山西省忻州市17学年高中数学第二章随机变量及其分布小结课堂练习(无答案)2_3
- 格式:doc
- 大小:27.52 KB
- 文档页数:2
章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P(X=k)=C k n p k(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为—A ·—B ;恰有一个发生为(—A ·B)∪(A·—B );至多有一个发生为(—A ·—B )∪(—A ·B)∪(A·—B ).4.对于条件概率,一定要区分P(AB)与P(B|A).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (aξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (aξ+b )≠aD (ξ)+b ,D (aξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24, 所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 已知100件产品中有4件次品,无放回地从中抽取2次每次抽取1件,求下列事件的概率:(1)第一次取到次品,第二次取到正品; (2)两次都取到正品.解:设A ={第一次取到次品},B ={第二次取到正品}.(1)因为100件产品中有4件次品,即有正品96件,所以第一次取到次品的概率为P (A )=4100,第二次取到正品的概率为P (B |A )=9699,所以第一次取到次品,第二次取到正品的概率为P (AB )=P (A )P (B |A )=4100×9699=32825. (2)因为A ={第一次取到次品},且P (A )=1-P (A )=96100, P (B |A )=9599,所以P (AB )=P (A )P (B |A )=96100×9599=152165. 专题2 独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率.(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值X 围.解析:(1)因为P 1=23,P 2=12,根据“先进和谐组”的定义可得,该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,所以该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13·⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝ ⎛⎭⎪⎫23·23()P 2·P 2=89P 2-49P 22, 又ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤1.[变式训练] 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率. (2)2人中恰有1人射中目标的概率. (3)2人中至少有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,与B , A 与B ,与为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人中恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A 发生),另一种是甲未射中、乙射中(事件B 发生).根据题意,知事件A 与B 互斥,所求的概率为P =P (A )+P (B )=P (A )P ()+P ()P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)“2人中至少有1人射中目标”包括“2人都射中”和“2人中有1人射中”2种情况,其概率为P =P (AB )+[P (A )+P (B )]=0.72+0.26=0.98.专题三 独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n ,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3道题解答. (1)求X 同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示X 同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ X 同学所取的3道题至少有1道乙类题”,则有A =“X 同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125. 归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C k n ·p k (1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为()A.80243B.100243C.80729D.100729解析:每次摸球中奖的概率为C 14C 15C 29=2036=59,由于是有放回地摸球,故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率P =C 13×59×⎝ ⎛⎭⎪⎫1-592=80243.答案:A专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容. [例4] (2016·某某卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:X 0 1 2 P415715415随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )=∑i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人). 归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112,②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:ξ 0 1 P9a 2-a3-8a求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:ξ 0 1 P2313。
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.1 离散型随机变量及其分布列一、学习任务1. 了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列.2. 通过实例理解两点分布、超几何分布,理解其公式的推导过程,并能简单的运用.二、知识清单离散型随机变量的概念离散型随机变量的分布列三、知识讲解1.离散型随机变量的概念在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这种对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量(random variable).随机变量常用字母 ,,,, 表示.如果随机变量 的所有可能的取值都能一一列举出来,则称为离散型随机变量.X Y ξη⋯X 投掷均匀硬币一次,随机变量为( )A.出现正面的次数 B.出现正面或反面的次数C.掷硬币的次数 D.出现正、反面次数之和解:A掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述一个随机试验,那么正面向上的次数就是随机变量 , 的取值是 ,,故选 A.而 B 中的事件是必然事件,C 中掷硬币次数是 ,不是随机变量,D 中对应的事件是必然事件,故选 A.ξξ011下列所述:①某座大桥一天经过的车辆数 ;②某无线电寻呼台一天内收到寻呼次数 ;③一天之内的温度 ;④一位射手对目标进行射击,击中目标得 分,未击中目标得 分,用 表示该射手在一次射击中的得分.其中 是离散型随机变量的是( )A.①②③ B.①②④ C.①③④ D.②③④解:B根据离散型随机变量的定义,判断一个随机变量是不是离散型随机变量,就是看这一变量的所有可能的取值是否可以一一列出.①②④中的 可能取的值,可以一一列举出来,而③中的 可以取某一区间内的一切值,不可以一一列出.X X X 10X X X X。
章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次,若第一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )A.12 B .23 C.34D .45解析:选B.法一:记事件A ={第一次取到合格的高尔夫球}, 事件B ={}第二次取到合格的高尔夫球.由题意可得P (AB )=3×24×3=12,P (A )=3×34×3=34,所以P (B |A )=P (AB )P (A )=1234=23.法二:记事件A ={}第一次取到合格的高尔夫球,事件B ={}第二次取到合格的高尔夫球,由题意可得事件B 发生所包含的基本事件数n (AB )=3×2=6,事件A 发生所包含的基本事件数n (A )=3×3=9.所以P (B |A )=n (AB )n (A ) =69 =23.2.设随机变量X 的分布列为P (X =i )=a (13)i(i =1,2,3),则a 的值为( )A .1B .913 C.1113D .2713解析:选D.因为P (X =1)=a 3,P (X =2)=a 9,P (X =3)=a 27.所以a 3+a 9+a 27=1,所以a =2713.3.甲、乙两颗卫星同时独立的监测台风.在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为( )A .0.95B .0.6C .0.05D .0.4解析:选A.法一:在同一时刻至少有一颗卫星预报准确可分为:①甲预报准确,乙预报不准确;②甲预报不准确,乙预报准确;③甲预报准确,乙预报准确.