m a a a -=÷n m a ,,0≠)n m 变,指数相减。
5、零指数; ,即任何不等于零的数的零次方等于1。
10=a 二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.用正三角形、正四边形和正六边形按如图所示的规律拼图案,则第n个图案中正三角形的个数为( )A.2n+1B.3n+2C.4n+2D.4n−22.根据如图所示的计算程序,若输入的值x=−3,则输出y的值为( )A.−2B.−8C.10D.133.“比a的2倍大1的数”,列式表示是( )A.2(a+1)B.2(a−1)C.2a+1D.2a−14.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xy B.x+y C.10y+x D.10x+y 5.单项式−xy3z4的系数及次数分别是( )A.系数是0,次数是7B.系数是1,次数是8C.系数是−1,次数是7D.系数是−1,次数是86.根据以下程序,当输入x=−2时,输出结果为( )A.−5B.−2C.0D.37.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84B.336C.452D.5108.下列各式中,不是整式的是( )A.6xy B.yxC.x+9D.4二、填空题(共5题,共15分)9...如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.10.已知21×2=21+2,32×3=32+3,43×4=43+4⋯若ab×10=ab+10(a,b都是正整数),则a+b的最小值是.11. (−√9)2的平方根是x,64的立方根是y,则x+y的值为.12.写出一个单项式,使得它与多项式m+2n的和为单项式:.13.如果关于x的多项式ax2−abx+b与bx2+abx+2a的和是一个单项式,那么a 与b的关系是.三、解答题(共3题,共45分)14.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2π√lg,其中T(s)表示周期,l(m)表示摆长,g取9.8m/s2,假如一台座钟摆针的摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟大约发出了多少次滴答声?(π取3.14)15.现有大小两艘轮船,小船每天运x吨货物,大船比小船每天多运10吨货物,现在让大船完成运送100吨货物的任务,小船完成运送80吨货物的任务.(1) 分别写出大船、小船完成任务用的时间;(2) 试说明哪艘轮船完成任务用的时间少.16.已知两个关于x,y的单项式mx3a−4y3与−2nx a+2y3是同类项(其中xy≠0).(1) 求a的值;(2) 如果它们的和为零,求(2m−4n−1)2021的值.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−110. 【答案】1911. 【答案】1或712. 【答案】−m13. 【答案】a=−b或b=−2a14. 【答案】将l=0.5m,g=9.8m/s2代入T=2π√lg 中,得T=2π√0.59.8≈1.42(s)于是60T =601.42≈42(次).答:在1min内,该座钟大约发出了42次滴答声.15. 【答案】(1) 大船完成任务用的时间为100x+10天,小船完成任务用的时间为80x天.(2) 100x+10−80x=20x−800x(x+10)=20(x−40)x(x+10)(天)因为x>0,所以x+10>0,所以当x>40时20(x−40)x(x+10)>0,即100x+10>80x,小船所用时间少;当x=40时20(x−40)x(x+10)=0,即100x+10=80x,两船所用时间相同;当x<40时20(x−40)x(x+10)<0,即100x+10<80x,大船所用时间少.16. 【答案】(1) 由题意得3a−4=a+2解得a=3.(2) 由题意得m−2n=0∴2m−4n=0∴(2m−4n−1)2021=(−1)2021=−1.。
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
七年级上学期《整式的加减》总复习2姓名 班级 第 组 正组长评价 (A 、B 、C )一.选择题:(每小题3分,共15分)1.下列说法中正确的是( )。
A .2t 不是整式;B . 33x y -的次数是4;C .4ab 与4xy 是同类项;D .1y是单项式 2.下列说法错误的个数是( )。
①213x π的系数为13;②212xy 的系数为12;③25x -的系数是5;④7xy -的系数是7x - A .1 B .2 C .3 D .43.下列计算正确的是( )A .32x x x -=B .2xy xy xy -=C .495x x -=-D .11033a a -= 4.3(2)x x --等于 ( )。
A . x - B . x C . 5x - D .5x5.若M ,N 都是四次多项式,则多项式M+N 的次数( )A .一定是4B .不超过4C .不低于4D .一定是8二.填空题:(每小题3分,共15分)6.多项式231245xy x y --是_____次_____项式,常数项是________。
7.若3815x y 与28n x y +-是同类项,则n =_______。
8.买一个足球需要a 元,买一个篮球需要b ,则买3个足球、5个篮球共需要_________元。
9.三个连续偶数,中间一个是2n ,则这三个偶数的和为___________。
10.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子 ____ 把. 三.计算题:(11、12每题4分;13、14、15每题5分;16、17每题6分。
共25分)11.36st st -+ 12.222111244a bc a bc a bc -++(1) (2) (3)13.32327486a a a a a a -++--- 14.3322745355xy xy xy xy ++---15.2(23)3(23)a b b a -+- 16.2222222[(2)]x y x x y ---+17.化简求值:32231224(2)33x x x x x x -+--+-,其中3x =-。