6-基本几何体的投影
- 格式:ppt
- 大小:1.01 MB
- 文档页数:32
本章是这门课程的一个难点,教师为了自身业务的提高,要试做一定数目的练习,这对于讲课、辅导答疑、画好黑板图等都有很大的帮助,下面是教师在教学过程中的部分练习,虽然不要求学生掌握到这种难度,但教师要能绘制这种图样。
在讲解本章内容时可作为参考案例。
教师绘制的作业(三棱住切割)教师绘制的作业(长方体切割)教师绘制的作业(五棱柱切割)教师绘制的作业(长方体切割)教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业学生作业学生作业学生作业学生作业学生作业学生作业返回第一讲基本立体的投影1.知识要点(1)平面基本立体的投影(2)圆柱体的投影(3)圆锥体的投影(4)球体的投影2.教学设计本讲的内容不多,表面上容易,实际上同学掌握起来比较难,所以教学上要注意直观教学和空间想象能力培养的关系,明确教学目的。
虽然在上一章介绍了平面立体三视图的画法,在本章开始时还要进一步归纳平面基本体的投影,及其与平面相交时交线的画法,这是一个难点,要逐步掌握。
通过对圆柱体、圆锥体和球体在三面投影体系中投影的研究,进一步巩固三视图的投影规律,通过研究曲面上点、线的投影,暗示线面分析法的思想方法。
在介绍基本曲面立体的投影时,要紧紧抓住转向轮廓线的概念和投影,这对于接下来的截交线和相贯线的学习也是非常重要的,在讲圆柱截交线时,利用动画、模型、虚拟现实等多媒体技术介绍基本概念和作图方法。
把粗实线圆规铅心的修理、圆规的使用放在这里介绍,目的是分散难点,学生有了绘制粗实线直线的经验,学习绘制粗实线圆弧就容易些。
3.课前准备准备教具、熟悉教学内容和要使用的教学课件,课前最好将要布置的作业试做一遍,对学生作业中的问题作到心中有数。
认识常见的几何体投影及阴影几何体是我们日常生活中常见的物体,它们具有不同的形状和结构。
当这些几何体遇到光线时,它们会产生投影和阴影。
本文将介绍一些常见的几何体投影及阴影的特点和应用。
一、直线的投影与阴影首先,我们来讨论直线的投影与阴影。
当一条直线与光线相交时,它的投影将是一条与之平行的直线,长度与原直线相等。
这是因为光线在直线上的每个点上都会形成一个投影,而这些投影都是平行的。
而直线的阴影则是指当直线所在的物体遇到光线时,在背后产生的暗影。
阴影的形状与直线所在的物体形状有关,如果物体是透明的,阴影将呈现出直线的形状。
但如果物体是不透明的,阴影将呈现出物体的轮廓。
二、平面的投影与阴影接下来,我们来讨论平面的投影与阴影。
平面的投影通常是一个与平面平行的形状,长度和宽度与原平面相等。
这是因为光线在平面上的每个点上都会形成一个投影,而这些投影都是平行的。
平面的阴影则是指当平面所在的物体遇到光线时,在背后产生的暗影。
阴影的形状与平面所在的物体形状有关,如果物体是透明的,阴影将呈现出平面的形状。
但如果物体是不透明的,阴影将呈现出物体的轮廓。
三、立体的投影与阴影最后,我们来讨论立体的投影与阴影。
立体的投影通常是一个与立体形状相似的形状,但长度、宽度和高度可能会有所改变。
这是因为光线在立体上的每个点上都会形成一个投影,而这些投影的形状和位置与立体的形状和位置有关。
立体的阴影则是指当立体所在的物体遇到光线时,在背后产生的暗影。
阴影的形状与立体所在的物体形状有关,如果物体是透明的,阴影将呈现出立体的形状。
但如果物体是不透明的,阴影将呈现出物体的轮廓。
四、几何体投影与阴影的应用几何体投影与阴影的应用非常广泛。
在建筑设计中,对于不同形状的建筑物,我们需要考虑它们在不同光线条件下的投影和阴影,以确定最佳的建筑设计方案。
在艺术创作中,艺术家经常利用几何体的投影和阴影来创造有趣的视觉效果。
通过合理运用光线和阴影的关系,他们能够营造出立体感和层次感,使作品更加生动和立体。
空间几何体的投影投影是一种常用的几何概念,它在日常生活和工程学中都有广泛的应用。
投影是指将三维空间中的物体投射到一个或多个平面上,以便更好地理解和分析物体的形状、大小和位置关系。
本文将介绍几种常见的空间几何体的投影方法。
一、点的投影点是空间中最简单的几何体,它没有大小和形状。
点的投影即是将点沿垂直方向投射到一个平面上,得到该点在平面上的投影点。
投影点的坐标等于原点的坐标,因为点没有大小和形状,只有位置。
二、直线的投影直线是由无数个点组成的,因此直线的投影是将直线上的所有点都投影到平面上,得到一条线段。
直线的投影可以通过两种方法来计算,一种是选择直线上的两个点,将这两个点分别投影到平面上,然后连接两个投影点,得到投影线段;另一种是选择直线上的一个点和直线的方向向量,将该点和方向向量的起点分别投影到平面上,然后连接两个投影点,得到投影线段。