这三个事件彼此互斥,故至少有一颗卫星预报准确的概率为0.8×(1-0.75)+(1-0.8)×0.75+0.8×0.75=0.95.法二:“在同一时刻至少有一颗卫星预报准确”的对立事件是“在同一时刻两颗卫星预报都不准确”,故至少有一颗卫星预报准确的概率为1-(1-0.8)×(1-0.75)=0.95.4.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9解析:选A.因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X +1)=4×32=6.5.如果随机变量X 表示抛掷一个各面分别标有1,2,3,4,5,6的均匀的正方体向上面的数字,则随机变量X 的均值为( )A .2.5B .3C .3.5D .4解析:选C.P (X =k )=16(k =1,2,3,…,6),所以E (X )=1×16+2×16+…+6×16=16(1+2+…+6)=16×6×(1+6)2=3.5.6.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是(10,12),则该随机变量的方差等于( )A .10B .100 C.2πD .2π解析:选C.由正态分布密度曲线上的最高点⎝ ⎛⎭⎪⎫10,12知12π·σ=12,即σ=2π,所以D (X )=σ2=2π.7.已知随机变量ξ的分布列如下:若E (ξ)=2,则D (ξ)A .0 B .2 C .1D .12解析:选A.由题意得a =1-13=23,所以E (ξ)=13m +23n =2,即m +2n =6.又D (ξ)=13×(m -2)2+23(n -2)2=2(n -2)2,所以当n =2时,D (ξ)取最小值为0.8.设随机变量X ~N (μ,σ2)且P (X <1)=12,P (X >2)=p ,则P (0<X <1)的值为( )A .12pB .1-pC .1-2pD .12-p 解析:选D.由正态曲线的对称性知P (X <1)=12,故μ=1,即正态曲线关于直线x =1对称,于是P (X <0)=P (X >2),所以P (0<X <1)=P (X <1)-P (X <0)=P (X <1)-P (X >2)=12-p .9.排球比赛的规则是5局3胜制(无平局),在某排球比赛中,甲队在每局比赛中获胜的概率都相等,为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A .49B .827C .1927D .4081解析:选C.最后乙队获胜的概率含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P =13+23×13+⎝ ⎛⎭⎪⎫23×13=1927,故选C. 10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如表所示的分布列若进这种鲜花500A .706元 B .690元 C .754元D .720元解析:选A.因为E (X )=200×0.2+300×0.35+400×0.3+500×0.15=340, 所以利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706元,故选A. 11.某个游戏中,一个珠子按如图所示的通道,由上至下滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )A .516B .532C .16D .以上都不对解析:选A.由于珠子在每个叉口处有“向左”和“向右”两种走法,因而基本事件个数为25.而从出口3出来的每条线路中有2个“向右”和3个“向左”,即共C 25条路线,故所求的概率为C 2525=516.12.某商家进行促销活动,促销方案是顾客每消费1 000元,便可以获得奖券1X ,每X 奖券中奖的概率为15,若中奖,则商家返还中奖的顾客现金1 000元.小王购买一套价格为2 400元的西服,只能得到2X 奖券,于是小王补偿50元给一同事购买一件价格为600元的便服,这样小王就得到了3X 奖券.设小王这次消费的实际支出为ξ元,则E (ξ)=( )A .1 850B .1 720C .1 560D .1 480解析:选A.根据题意知,ξ的可能取值为2 450,1 450,450,-550,且P (ξ=2 450)=⎝ ⎛⎭⎪⎫45=64125,P (ξ=1 450)=C 13⎝ ⎛⎭⎪⎫15⎝ ⎛⎭⎪⎫45=48125,P (ξ=450)=C 23⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫45=12125,P (ξ=-550)=C 33⎝ ⎛⎭⎪⎫15=1125,所以E (ξ)=2 450×64125+1 450×48125+450×12125+(-550)×1125=1 850.二、填空题:本题共4小题,每小题5分.13.邮局工作人员整理,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质,可知P (X <10)+P (10≤X ≤30)+P (X >30)=1,故P (X >30)=1-0.3-0.4=0.3.答案:0.314.一批产品的二等品概率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数, 则D (X )=________.解析:X ~B (100,0.02),所以D (X )=np (1-p )=100×0.02×0.98=1.96. 答案:1.9615.一个均匀小正方体的6个面中,三个面上标注数字0,两个面上标注数字1,一个面上标注数字2.将这个小正方体抛掷2次,则向上的数字之积的数学期望是________.解析:设ξ表示两次向上的数字之积, 则P (ξ=1)=13×13=19,P (ξ=2)=C 12×13×16=19,P (ξ=4)=16×16=136,P (ξ=0)=34,所以E (ξ)=1×19+2×19+4×136=49.答案:4916.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫12=625. 答案:625三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某一射手射击所得环数X 的分布列如下:(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.18.(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解:记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A —2A 3)+P (A —1A 2A 3)=P (A 1)P (A —2)P (A 3)+P (A —1)P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)·P (A 2)·P (A 3)=0.228+0.8×0.7×0.6=0.564.19.(本小题满分12分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii)设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(i)随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k4·C 3-k3C 37(k =0,1,2,3). 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×435=127.(ii)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥.由(i)知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.20.(本小题满分12分)进货商当天以每份1元的进价从报社购进某种报纸,以每份2元的价格售出.若当天卖不完,剩余报纸以每份0.5元的价格被报社回收.根据市场统计,得到这个月的日销售量X (单位:份)的频率分布直方图(如图所示),将频率视为概率.(1)求频率分布直方图中a 的值;(2)若进货量为n (单位:份),当n ≥X 时,求利润Y 的表达式; (3)若当天进货量n =400,求利润Y 的分布列和数学期望E (Y ).解:(1)由题图可得,100a +0.002×100+0.003×100+0.003 5×100=1,解得a =0.001 5.(2)因为n ≥X ,所以Y =(2-1)X -0.5(n -X )=1.5X -0.5n .(3)销售量X 的所有可能取值为200,300,400,500,由第二问知对应的Y 分别为100,250,400.由频率分布直方图可得P (Y =100)=P (X =200)=0.20, P (Y =250)=P (X =300)=0.35, P (Y =400)=P (X ≥400)=0.45.利润Y 的分布列为Y 100 250 400 P0.200.350.45所以E (Y )21.(本小题满分12分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X 、Y 分别表示这4个人去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解:(1)依题意,这4人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i .这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能的取值为0,2,4.由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781,所以ξ的分布列是22.(本小题满分12分)该店铺中的A ,B ,C 三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A ,B ,C 商品的概率分别为23,p 1,p 2(p 1<p 2),至少购买一种的概率为2324,最多购买两种的概率为34.假设该网民是否购买这三种商品相互独立.(1)求该网民分别购买B ,C 两种商品的概率;(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,求X 的分布列和数学期望. 解:(1)由题意可知至少购买一种的概率为2324,所以一种都不买的概率为1-2324=124,即⎝ ⎛⎭⎪⎫1-23(1-p 1)(1-p 2)=124.① 又因为最多购买两种商品的概率为34,所以三种都买的概率为1-34=14,即23p 1p 2=14.② 联立①②,解得⎩⎪⎨⎪⎧p 1=12,p 2=34或⎩⎪⎨⎪⎧p 1=34,p 2=12.因为p 1<p 2,所以某网民购买B ,C 两种商品的概率分别为p 1=12,p 2=34.(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,由题意可得X 的所有可能取值为0,5,10,15.则P (X =0)=124,P (X =5)=23×12×14+13×12×14+13×12×34=14,P (X =10)=23×12×14+23×12×34+13×12×34=1124, P (X =15)=23×12×34=14.所以X 的分布列为则E (X )=0×124+5×14+10×24+15×4=12.。
