新型PVC抗冲改性剂
- 格式:pdf
- 大小:108.63 KB
- 文档页数:2
MBS树脂-PVC抗冲改性剂生产方法MBS树脂是在粒子设计概念下合成的一种新型高分子材料,由甲基丙烯酸甲酯(M)、丁二烯(B) 及苯乙烯(S)采用乳液接枝聚合法制备而成。
在亚微观形态上具有典型的核-壳结构,核心是1个直径为10~100 nm的橡胶相球状核,外部是苯乙烯和甲基丙烯酸甲酯组成的壳层。
由于甲基丙烯酸甲酯与聚氯乙烯(pvc)的溶解参数相近,在PVC树脂和橡胶粒子间起到界面粘接剂的作用,在与PVC加工混炼过程中形成均相,而橡胶相则以粒子状态分布于PVC连续介质中,呈现海岛结构,这种特殊结构赋予了制品优异的抗冲击性能。
当PVC中加入5%~ 10%的MBS树脂时,可使制品的冲击强度提高4~ 15倍,同时,还可改善制品的耐寒性和加工流动性,且能够保持PVC树脂原有的光学性能,因此,MBS 树脂作为PVC树脂的抗冲改性剂具有广泛的应用前景。
1 MBS树脂的生产方法MBS又称为透明ABS,由于两者的生产方法相似,早期许多生产厂家使用相同的工艺路线,甚至在同一条生产线上生产这两种产品。
随着技术的发展,工艺过程日趋完善,各生产厂家的生产工艺略有差异,但基本原理是一样的,即丁二烯和苯乙烯作为单体在水和乳化剂中进行乳化,在引发剂的引发作用下进行聚合,生产丁苯胶乳(SBR胶乳),再加入苯乙烯和甲基丙烯酸甲酯进行乳液接枝聚合,得到MBS 树脂接枝胶乳(MBS树脂胶乳),最后经过凝聚、脱水和干燥处理后得到MBS粉料。
在MBS树脂的整个生产工艺过程中,SBR胶乳的合成技术、MBS胶乳的合成技术以及MBS胶乳的凝聚技术是生产的三大关键技术。
1.1丁苯胶乳的制备[1-2]丁苯胶乳的合成,一般采用乳液聚合法。
为了满足抗冲击性和透明性的要求,必须控制SBR胶乳的粒径、粒径分布及交联度,同时,折光指数必须与PVC相匹配。
从理论上讲,橡胶相玻璃温度越低,增韧效果越好,常选择在-40℃以下。
大多数厂家在丁苯胶乳制备中,丁二烯质量分数选择大于70%,但也有厂家选用纯丁二烯胶乳。
PVC配方中抗冲改性剂的选择要点抗冲改性剂多用于硬质PVC制品加工,以弹性体增韧为基本原理的抗冲改性剂,主要类型包括氯化聚乙烯(CPE)、丙烯酸酯类聚合物(ACR)、甲基丙烯酸甲酯—丁二烯—苯乙烯共聚物(MBS)、丙烯腈—丁二烯—苯乙烯共聚物(ABS)、乙烯—醋酸乙烯共聚物(EV A)等。
CPE 廉价易得,是通用型抗冲改性剂品种。
ACR抗冲改性剂的抗冲改性和耐候性优异,井兼具一定的加工改性效果,因而在抗冲改性剂领域具有突出的地位,也是当今世界PVC抗冲改性剂发展的主要方向。
MBS系透明硬质PVC制品的抗冲改性剂重要类型,但由于分子内具有丁二烯不饱和键,耐候性差,一般用于户内制品。
目前国内CPE型号一般用如135A、140B、239C等来标识,其中第一位数字1和2表示残余结晶度(TAC值)的大小,1代表TAC值在0~10%,2代表TAC值大于10%;第2位和第3位数字表征氯含量,如35表示氯含量为35%;最后一位是字母A、B和C,用来表示原料PE分子量的大小,A为最大,B为中间,C为最小。
作为PVC改性剂使用的CPE,一般选用氯含量在30~40%左右,分子量最大的A型,TAC值小于5的CPE树脂。
其添加量一般在8~12份。
ACR是丙烯酸酯类具有核-壳结构共聚物的统称。
根据结构和聚合单体的不同,又分为加工助剂和抗冲改性剂两类。
抗冲改性剂ACR同样具有改善PVC加工的性能。
ACR在耐候性、制品光泽性等方面优于CPE,并具有比CPE更宽的加工温度范围和较高的抗冲效能,所以是意向替代CPE的PVC抗冲改性剂。
实验经验表明,一般ACR抗冲改性剂的用量范围在6~8份,也可用到10份左右。
MBS是PVC非常重要的弹性体抗冲改性剂。
由于与PVC有很好的相容性和接近的光折射率,MBS主要是被用来提高透明PVC制品的抗冲性能。
当然也可用于非透明PVC制品中。
由于丁二烯的存在,分子链中带入了双键,使得MBS改性的PVC耐候性能不好,不能用于户外制品。