三、平面的投影平面是由无数个点组成的,因此平面的投影是将平面上的所有点都投影到另一个平面上,得到一个新的平面。
平面的投影可以通过选择平面上的三个点,将这三个点分别投影到另一个平面上,然后连接三个投影点,得到一个新的平面。
四、立方体的投影立方体是一种常见的空间几何体,它有六个面,每个面都是一个正方形。
投影立方体时,可以选择立方体上的一条边,将这条边上的所有点都投影到一个平面上,然后连接投影点,得到一个新的正方形。
再选择立方体上的另一条边,进行同样的投影操作,得到另一个正方形。
继续按照这种方法,将立方体的所有边都进行投影,最终可以得到一个新的立方体。
五、圆锥的投影圆锥是一种具有圆形底面和尖顶的几何体。
投影圆锥时,可以选择圆锥底面上的一条直径,将这条直径上的所有点都投影到一个平面上,然后连接投影点,得到一个新的圆。
再选择圆锥底面上的另一条直径,进行同样的投影操作,得到另一个新的圆。
继续按照这种方法,将圆锥的所有直径都进行投影,最终可以得到一个新的圆锥。
六、球体的投影球体是一种具有无数个点的几何体,其上的每个点到球心的距离都相等。
几何体的投影在几何学中,投影是指由三维空间中的一个物体到一个二维平面上的映射。
几何体的投影可以帮助我们更好地理解其形状和特征,并在实际应用中起到重要的作用。
本文将介绍几何体的投影原理、常见几何体的投影特征以及投影在不同领域的应用。
一、投影原理几何体的投影是指将三维物体的每个点沿着一个特定的方向映射到一个平面上的点。
这个过程可以类比为日光通过云层投射在地面上形成的阴影。
在几何学中,常用的投影方法有平行投影和透视投影。
1. 平行投影平行投影是指将几何体的每个点沿着平行于投影平面的方向进行投影。
在平行投影中,我们可以得到一个保持距离和角度不变的二维投影。
例如,当我们将一个立方体进行平行投影时,其投影形状将仍然是一个正方形。
2. 透视投影透视投影是指将几何体的每个点沿着一个特定的方向进行投影,使得远离观察平面的点被投影到平面上的点集更远离观察点的呈现更小。
透视投影是模拟人眼在观察物体时产生的效果。
在透视投影中,远离观察平面的部分将更小,而靠近观察平面的部分将更大。
二、常见几何体的投影特征不同的几何体在投影过程中会呈现出不同的特征和形状。
下面将介绍一些常见几何体的投影特征。
1. 点的投影点是几何学中最简单的几何体,其投影将落在投影平面上的一个点。
由于点本身没有具体的形状和大小,其投影将保持与原点位置相同的特点。
2. 直线的投影直线在投影平面上的投影将是一条直线,与原直线平行。
这是由于投影过程中直线的每个点都会在投影平面上形成一个对应的投影点。
3. 平面的投影平面的投影将在投影平面上形成一个与原平面平行的平面。
由于平面本身没有体积,其投影将保持原平面的形状和大小。
4. 三角形的投影三角形投影的特点是在投影平面上形成一个与原三角形相似的三角形。
其形状和大小取决于观察角度和投影方向。
5. 立方体的投影立方体在平行投影中的投影形状将是一个正方形,其边长与原立方体的边长相等。
在透视投影中,立方体的投影将呈现出近大远小的效果,与实际观察到的立方体形状一致。
第三章 基本几何体的投影通常所说的基本几何体,包括棱柱体、棱锥体、圆柱体、圆锥体、球体和环等。
前两种立体的表面都是平面,称为平面立体;其余四种的表面是回转面或回转面与平面,称为回转体。
本章主要研究这些基本几何体的投影特性及其作图方法。
§3-1 平面立体的投影一、棱柱体的投影图3-1是五棱柱体和它的投影图。
该五棱柱体的顶面和底面均处于水平位置,其水平投影反映实形,正面和侧面投影均积聚成水平直线。
棱柱的五个侧棱面中最后的棱面DEE1D1处于正平面的位置,其正面投影反映实形,是不可见的面,故DD1、EE1两条棱线的正面投影d′d′1、e′e′1画成虚线,该棱面的水平投影和侧面投影积聚成直线。
其余四个侧棱面均为铅垂面,它们的水平投影都积聚成直线,正面投影和侧面投影为比实形小的矩形(类似形)。
图3-1 五棱柱体的投影画图时,一般先画反映底面实形的那个投影(即水平投影),然后再画正面和侧面投影,如图3-1b所示。
在实际生产中所用的图纸都不必画出投影轴,如图3-1c所示,但三个投影必须保持左右、上下、前后的对应关系,即V 、H 两面投影左右对正,V 、W 两面投影上下平齐,H 、W 两面投影前后相等。
二、棱锥体的投影图3-2是正三棱锥体和它的投影图。
该三棱锥体的底面处于水平位置,其水平面投影反映实形,正面和侧面投影积聚成水平直线。