§2.1.1 离散型随机变量及其分布列一(总第18课时)【典型范例】(以下内容不要求学生预习时完成)例1.写出下列各随机变量可能取值:(1)抛掷一枚骰子得到的点数.(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数(3)抛掷两枚骰子得到的点数构成的数对之和(4)某项试验的成功率为0.001,在n次试验中成功的次数.(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值.例2.随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的分布列.例3:课本P49页练习3【课堂检测】1.将1枚均匀硬币连续投掷3次,用X表示“正面向上的次数”,则随机变量X满足0≤X≤2所对应的随机事件是()A.只有两次正面向上B.至多两次正面向上C.至少两次正面向上D.无两次正面向上2.先后抛掷1个骰子2次,以下的随机变量可能取哪些值?(1)两次投掷出的最大点数(2)两次掷出的点数之和(3)第一次与第二次掷出的点数之差【典型范例】(以下内容不要求学生预习时完成)例1.P47例2例2.P48例3例3.盒子中装有4个白球和2个黑球,现从盒子中任取2个球,若X表示从盒子中取出的4个球中所包含的黑球的个数,求X的分布列【课堂检测】1.课本P50页B组12.课本P50页B组2【典型范例】(以下内容不要求学生预习时完成)例1.设随机变量X 的分布列P(X=k 5)=ak(1,2,3,4,5k =). (1)求常数a 的值;(2)求P(X ≥35);(3)求P(110<X<710).例2.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,用ξ表示分数,求ξ的概率分布.例3.在一次购物抽奖活动中,假设某10张奖券中有一等奖1张,可获取价值50元的奖品;有二等奖券3张,每张可获取价值10元的奖品;其余6张设有奖。
2.2二项分布及其应用一、选择题1. 已知随机变量X ,则)2(=X P =( )A 答案:D解析: 分析:本题主要考查了二项分布与n 次独立重复试验的模型,解决问题的关键是根据二项分布性质进行计算即可.2. 导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 A. P(ξ=k)=0.01k·0.9910-kB. P(ξ=k)=10kC ·0.99k·0.0110-kC. E ξ=0.1D. D ξ=0.1 答案:C解析:解答:由于每次发射导弹是相互独立的,且重复了10次,所以可以认为是10次独立重复试验,故服从二项分布k kk C k P 01.099.0)(1010-==ξ,1.001.010)(=⨯==np E ξ, 099.0)1()(=-=p np D ξ,故C.分析:本题主要考查了二项分布与n 次独立重复试验的模型,解决问题的关键是根据二项分布与n 次独立重复试验的模有关的知识点进行计算即可.3. 在四次独立重复试验中,事件A 在每次试验中出现的概率相同,若事件A 至少发生一次A 恰好发生一次的概率为( )答案:C解析:解答:设事件A 在每次试验中发生的概率为p ,则事件A 在4次独立重复试验中,恰好发生k 次的概率为 p k =4kC p k(1-p)4-k(k =0,1,2,3,4),∴p 0=04C p 0(1-p)4=(1-p)4,由条件知1-p 0∴(1-p)41-p p∴p 1=14C p·(1-p)33 C. 分析:本题主要考查了二项分布与n 次独立重复试验的模型,解决问题的关键是根据二项分布与n 次独立重复试验的模型进行逐一计算即可.4. 一批产品40%是废品,而非废品中75%是一等品,从中任取一件是一等品的概率为( )A.0.96B.0.75C.0.04D.0.45 答案:D解析: 解答:设任取一件不是废品为事件A ,任取一件是一等品为事件B.则P(A)=1-04=06, P(B|A)=075.,所以45.06.075.0)()|()(=⨯=⋅=A P A B P B P 分析:本题主要考查了条件概率与独立事件,解决问题的关键是根据条件概率有关性质进行计算即可.5. ,则=≥)2(X P ( ) A.16143 B.473729 C.471729 D.1243答案:B解析:解答:故选B 分析:本题主要考查了二项分布与n 次独立重复试验的模型,解决问题的关键是二项分布与n 次独立重复试验的模型计算公式进行分析解决.6. 设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n 、p 的值为 A.n=4,p=0.6 B.n=6,p=0.4 C.n=8,p=0.3D.n=24,p=0.1答案:B解析:解答:n=6,p=0.4若X :B (n,p ),则E (X )=np.即np=2.4若X :B (n,p ),则D (X )=np(1-p).即np(1-p)=1.44 则解出p=0.4,n=6,故选B 。
高中新课标选修(2-3)第二章随机变量及其分布测试题一、选择题1.将一枚均匀骰子掷两次,下列选项可作为此次试验的随机变量的是()A.第一次出现的点数B.第二次出现的点数C.两次出现点数之和D.两次出现相同点的种数答案:C2.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:BX表示击中目标的次数,则(2)P X≥等于()A.81125B.54125C.36125D.27125答案:A4.采用简单随机抽样从个体为6的总体中抽取一个容量为3的样本,则对于总体中指定的个体a,前两次没被抽到,第三次恰好被抽到的概率为()A.12B.13C.15D.16答案:D5.设~(100.8)X B,,则(21)D X+等于()答案:C6.在一次反恐)答案:D7.设1~24X N⎛⎫-⎪⎝⎭,,则X落在(][)3.50.5---+,,∞∞内的概率是()A.95.4%B.99.7%C.4.6%D.0.3%答案:D8.设随机变量X0 1 2 30.1 0.10.2-0.4-答案:C9.任意确定四个日期,设X表示取到四个日期中星期天的个数,则DX等于()A.67B.2449C.3649D.4849答案:B10.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX 的值为( )A.4 D.5 答案:B11.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.试问:甲、乙获胜的机会是( )A.甲多 B.乙多 C.一样多 D.不确定 答案:C,节日期间这种鲜花的需求量X 服从如下表所示的分布:200 300 400 5000.200.350.30 0.15若进这种鲜花500束,则利润的均值为( )A.706元 B.690元 C.754元 D.720元答案:A 二、填空题13.事件A B C ,,相互独立,若111()()()688P A B P B C P A B C ===,,····,则()P B = .答案:1214.设随机变量X 等可能地取1,2,3,…,n ,若(4)0.3P X <=,则EX 等于 . 15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .答案:215⎡⎤⎢⎥⎣⎦, 16.某公司有5万元资金用于投资开发项目.如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果. 则该公司一年后估计可获收益的均值是 元. 答案:4760 三、解答题17.掷3枚均匀硬币一次,求正面个数与反面个数之差X 的分布列,并求其均值和方差.解:3X =-,1-,1,3,且1111(3)2228P X =-=⨯⨯=;213113(1)228P X C ⎛⎫=-=⨯⨯= ⎪⎝⎭,213113(1)228P X C ⎛⎫==⨯⨯= ⎪⎝⎭;1111(3)222P X ==⨯⨯=,1303EX DX ==,∴18.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为13和14,求(1)恰有1人译出密码的概率;(2)若达到译出密码的概率为99100,至少需要多少乙这样的人. 解:设“甲译出密码”为事件A ;“乙译出密码”为事件B , 则11()()34P A P B ==,.(1)13215()()343412P P A B P A B =+=⨯+⨯=··.(2)n 个乙这样的人都译不出密码的概率为114n⎛⎫- ⎪⎝⎭.199114100n⎛⎫-- ⎪⎝⎭∴≥.解得17n ≥.达到译出密码的概率为99100,至少需要17人. 19.