为温度180℃,转速30rpm。
(3)挤出:将PVC共混料加入哈克双螺杆挤出机中挤出,工艺条件为:温度TS-E1184℃,TS-E2187℃,TS-E3190℃;TS-D1191℃。
螺杆转速30rpm。
4、试样制作与性能测试:(1)抗冲击性能:采用国标GB/T8814-1998测试。
(2)拉伸性能:采用国标GB/T8814-1998测试。
结果与讨论1、不同改性剂对PVC共混料的流变性能的影响:用抗冲改性剂CPE、ACR、MBS改性的PVC共混料的流变曲线如图1所示。
图1改性共混料流变曲线图1表明采用CPE塑化稍慢,但扭矩最低。
共混料流变曲线中,最大扭矩可作为加工设备所需要的传动功率大小的度量,而平衡扭矩则决定了加工设备生产时的功率消耗,它们都是极重要的流变特性参数。
平衡扭矩值平稳表明配方中助剂与树脂相容性好,塑化时间长短可决定设备的一些参数。
扭矩低,可使挤出功率降低。
2、各类抗冲改性剂对硬质PVC共混料挤出加工性能的影响:不同改性剂不同份数的挤出性能曲线如图2所示。
图2不同份数改性的挤出性能由图2可见,随着改性剂份数的增加,挤出扭矩都要增加。
这说明改性剂用量增加,会使物料的粘度增加,导致扭矩升高。
其中CPE挤出扭矩最低,MBS次之,ACR最高。
这说明用CPE作改性剂时,加工设备生产时的功率消耗低,有利于节能和降低成本。
3、各类抗冲改性剂对硬质PVC共混料力学性能的影响:各类抗冲改性剂改性硬质PVC共混料的力学性能对比如表2所示。
表2 三种改性剂挤出片材的力学性能比较改性剂测试项目6份8份10份CPE ACR MBS CPE ACR MBS CPE ACR MBS。
PVC抗冲击改性剂知识简介关键字:∙PVC∙抗冲击改性PVC抗冲击改性剂有时也会同时也起增塑作用,因此也可以看做增塑剂.而用于PVC树脂的抗冲击改性剂有如下几种:(1)氯化聚乙烯(CPE)是利用HDPE在水相中进行悬浮氯化的粉状产物,随着氯化程度的增加使原来结晶的HDPE逐渐成为非结晶的弹性体。
作为增韧剂使用的C?E,含C1量一般为25-45%。
CPE来源广,价格低,除具有增韧作用外,还具有耐寒性、耐候性、耐燃性及耐化学药品性。
目前在我国CPE是占主导地位的冲击改性剂,尤其在PVC管材和型材生产中,大多数工厂使用CPE。
加入量一般为5—15份。
CPE可以同其它增韧剂协同使用,如橡胶类、EVA等,效果更好,但橡胶类的助剂不耐老化。
(2)ACR为甲基丙烯酸甲酯、丙烯酸酯等单体的共聚物,ACR为近年来开发的最好的冲击改性剂,它可使材料的抗冲击强度增大几十倍。
ACR属于核壳结构的冲击改性剂,甲基丙烯酸甲酯—丙烯酸乙酯高聚物组成的外壳,以丙烯酸丁酯类交联形成的橡胶弹性体为核的链段分布于颗粒内层。
尤其适用于户外使用的PVC塑料制品的冲击改性,在PVC塑料门窗型材使用ACR作为冲击改性剂与其它改性剂相比具有加工性能好,表面光洁,耐老化好,焊角强度高的特点,但价格比CPE,高1/3左右。
国外常用的牌号如K-355,一般用量6—10份。
目前国内生产ACR冲击改性剂的厂家较少,使用厂家也较少。
(3)MBS是甲基丙烯酸甲酯、丁二烯及苯乙烯三种单体的共聚物。
MBS的溶度参数为94-9.5之间,与PVC的溶度参数接近,因此同PVC时相容性较好,它的最大特点是:加入PVC后可以制成透明的产品。
一般在PVC中加人10-17份,可将PVC的冲击强度提高6—15倍,但MBS的加入量大于30份时,PVC冲击强度反而下降。
MBS本身具有良好的冲击性能,透明性好,透光率可达90%以上,且在改善冲击性同时,对树脂的其他性能,如拉伸强度、断裂伸长率等影响很小。
CPE协效增强增韧剂——SPA-36——纳米自组装技术完美的结晶☞赋予PVC优秀的韧性☞大幅度提高PVC制品强度、模量、刚性☞更优异的耐候性☞显著改善PVC制品表面光泽☞更宽的加工性能☞赋予PVC更高的品质☞降低企业成本SPA-36系列增强型PVC抗冲改性剂一、技术背景聚氯乙烯(PVC)是含氯原子强极性高分子聚合物,以其成型方便、阻燃性、耐候性而获得广泛应用。