三棱锥的右侧棱面SBC 为正垂面,其正面投影s ′b ′c ′积聚成直线,水平面投影sbc 和侧面投影s ″b ″c ″为类似形。
前棱面SAB 和后棱面SAC 均为一般位置平面,因而,它们的三面投影均为类似形(正面投影两个三角形重合)。
图3-2 正三棱锥体的投影画图时,先画出底面三角形ABC 和锥顶S 的投影,然后顺次连接各棱线SA 、SB 、SC 的同面投影,如图3-2b所示。
通过棱柱和棱锥体的投影分析,可归纳如下几点:1)由于平面立体的棱线是直线,所以画平面立体的投影图就是先画出各棱线交点的投影,然后顺次连线,并注意区分可见性。
第六节几何体的投影机器上的零件,不论形状多么复杂,都可以看作是由基本几何体按照不同的方式组合而成的。
1、基本几何体——表面规则而单一的几何体。
按其表面性质,可以分为平面立体和曲面立体两类。
2、平面立体——立体表面全部由平面所围成的立体,如棱柱和棱锥等。
2、曲面立体——立体表面全部由曲面或曲面和平面所围成的立体,如圆柱、圆锥、圆球等。
曲面立体也称为回转体。
一、平面立体的投影及表面取点1、棱柱棱柱由两个底面和棱面组成,棱面与棱面的交线称为棱线,棱线互相平行。
棱线与底面垂直的棱柱称为正棱柱。
本节仅讨论正棱柱的投影。
(1)棱柱的投影以正六棱柱为例。
如图(a)所示为一正六棱柱,由上、下两个底面(正六边形)和六个棱面(长方形)组成。
设将其放置成上、下底面与水平投影面平行,并有两个棱面平行于正投影面面。
上、下两底面均为水平面,它们的水平投影重合并反映实形,正面及侧面投影积聚为两条相互平行的直线。
六个棱面中的前、后两个为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。
其他四个棱面均为铅垂面,其水平投影均积聚为直线,正面投影和侧面投影均为类似形。
(a)立体图(b)投影图正六棱柱的投影及表面上的点总结正棱柱的投影特征:当棱柱的底面平行某一个投影面时,则棱柱在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的矩形线框所组成。
(2)棱柱表面上点的投影方法:利用点所在的面的积聚性法。
(因为正棱柱的各个面均为特殊位置面,均具有积聚性。
)平面立体表面上取点实际就是在平面上取点。
首先应确定点位于立体的哪个平面上,并分析该平面的投影特性,然后再根据点的投影规律求得。
举例:如图(b)所示,已知棱柱表面上点M的正面投影m′,求作它的其他两面投影m、m″。
因为m′可见,所以点M必在面ABCD上。
此棱面是铅垂面,其水平投影积聚成一条直为可见,故m″也为可见。
特别强调:点与积聚成直线的平面重影时,不加括号。
教案立体几何的投影教案:立体几何的投影【引言】在学习几何学时,我们已经了解了立体几何的基本概念和性质,如平行四边形、正方体等等。
然而,在现实生活中,我们常常遇到需要将立体物体投影到平面上的情况。
本教案将介绍立体几何的投影原理及应用,帮助学生理解和掌握这项重要的几何学技能。
【主体】一、投影的定义与基本概念(字数:200字左右)在几何学中,投影是指将三维空间中的物体通过平行于某个方向的光线投影到一个平面上形成的二维图形。
在投影过程中,原来的三维物体被称为投影体,而二维图形则称为投影。
二、立体几何的投影原理(字数:300字左右)1. 平行光线投影原理:当光线与投影平面平行时,投影呈现出真实大小和形状。
换句话说,投影与投影体相似。
2. 中心投影原理:当光线自无限远处沿着垂直方向射向投影体,且光线通过一个固定点时,形成的投影为中心投影。
中心投影的特点是投影体比例不变,但形状可能会发生变化。
3. 正交投影原理:当光线自无限远处沿着特定方向射向投影体,并且光线与投影平面相交于直角时,形成的投影为正交投影。
正交投影中,线段平行于投影平面的边长比例保持不变,但角度可能会变化。
三、投影方法与技巧(字数:400字左右)1. 垂直投影:将投影平面选择为垂直于视线的平面,可以得到较为简单的投影图形。
垂直投影一般适用于正交投影方法。
2. 平行投影:将投影平面选择为与视线平行的平面,可以得到具有真实大小和形状的投影图形。
平行投影方法适用于平行光线投影原理。
3. 斜投影:将投影平面与视线夹角不为90度时,可以获得更多有趣和复杂的投影图形。
斜投影方法需要进行透视变换。
四、几何体的投影实例与问题解决(字数:400字左右)1. 立方体投影:立方体是最基本的几何体之一,其投影形象或者是一个正方形,或者是一个菱形。
通过练习解决与立方体投影相关的问题,可以帮助学生理解投影原理。
2. 圆柱体投影:圆柱体的投影形象是一个椭圆。
通过比较圆柱体在不同视角下的投影图形,可以帮助学生进一步理解投影原理。