生产工艺工程中产品的尺寸偏差2(mm)~(02)X N ,,如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm 的为合格品,求生产5件产品的合格率不小于80%的概率. 解:由题意2~(02)X N ,,求得(4)(44)0.9544P X P X =-=≤≤≤. 设Y 表示5件产品中合格品个数,则~(50.9544)Y B ,.0.18920.79190.981≈+≈.20.甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示(01)p <<:选手甲乙丙概率若三人各射击一次,恰有k 名选手击中目标的概率记为()0123k P P X k k ===,,,,. (1) 求X 的分布列;(2)若击中目标人数的均值是2,求P 的值.解:(1)201(1)2P p =-;2211111(1)2(1)2222P P p p p =-+-=-+·, 2221112(1)222P p p p p p =-+=-+··,2312P p =, X ∴的分布列为 0123(2)22221111110(1)1232222222EX p p p p p p ⎛⎫⎛⎫=⨯-+⨯-++⨯-++⨯=+ ⎪ ⎪⎝⎭⎝⎭,1222p +=∴,34p =∴.21.张华同学上学途中必须经过A B C D ,,,四个交通岗,其中在A B ,岗遇到红灯的概率均为12,在C D ,岗遇到红灯的概率均为13.假设他在4个交通岗遇到红灯的事件是相互独立的,X 表示他遇到红灯的次数.(1)若3x ≥,就会迟到,求张华不迟到的概率;(2)求EX . 解:(1)2221122111121(3)232336P X C C ⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭·····; 22111(4)2336P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭·.故张华不迟到的概率为29(2)1(3)(4)36P X P X P X =-=-==≤. (2)X 的分布列为123411131150123493366363EX =⨯+⨯+⨯+⨯+⨯=∴.22.某种项目的射击比赛,开始时在距目标100m 处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m 处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m 处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m 处击中目标的概率为12,他的命中率与目标的距离的平方成反比,且各次射击都是独立的. (1)求这位射手在三次射击中命中目标的概率; (2)求这位射手在这次射击比赛中得分的均值. 解:记第一、二、三次射击命中目标分别为事件A B C ,,,三次都未击中目标为事件D ,依题意1()2P A =,设在x m 处击中目标的概率为()P x ,则2()k P x x =,且212100k=, 5000k =∴,即25000()P x x =, 250002()1509P B ==∴,250001()2008P C ==,17749()298144P D =⨯⨯=. (1) 由于各次射击都是相互独立的,∴该射手在三次射击中击中目标的概率()()()P P A P AB P A B C =++ (11212195)111229298144⎛⎫⎛⎫⎛⎫=+-+--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···. (2)依题意,设射手甲得分为X ,则1(3)2P X ==, 121(2)299P X ==⨯=,1717(1)298144P X ==⨯⨯=,49(0)144P X ==, 117492558532102914414414448EX =⨯+⨯+⨯+⨯==∴.。
第二章 离散型随机变量及其分布列
【典型范例】
例1.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时则终止,每个球在每一次被取出的机会是等可能的,用 ξ表示取球终止所需要的取球次数.
(1)求袋中所有的白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
例2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中的2篇才能及格,某同学只能背出其中的6篇,试求
(1)抽到他能背诵的课文的数量Z 的分布列;
(2)他能及格的概率.
例3.在某次考试的试卷中共有8道选择题(4个选项中有且有一个正确),评分标准规定:每题只选1项,答对得5分,不答或答错得零分,某考生每题都给出了答案,已确定有4道题的答案是正确的,在其余的题中,有两道题每题都可判断其有两个选项是错误的,有一道题可以判断有1个选项是错误的,还有1道题只能乱猜.对这8道选择题
(1)该考生得分为40分的概率;
(2)该考生所得分数 的分布列及均值.。
2018-2019学年选修2-3第二章训练卷随机变量及其分布(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设在一次试验中事件A 出现的概率为p,在n 次独立重复试验中事件A 出现k 次的概率为p k ,则( )A.p 1+p 2+…+n p =1B.p 0+p 1+p 2+…+n p =1C.p 0+p 1+p 2+…+n p =0D.p 1+p 2+…+1n p -=12.设随机变量ξ等可能取值1,2,3,…,n.如果P(ξ<4)=0.3,那么( ) A.n =3 B.n =4 C.n =10D.n 不能确定3.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( ) A.0.16B.0.24C.0.96D.0.044.设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=( ) A.12p + B.1p - C.12p -D.12p - 5.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,则k 的值为( ) A.0B.1C.2D.36.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +7.某校14岁女生的平均身高为154.4 cm,标准差是5.1 cm,如果身高服从正态分布,那么在该校200个14岁女生中身高在164.6 cm 以上的约有( ) A.5人B.6人C.7人D.8人8.已知随机变量ξ的分布列为则ξ的数学期望是( ) A.2 B.2.1C.2.3D.随m 的变化而变化9.张家的3个鸡仔钻进了李家装有3个鸡仔的鸡笼里,现打开笼门,让鸡仔一个一个地走出来,若第一个走出的是张家的鸡仔,那么第二个走出的也是张家的鸡仔的概率是( ) A.25B.23C.15D.3510.某市教学质量检测,甲、乙、丙三科考试成绩的直方图如下图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的是( )A.甲科总体的标准差最小B.乙科总体的标准差及平均数都居中C.丙科总体的平均数最小D.甲、乙、丙三科的总体的平均数不相同11.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b,不得分的概率为(),,0,1c a b c ∈⎡⎤⎣⎦,已知他投篮一次得分的数学期望为1(不计其他得分情况),则ab 的最大值为( )此卷只装订不密封班级 姓名 准考证号考场号 座位号A.148B.124C.112D.1612.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为()A.516B.532C.16D.以上都不对二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为________.14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.15.在等差数列{}n a 中,42a =,74a =-.现从{}n a 的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________(用数字作答).16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①P(B)=25;②P(B|A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P(B)的值不能确定,∵它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)从混有5张假钞的20张百元钞票中任意抽取2张,将其中1张放在验钞机上检验发现是假钞,求2张都是假钞的概率.18.(12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为X,求X 的概率分布列及数学期望EX ; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率.19.(12分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.21.(12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的概率分布列;(3)计分介于20分到40分之间的概率.22.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一些质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX.附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.2018-2019学年选修2-3第二章训练卷随机变量及其分布(二)答 案一、选择题. 1.