PVC分子链强极性导致分子间较强分子间力,其玻璃化温度比较高,低温冲击强度非常低,PVC复合材料发脆。
为了改善PVC的抗冲击性能,国内硬质PVC制品中通过添加CPE弹性体进行增韧。
CPE是以特种HDPE为原料,通过氯化而获得的弹性体。
CPE其玻璃化温度较高,PVC硬制品要达到使用要求,通常要加入较大份数(8~12份)才能获得较好的韧性。
由于CPE为弹性体,在PVC制品中大量加入CPE弹性体,PVC材料的强度、刚性、模量、维卡软化点大幅度降低,也就是说,CPE增韧PVC是以材料的强度、刚性、模量、维卡软化点大幅度损失为代价。
CPE含有约36%氯原子,普通的稳定剂不能抑制CPE的脱氯分解,所以PVC制品中加入CPE会导致PVC复合材料的热稳定性和光稳定性下降,耐候性变差。
同时,CPE与PVC相容差,加工熔体粘度大,一般须配合ACR加工助剂才能满足加工性能,加工温度窄、塑化效果差。
添加CPE弹性体的PVC 复合材料表面光泽度、硬度亦大幅度下降。
SPA-36是基于CPE增韧PVC固有缺陷而专门设计CPE协效剂,它是以微乳聚合法和纳米自组装技术而开发出有机/无机纳米杂化材料。
SPA-36协效增韧剂与CPE复合使用时,可提CPE在PVC复合材料中的分散性,改善CPE与PVC界面粘结性能和相容性,将CPE的互穿网络增韧与粒子点阵拓扑增韧特征集于一身,使PVC的强度、刚性、模量、维卡软化点下降幅度较小,PVC复合材料的强度与韧性达到更好的平衡,亦即,SPA-36协效剂可使PVC复合材料在获得很好冲击韧性的同时,又具有很高的强度。
PVC抗冲改性剂--MBS树脂的生产技术MBS树脂是由甲基丙烯酸甲酯(M)、丁二烯(B)及苯乙烯(S)采用乳液接枝聚合法制备的一种三元共聚物。
在亚微观形态上具有典型的核--壳结构,内核是一个直径为10-100 nm 的橡胶相球状物,外壳是由苯乙烯和甲基丙烯酸甲酯组成的。
由于甲基丙烯酸甲酯与聚氯乙烯(PVC)的溶解度参数相近,它在PVC树脂和橡胶粒子间起到界面粘接剂的作用,在与PVC 加工混炼过程中形成均相,而橡胶相则以粒子状态分布于PVC连续介质中,呈现海岛结构,这种特殊结构赋予了制品优异的抗冲击性能。
当PVC中加入5%-10%的MBS树脂时,可使制品的冲击强度提高4-15倍,同时还可改善制品的耐寒性和加工流动性,且能够保持PVC 树脂原有的光学性能,因此MBS树脂作为PVC树脂的抗冲击改性剂具有广泛的前景。
1 MBS树脂的生产工艺MBS树脂的生产过程是先以丁二烯和苯乙烯在水和乳化剂中进行乳化,在引发剂的引发作用下进行聚合,生产丁苯胶乳(SBR胶乳),再加入苯乙烯和甲基丙烯酸甲酯进行乳液接枝聚合,得到MBS树脂接枝胶乳(MBS树脂胶乳),最后经过凝聚、脱水和干燥处理后得到MBS树脂成品。
在MBS树脂的整个生产工艺过程中,有3大关键技术,其一是SBR胶乳的合成技术,因为SBR胶乳的粒径不但决定了MBS树脂,PVC合金的抗冲击性能,同时还决定了它的透光性能;其二是MBS树脂胶乳的合成技术,因为核--壳比、接枝率和接枝过程单体的加料顺序等对MBS树脂胶乳的凝聚和后处理、MBS树脂粉料的粒子形态及MBS树脂与PVC的相容性和光学性能等均有非常显著的影响;其三是MBS树脂胶乳的凝聚技术,凝聚水平的高低直接决定了最终产品的粒度分布、颗粒规整性、流动性和表观密度以及MBS树脂在PVC中的分散性和相容性等指标。
1.1 丁苯胶乳的合成将丁二烯、苯乙烯、引发剂和各种配制好的助剂按一定量和顺序加到聚合反应釜中,在一定的温度下搅拌进行乳液聚合,待反应达到一定转化率后停止反应,脱除未反应的单体即可得到丁苯胶乳。
丙烯酸酯类抗冲改性剂 JINHASS KM-355产品介绍JINHASS KM-355是一类丙烯酸酯类共聚物抗冲击改性剂,用于户外硬质PVC 制品,如窗框、护墙板、建筑批叠板、栅栏、管材和管件,及各种注塑制件。
JINHASS KM-355的显著特点在于其比其他品牌产品更易塑化,因而可以减少配方中加工助剂或者内润滑剂的使用量,经济效益显著。