【答案】B【解析】由题意可知ξ~B(n,p),由分布列的性质可知∑k =0np k =1.故选B.2.【答案】C【解析】∵ξ是等可能地取值,∴P(ξ=k)=1n (k =1,2,…,n),∴P(ξ<4)=3n =0.3,∴n =10.故选C.3.【答案】C【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04, 故三人中至少有一人达标的概率为1-0.04=0.96.故选C. 4.【答案】D【解析】()()()()1111121011112222P P p P P ξξξξ<<<<>>-=-=-=-=-⎡⎤⎣⎦. 故选D. 5.【答案】C【解析】由51511551111C C2222kkk k k k -+--+⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即155C C k k +=.∴()15k k ++=.∴2k =.故选C.6.【答案】A【解析】给每个数据都加上常数a 后,均值也增加a ,方差不变,故选A. 7.【答案】A【解析】设某校14岁女生的身高为X(cm),则()2154.4,5.1X N ~. 由于P(154.4-2×5.1<X≤154.4+2×5.1)=0.9544, ∴P(X>164.6)=12×(1-0.9544)=0.0228.∵200×0.0228=4.56,∴身高在164.6 cm 以上的约有5人.故选A. 8.【答案】B【解析】∵0.2+0.5+m =1,∴m =0.3,∴Eξ=1×0.2+2×0.5+3×0.3=2.1.故选B. 9.【答案】A【解析】∵()2326A A P AB =,()1316A A P A =,∴()()()2|=5P A P B P A B A =,故选A.10.【答案】A【解析】从甲、乙、丙三科曲线可知,它们总体的平均数相同,且甲科曲线“瘦高”, ∴甲科标准差最小,只有A 正确.故选A. 11.【答案】B【解析】由已知得3201a b c ++⨯=,即321a b +=, ∴221132111326626224a b ab a b +⎛⎫⎛⎫=⋅⋅≤=⨯= ⎪ ⎪⎝⎭⎝⎭, 当且仅当1322a b ==,即16a =,14b =时取“等号”,故选B. 12.【答案】A【解析】由于珠子在每个叉口处有“向左”和“向右”两种走法, 因而基本事件个数为25.而从出口3出来的每条线路中有2个“向右”和3个“向左”,即共25C 条路线,故所求的概率为255C 5216=.故选A.二、填空题. 13.【答案】0.8【解析】()()()1P P P =-敌机被击中甲未击中敌机乙未击中敌机()()110.610.510.20.8--⨯--===.14.【答案】16【解析】十个数中任取七个不同的数共有710C 种情况,七个数的中位数为6,那么6只有处在中间位置,有36C 种情况,于是所求概率36710C 1C 6P ==.15.【答案】625【解析】由42a =,74a =-可得等差数列{}n a 的通项公式为()1021,2,,10n a n n -==.由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为2123216C 5225⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 16.【答案】②④【解析】由题意知P(B)的值是由A 1,A 2,A 3中某一个事件发生所决定的,故①③错误;∵()()()1111552111112P B A P B A P A ⨯===,故②正确;由互斥事件的定义知④正确,()11115554111110111011C C C C 9C C C C 22P B =⨯+⨯=.三、解答题. 17.【答案】217. 【解析】若A 表示“抽到的2张都为假钞”,B 表示“抽到的2张中至少有1张为假钞”,则所求概率为P(A|B).又()()25220C C P AB P A ==;()2115515220C C C C P B +=,∴()()()252115515C 102C C C 8517P AB P A B P B ====+. 18.【答案】(1)1.5;(2)1927;(3)124.【解析】(1)X 的概率分布列为EX =0×18+1×38+2×38+3×18=1.5或EX =3×12=1.5.(2)乙至多击中目标2次的概率为3332191C 327⎛⎫-= ⎪⎝⎭.(3)设甲恰好比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2. B 1、B 2为互斥事件,P(A)=P(B 1)+P(B 2)=38×127+18×29=124.19.【答案】(1)213;(2)分布列见解析,1213;(3)3月5日.【解析】设A i 表示事件“此人于3月i 日到达该市” ()i 1,2,,13=.根据题意,P(A i )=113,且()i ij A A j =∅≠.(1)设B 为事件“此人到达当日空气重度污染”,则58B A A =.∴()()()()5858213P B P A A P A P A ==+=. (2)由题意可知,X 的所有可能取值为0,1,2, 且()()()()()()36711367114113P X P A A A A P A P A P A P A ==+++==, ()()()()()1212131212134)213(P X P A A A A P A P A P A P A ==+++==, ()()()5011213P X P X P X ==-==-=. ∴X 的分布列为故X 的期望EX =0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大. 20.【答案】(1)见解析;(2)0.896.【解析】(1)设A 表示事件“作物产量为300 kg”,B 表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.()()()()()10.510.40.40003P A P B P X ==-⨯-==,()()()()()()()10.50.420000.510.40.5P A P B P A P B P X =+=-⨯+⨯-==,()()()0.50.408.200P A P B P X ==⨯==, ∴X 的分布列为(2)设C i 表示事件“第i 由题意知C 1,C 2,C 3相互独立,由(1)知,P(C i )=P(X =4000)+P(X =2000)=0.3+0.5=0.8(i =1,2,3),3季的利润均不少于2000元的概率为P(C 1C 2C 3)=P(C 1)P(C 2)P(C 3)=0.83=0.512; 3季中有2季的利润不少于2000元的概率为()()()212312312330.80.20.384P C C C P C C C P C C C ++=⨯⨯=,∴这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896. 21.【答案】(1)23;(2)见解析;(3)1330.【解析】(1)“取出的3个小球上的数字互不相同”的事件记为A,则()31115222310C C C C 2C 3P A ==. (2)由题意,X 的可能取值为2,3,4,5.()21122222310C C +C C 12C 30P X ===;()21124242310C C +C C 23C 15P X ===; ()21126262310C C +C C 34C 10P X ===;()21128282310C C +C C 85C 15P X ===. ∴随机变量X 的概率分布列为(3)“则P(C)=P(X =3)+P(X =4)=215+310=1330. 22.【答案】(1)200x =, 2150s =;(2)①0.6826;②68.26.【解析】(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为1700.021800.091900.222000.332100.242200.082300.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯ 200=,()()()2222222300.02200.091002200.33100.24200.08300.02s =-⨯+⨯+⨯+⨯+⨯++⨯-⨯-. 150=.(2)①由(1)知,Z ~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B(100,0.6826),∴EX =100×0.6826=68.26.。
第二章 学业质量标准检测时间120分钟,满分150分.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( C )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式E (X )=np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5X ,其中梅花的X 数服从超几何分布[解析] 公式E (X )=np 并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C .2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 15+C 14C 16C 112C 111的是( C )A .P (X =0)B .P (X ≤2)C .P (X =1)D .P (X =2)[解析] 由已知易知P (X =1)=C 18C 15+C 14C 16C 112C 111.3.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( A )A .35 B .815 C .1415D .1[解析] 由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×15=15=5.4.(2018·全国卷Ⅱ理,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( C )A .112B .114C .115 D .118[解析] 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C .5.甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( C )A .0.16B .0.24C .0.96D .0.04[解析] 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( C )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[解析]X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310, P (X =3)=12, P (X =4)=16,∴选C .7.(2020·全国卷Ⅲ)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( C )A .0.01B .0.1C .1D .10[解析] 因为数据ax i +b i (i =1,2,…,n )的方差是数据x i (i =1,2,…,n )的方差的a 2倍,所以所求数据方差为102×0.01=1.故选C .8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( B )A .0.7B .0.6C .0.4D .0.3[解析] 由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B (10,p ),所以DX =10p (1-p )=2.4,所以p =0.4或0.6.又因为P (X =4)<P (X =6),所以C 410p 4·(1-p )6<C 610p 6(1-p )4,所以p >0.5,所以p =0.6.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.指出下列随机变量是离散型随机变量的是( AB ) A .小明回答20道选择题,答对的题数 B .某超市5月份每天的销售额C .某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差XD .某某某某市长江水位监测站所测水位在(0,29]这一X 围内变化,该水位站所测水位X [解析] A 项,小明回答的题数X 的取值可以一一列出,故X 为离散型随机变量;B 项,某超市5月份每天销售额可以一一列出,故为离散型随机变量;C 项,实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量,D 项,不是离散型随机变量,水位在(0,29]这一X 围内变化,不能按次序一一列举.故选AB .10.把一条正态曲线C 1沿着横轴方向向右移动2个单位,得到一条新的曲线C 2,下列说法中正确的是( ABC )A .曲线C 2仍然是正态曲线B .曲线C 1和曲线C 2的最高点的纵坐标相等C .以曲线C 2为概率密度曲线的总体的期望比以曲线C 1为概率密度曲线的总体的期望大2D .以曲线C 2为概率密度曲线的总体的方差比以曲线C 1为概率密度曲线的总体的方差大2 [解析] 正态曲线沿着横轴方向水平移动只改变对称轴位置,曲线的形状没有改变,所得的曲线依然是正态曲线.在正态曲线沿着横轴方向水平移动的过程中,σ始终保持不变,所以曲线的最高点的纵坐标(即正态密⎭⎪⎫度函数的最大值12πσ不变,方差σ2也没有变化.设曲线C 1的对称轴为x =μ,那么曲线C 2的对称轴为x =μ+2,说明期望从μ变到了μ+2,增大了2.11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ACD )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12[解析] 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2, 则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,2个球都是红球为A 1A 2,其概率为16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在D中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .12.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( AD )A .P (B )=2330B .事件B 与事件A 1相互独立C .事件B 与A 2事件相互独立D .A 1,A 2互斥[解析] 由题意知P (A 1)=35,P (A 2)=25,P (B )=P (B |A 1)+P (B |A 2)=35×56+25×46==2330,A 正确;又P (A 1B )=12,因此P (A 1B )≠P (A 1)P (B ),B 错误;同理,C 错误;A 1,A 2不可能同时发生,故彼此互斥,故D 正确,故选AD .三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知随机变量ξ的分布列如下表,则a =__0.2__,E (ξ)=__1.8__.[解析] ;E (ξ)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=__23__.[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是__②④__(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.16.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__625__.(用数字作答)[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23. P (B )=1-P (B )=13.(1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127. 18.(本题满分12分)(2019·全国Ⅱ卷理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.[解析] (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.19.(本题满分12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解析]E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). [解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4, 则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2. 21.(本题满分12分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是23,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为X ,Y . (1)写出X 的概率分布列(不要求计算过程),并求出E (X ),E (Y );(2)求D (X ),D (Y ).请你根据得到的数据,建议该单位派哪个选手参加竞赛. [解析] (1)X 的分布列为所以E (X )=1×15+2×35+3×5=2.由题意得,Y ~B (3,23),E (Y )=3×23=2.(2)由(1)得E (X )=E (Y ).D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.∵Y ~B (3,23),∴D (Y )=3×23×13=23.∴D (X )<D (Y ).因此,建议该单位派甲参加竞赛.22.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×15+2×15=5.。
高中数学选修2-3第二章 随机变量及其分布 章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表格可以作为ξ的分布列的是( )【解析】根据分布列的性质各概率之和等于1,易知D 正确. 【答案】D2.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为( )A.49B.29C.427D.227【解析】213124339P C ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭.【答案】A3.某射手射击所得的环数X 的分布列如下:如果命中8~10环为优秀,则该射手射击一次为优秀的概率是( ) A .0.3 B .0.4 C .0.5D .0.6【解析】从分布列中不难看出该射手命中环数不小于8环的概率是0.3+0.25+0.05=0.6.【答案】D4.某镇互不认识的甲、乙两个体老板准备在同一天在同一车站乘车进城进货,甲乘座第一班车的概率为0.7,乙乘座第一班车的概率为0.8,则其中至少有一人乘座第一班车的概率为( )A .0.06B .0.15C .0.56D .0.94【解析】P =1-0.3×0.2=0.94. 【答案】D5.已知随机变量ξ的分布列为:又变量η=4ξ+3,则η的期望是( ) A.72 B.52 C .-1D .1【解析】E (ξ)=-1×12+0×18+1×38=-18E (η)=4E (ξ)+3=4×18⎛⎫- ⎪⎝⎭+3=52.【答案】B6.设X 是随机变量,且D (10X )=90,则D (X )等于( ) A .0.9 B .9 C .90D .900 【解析】D (10X )=100D (X ),∴90=100D (X ),则D (X )=0.9. 