JINHASS KM-355赋予制品以下优良性能:• 最佳抗冲强度 • 优异的耐候性能• 有效地促进塑化 (增加挤出量,降低加工助剂用量) • 较低的挤出后收缩性能基本物理特性:序号 检测项目 单位 检测值 1 外观 --- 白色粉末 2 挥发份重量百分比 %≤1.0% 3 粒径分布 (留在40目筛网上)% ≤2.0% 4 表观密度 g/cm 3≥0.40 KJ/m 2 ≥18.0(23℃) 5简支梁冲击强度KJ/m 2≥10.0(-10℃)促进塑化性能JINHASS KM-355 可以有效促进PVC 的塑化,使得PVC 塑化更均匀,从而提高制品的表面光泽度和质量。
图1表明在相同实验条件及相同添加份数,KM-355与国外竞争产品塑化曲线基本重合,可以相互替代;图2则显示KM-355比同类产品能更有效地促进PVC 塑化熔融,可减少配方中加工助剂的用量。
抗冲击效率JINHASS KM-355 与PVC 具有良好的相容性,且无论在室温还是-10℃均表现出优异的抗冲击性能,抗冲击效率均优于国外竞争对手产品和国内同类产品,如图3所示。
金合思塑料添加剂图1. 相同添加量下KM-355和国外竞争对手产品塑化曲线对比塑化实验配方:PVC (SG-5) 100phr/复合铅盐稳定剂 4.5phr/CaCO 3 10phr/TiO 2 4hr/抗冲改性剂 5.0phr 测试仪器: Brabender plasticorder, 测试温度:170℃, 转速:45rpm图2. KM-355和同类产品塑化时间对比 图3. 不同温度下KM-355和同类产品的抗冲击强度对比冲击强度测试配方:PVC (SG-5) 100phr/复合铅盐稳定剂 4.5phr/CaCO 3 10phr/TiO 2 4hr/抗冲改性剂 7.0phr 测试方法:GB/T1043.1-2008;测试条件:简支梁冲击试验仪(XJJ-5,承德金建仪器有限公司),样条厚度:4mm ,V 型缺口,尺寸:0.2R― Jinhass KM-355 ― 国外竞争对手产品扭矩(N m )料温(℃)。
抗冲改性剂Bemance®RGC-135A
性能特点
1.提升材料维卡软化点
2.优异的耐候性及加工稳定性。
3.提升PVC材料韧性(冲击强度)同时,提高拉伸强度,弯曲强度。
概述
PVC是一种脆性高分子材料,且缺口敏感,如果不对其进行增韧改性,基本无使用价值。
通常,国内采用CPE对硬质PVC进行改性,它可以明显提升材料的冲击强度或韧性,然而,材料的刚性及耐热性大幅度丧失,如拉伸强度,弯曲模量及维卡软化均不同程度降低,这严重限制了材料的应用。
Bemance®RGC-135A是一种新型抗冲改性剂,它为刚性苯环接枝聚乙烯后再氯化的材料,由于分子中引进了刚性官能团,Bemance®RGC-135A可提升材料刚性,且不降低冲击强度,有效解决了上述矛盾。
当Bemance®RGC-135A用于管材时,还可提升抗压性;用于型材时,还可提升焊角强度。
应用数据
Bemance®135A性能数据
国标CPE Bemance®RGC135A
拉伸强度/MPa ≥9.0 11.9
断裂伸长率/% >700 731
硬度/邵氏A ≤65 62.5
灰分/750℃≤6.0 5.5
Bemance®RCC135A应用数据
基础配方
配方1 配方2
基料PVC (SG-5)100 100 稳定剂 4 4 填充40 40 加工助剂 1 1 HST 0.6 0.6 PE蜡0.8 0.8
国标CPE 10 Bemance®RGC-135A 10
实验检测结果
试验配方配方1 配方2
拉伸强度/MPa 34.5 35.6
断裂伸长率/% 111 116
冲击强度/KJ/㎡(悬臂梁)18.60 18.23
弯曲模量
维卡软化点80.0 81.5 上述实验结果表明Bemance®RGC-135A在不降低材料冲击强度的同时,提升材料的拉伸强度及弯曲模量,且可提升材料的维卡软化点。
建议用量
根据所需冲击强度不同,添加量有不同差别,详细使用方法请咨询本公司。
产品安全性
通过SGS认证,符合欧盟环保要求。
包装和运输
牛皮纸复合袋包装;净重25±0.2kg
存放于阴凉、通风、干燥处。