【答案】A7.若随机变量ξ的分布列为,其中m ∈(0,1),则下列结果中正确的是( ) A .E (ξ)=m ,D (ξ)=n 3 B .E (ξ)=n ,D (ξ)=n 2 C .E (ξ)=1-m ,D (ξ)=m -m 2 D .E (ξ)=1-m ,D (ξ)=m 2 【解析】∵m +n =1,∴E (ξ)=n =1-m ,D (ξ)=m (0-n )2+n (1-n )2=m -m 2. 【答案】C8.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]【解析】∵X ~N (110,52), ∴μ=110,σ=5,∴5760=0.95≈P (μ-2σ<X <μ+2σ)=P (100<X ≤120). 【答案】C9.已知离散型随机变量X 等可能取值1,2,3,…,n ,若P (1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .15 【解析】由已知X 的分布列为P (X =k )=1n ,k =1,2,3,…,n ,∴P (1≤X ≤3)=P (X =1)+P (X =2)+P (X =3)=3n =15,∴n =15.【答案】D10.已知某产品的次品率为0.04,现要抽取这种产品进行检验,则要使检查到次品的概率达到95%以上,至少要选的产品个数为( )A .24B .25C .74D .75【解析】由题意得1-(1-0.04)n ≥0.95,解得n ≥74. 【答案】C11.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210216⎛⎫⎪⎝⎭×856⎛⎫⎪⎝⎭B .C 11016⎛⎫⎪⎝⎭×956⎛⎫ ⎪⎝⎭+1056⎛⎫ ⎪⎝⎭C .C 11016⎛⎫⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫⎪⎝⎭×856⎛⎫ ⎪⎝⎭D .以上都不对【解析】P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010016⎛⎫ ⎪⎝⎭×1056⎛⎫ ⎪⎝⎭+C 11016⎛⎫ ⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫ ⎪⎝⎭×856⎛⎫ ⎪⎝⎭. 【答案】D12.有10件产品,其中2件次品,其余都是合格品,现不放回的从中依次抽2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( )A.145B.110C.19D.25【解析】记“第一次抽到次品”为事件A ,第二次抽到次品为事件B .P (A )=C 12C 19C 110C 19=15,P (AB )=C 12C 11C 110C 19=145 ,∴P (B |A )=P (AB )P (A )=19.【答案】C二、填空题(本大题共4小题,每小题4分,共16分.请把正确的答案填在题中的横线上)13.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p ,若此人未能通过的科目数ξ的均值是2,则p =________.【解析】因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p , 易知ξ~B (6,1-p ),所以E (ξ)=6(1-p )=2.解得p =23.【答案】2314.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.【解析】P (B |A )=P (AB )P (A ) ,∴P (A )=P (AB )P (B |A )=31012=35.【答案】3515.中国乒乓球队可谓高手如云,在某届世乒乓赛中,有3名世界排名前10位的运动员,据专家分析每位运动员进入前四名的概率为45,那么这三名运动员恰有2名进入前4名的概率是________.【解析】P =C 23245⎛⎫⋅⎪⎝⎭15=48125. 【答案】4812516.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.【解析】由题意得:p =12,P (X =0)=13×(1-p )2=112,P (X =1)=13×12×12×2+23×12×12=13,P (X =2)=13×12×12+23×12×12×2=512,P (X =3)=23×12×12=16,∴ E (X )=13×1+512×2+16×3=53.【答案】53三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.【解析】记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48, P (B 2)=0.42=0.16,P (A 2)=0.62=0.36. C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.18.(本小题满分12分)设X 是一个离散型随机变量,其分布列如下表,试求随机变量X 的期望E (X )与方差D (X ).【解析】由0.5+2a +3a =1,得a =0.1, 故X 的分布列为:∴E (X )=-1×0.5+0×0.2+1×0.3=-0.2.D (X )=(-1+0.2)2×0.5+(0+0.2)2×0.2+(1+0.2)2×0.3=0.76.19.(本小题满分12分)袋中装有5个乒乓球,其中2个旧球,现在无放回地每次取一球检验.(1)若直到取到新球为止,求抽取次数X 的概率分布列及其均值;(2)若将题设中的“无放回”改为“有放回”,求检验5次取到新球个数X 的均值. 【解析】(1)X 的可能取值为1、2、3,P (X =1)=35,P (X =2)=2×35×4=310,P (X =3)=2×1×35×4×3=110,故抽取次数X 的分布列为:E (X )=1×35+2×310+3×110=32.(2)每次检验取到新球的概率均为35,故X ~B 35,5⎛⎫⎪⎝⎭,∴E (X )=5×35=3.20.(本小题满分12分)已知随机变量X 的正态曲线如下图所示,(1)求E (2X -1),D 14X ⎛⎫⎪⎝⎭;(2)试求随机变量X 在(110,130]范围内取值的概率.【解析】由正态曲线知,随机变量X 的均值为120,标准差为5,即μ=120,σ=5. 因此E (2X -1)=2E (X )-1=239, D 14X ⎛⎫ ⎪⎝⎭=116D (X )=2516.(2)由于μ=120,σ=5,μ-2σ=110,μ+2σ=130,且随机变量在(μ-2σ,μ+2σ)内取值的概率是0.954 4,所以随机变量X 在(110,130]范围内取值的概率是0.954 4.21.(本小题满分13分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)【解析】(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110.X 的分布列为:X 的数学期望为:E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”, X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1). 由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1) =320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 22.(本小题满分13分)某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 【解析】(1)X 的所有可能取值为0,1,2,依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35 ,P (X =2)=C 14C 22C 36=15.∴X 的分布列为:(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=15;∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (B |A )=P (AB )P (A )=C 14C 36C 25C 36=25.。
2.3 离散型随机变量的均值与方差2.3. 2 离散型随机变量的方差A级基础巩固一、选择题1.已知随机变量ξ满足P(ξ=1)=0.3,P(ξ=2)=0.7,则E(ξ)和D(ξ)的值分别为( )A.0.6和0.7 B.1.7和0.09C.0.3和0.7 D.1.7和0.21解析:E(ξ)=1×0.3+2×0.7=1.7,D(ξ)=(1.7-1)2×0.3+(1.7-2)2×0.7=0.21.答案:D2.已知随机变量X~B(100,0.2),那么D(4X+3)的值为( )A.64 B.256 C.259 D.320解析:由X~B(100,0.2)知n=100,p=0.2,由公式得D(X)=100×0.2×0.8=16,因此D(4X+3)=42D(X)=16×16=256.答案:B3.甲、乙两个运动员射击命中环数ξ、η的分布列如下表.其中射击比较稳定的运动员是( )A.甲C.一样D.无法比较解析:E(ξ)=9.2,E(η)=9.2,所以E(η)=E(ξ),D(ξ)=0.76,D(η)=0.56<D(ξ),所以乙稳定.答案:B4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )A.6和2.4 B.2和2.4C.2和5.6 D.6和5.6解析:由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.因为ξ+η=8,所以η=8-ξ.所以E (η)=-E (ξ)+8=2,D (η)=(-1)2D (ξ)=2.4. 答案:B5.已知p ,q ∈R ,X ~B (5,p ).若E (X )=2,则D (2X +q )的值为( ) A .2.4 B .4.8 C .2.4+q D .4.8+q 解析:因为X ~B (5,p ), 所以E (X )=5p =2,所以p =25,D (X )=5×25×35=65,所以D (2X +q )=4D (X )=4×65=4.8,故选B.答案:B 二、填空题6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.解析:在一次试验中发生次数记为ξ,则ξ服从两点分布,则D (ξ)=p (1-p ),所以p (1-p )=0.25,解得p =0.5.答案:0.57.已知X 的分布列为:若η=2X +2,则D (η解析:E (X )=-1×12+0×13+1×16=-13,D (X )=59,D (η)=D (2X +2)=4D (X )=209.答案:2098.随机变量X 的分布列如下表:其中x ,y ,z 成等差数列,若E (X )=3,则D (X )的值是________.解析:E (X )=0×x +1×y +2×z =y +2z =13,又x +y +z =1,且2y =x +z ,解得x =23,y =13,z =0,所以D (X )=⎝ ⎛⎭⎪⎫0-132×23+⎝ ⎛⎭⎪⎫1-132×13+⎝ ⎛⎭⎪⎫2-132×0=29. 答案:29三、解答题9.袋中有大小相同的小球6个,其中红球2个、黄球4个,规定取1个红球得2分,1个黄球得1分.从袋中任取3个小球,记所取3个小球的得分之和为X ,求随机变量X 的分布列、均值和方差.解:由题意可知,X 的所有可能的取值为5,4,3. P (X =5)=C 22C 14C 36=15,P (X =4)=C 12C 24C 36=35,P (X =3)=C 34C 36=15,故X 的分布列为:E (X )=5×15+4×35+3×5=4,D (X )=(5-4)2×15+(4-4)2×35+(3-4)2×15=25.10.每人在一轮投篮练习中最多可投篮4次,现规定一旦命中即停止该轮练习,否则一直试投到4次为止.已知一选手的投篮命中率为0.7,求一轮练习中该选手的实际投篮次数ξ的分布列,并求出ξ的期望E (ξ)与方差E (ξ) (保留3位有效数字).解:ξ的取值为1,2,3,4.若ξ=1,表示第一次即投中,故P (ξ=1)=0.7;若ξ=2,表示第一次未投中,第二次投中,故P (ξ=2)=(1-0.7)×0.7=0.21;若ξ=3,表示第一、二次未投中,第三次投中,故P (ξ=3)=(1-0.7)2×0.7=0.063;若ξ=4,表示前三次未投中,故P (ξ=4)=(1-0.7)3=0.027.因此ξ的分布列为:E (ξ)D (ξ)=(1-1.417)2×0.7+(2-1.417)2×0.21+(3-1.417)2×0. 063+(4-1.417)2×0.027=0.513.B 级 能力提升1.若ξ是离散型随机变量,P (ξ=X 1)=23,P (ξ=X 2)=13,且X 1<X 2,又已知E (ξ)=43,D (ξ)=29,则X 1+X 2的值为( ) A.53 B.73 C .3D.113解析:X 1,X 2满足⎩⎪⎨⎪⎧23X 1+13X 2=43,⎝⎛⎭⎪⎫X 1-432×23+⎝ ⎛⎭⎪⎫X 2-432×13=29,解得⎩⎪⎨⎪⎧X 1=1,X 2=2或⎩⎪⎨⎪⎧X 1=53,X 2=23.因为X 1<X 2,所以X 1=1,X 2=2,所以X 1+X 2=3. 答案:C2.抛掷一枚均匀硬币n (3≤n ≤8)次,正面向上的次数ξ服从二项分布B ⎝ ⎛⎭⎪⎫n ,12,若P (ξ=1)=332,则方差D (ξ)=________.解析:因为3≤n ≤8,ξ服从二项分布B ⎝ ⎛⎭⎪⎫n ,12,且P (ξ=1)=332,所以C 1n ·⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫1-12=332,即n ⎝ ⎛⎭⎪⎫12n=664,解得n =6,所以方差D (ξ)=np (1-p )=6×12×⎝ ⎛⎭⎪⎫1-12=32. 答案:323.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列、期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,则X的分布列为:因为X~B(3,=3×0.6×(1-0.6)=0.72.。
2.2 二项分布及其应用§2.2.1 条件概率【教学目标】1.知识与技能①了解条件概率及其性质.②理解条件概率的两种计数方法,并会进行简单的应用.2.过程与方法通过与普通概率的对比,理解条件概率的概念;通过例题讲解归纳条件概率的计 算方法3.情感、态度、价值观条件概率是学习相互独立事件概率的基础,也是前面所学概率的延续,要注意理 解.【预习任务】阅读课本P51 P531.对比教材的“探究”与“思考”,请从基本事件的角度说明这两个问题的区别。
1. 设A 、B 是两个事件,则事件AB 与事件B|A 分别表示什么样的事件?P (B|A )是否等于P (B )P (A )?为什么?试举例说明3.写出条件概率的概率计算公式4.写出条件概率的性质.【自主检测】1.课本P54练习1,22.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=_______.3.在一个盒子中有大小一样的20个小球,其中10个红球,10个白球,求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率.【组内互检】P(B|A)的计算公式§2.2.2 事件的相互独立性【教学目标】1.知识与技能理解事件独立性的含义,能利用公式计算相互独立事件的概率.2.过程与方法在具体的情景中体会事件的独立性的含义,通过例题归纳独立事件的概率计算公 式.3.情感、态度、价值观相互独立事件同时发生的概率是实际生活中经常遇到的实例,要培养把实际问题 转化为数学问题的能力.【预习任务】阅读课本P54-P55,完成下列问题:1. 用文字语言叙述两个事件相互独立的含义?并举出生活中的实例.2.写出相互独立事件的概率计算公式.3.(1)说明“条件概率”与“相互独立事件的概率”的区别与联系.(2)说明“互斥事件”和“相互独立事件”的区别.【自主检测】1.甲、乙两队进行排球决赛,现在的情形是甲队再赢一局就获冠军,乙队需要再赢两局才能获得冠军,若两队胜率相同,则甲队获得冠军的概率为 ( )A .34B .23C .35D .122.3人独立地翻译密码,每人译出此密码的概率为0.35,0.30,0.25,试求(1)3人同时译出此密码的概率;(2)3人都未能译出此密码的概率;(3)至多有2人译出此密码的概率;(4)恰有1人译出此密码的概率;(5)此密码被译出的概率.【组内互检】相互独立事件的概率计算公式§2.2.3 独立重复试验与二项分布【教学目标】1.知识与技能理解n 次独立重复试验的概念,理解二项分布的定义掌握二项分布的应用,能进行一些与n 次独立重复试验及二项分布有关的概率计算2.过程与方法通过具体情境体会n 次独立重复、二项分步的特征,能在实际问题中判断出二 项分步,并加以应用3.情感、态度、价值观二项分步是常考的知识点,培养学生把实际问题转化为数学问题的能力,,要认真体会独立重复试验的特征学会应用.【预习任务】阅读课本P56~57,完成下列问题:1. 写出n 次独立重复试验的概念,并举出生活中的实例.2.总结n 次独立重复试验的特征.3.写出n 次独立重复试验中事件A 恰好发生k 次的概率计算公式.4.写出二项分布的分布列及记号.5.写出二项分布与两点分布的关系?【自主检测】1..设随机变量X 服从)31,5(B ,则==)3(X P ________.2.9粒种子分别种在甲、乙、丙3个坑中,每坑3粒,每粒种子发芽的概率均为0.5,若1个坑内至少有1粒种子发芽,则这个坑不需要补种,否则需要补种,求(1)甲坑不需要补种的概率;(2)3个坑中恰好有1个坑需要补种的概率;(3)有坑需要补种的概率.【组内互检】n次独立重复试验中事件A恰好发生k次的概率计算公式、二项分布的特征§2.2.4 二项分布及其应用小结与复习【教学目标】1.知识与技能①巩固条件概率、相互独立事件和n 次独立重复试验恰好发生k 次的概率的计算; ②能在具体问题中判断事件间的关系,恰当选择公式进行概率的计算2.过程与方法通过例题体会如何判断事件间的关系,恰当选择公式进行概率的计算.3.情感、态度、价值观该部分是高考的重点,需要掌握三种概率、一种分布的本质特征,培养把实际问题转化为应用问题的能力.【预习任务】1.写出条件概率的计算公式:2.写出相互独立事件的概率计算公式:3.写出n 次独立重复试验恰好发生k 次的概率计算公式:4.如何判断随机变量服从二项分布,并写出二项分布的分布列:【自主检测】1.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%,已知一学生数学不及格,求他语文也不及格的概率.2.一名学生每天骑车上学,从他家到学校途中有4个交通岗,设他在每个交通岗遇到 红灯的事件相互独立且概率为31. (1)设随机变量X 表示这么学生在途中遇到红灯的次数,求X 的分布列;(2)求这名学生在途中至少遇到一次红灯的概率.3.甲、乙两人各射击1次,击中目标的概率分别是4332、,假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有一次未击中目标的概率:(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率:(3)假设某人连续2次未击中目标,则终止其射击,问:乙恰好射击5次被终止的概率.【组内互检】如何判断随机变量服从二项分布。
第二章 随机变量及其分布本试卷满分45+5分一.选择题(每小题5分,共15分)1.抛掷两次骰子,两次出现的总数之和不等于8的概率为 ( ) A .1112 B . 3136 C . 536 D . 1122.设ξ是一个随机变量,且D(10ξ)=40,则D (ξ)= ( )A.0.4B.4C.40D.4003.甲盒中有200个螺杆,其中有160个A 型的;乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型螺栓的概率为 ( )A.120B.1516C.35D.1920二.填空题(每小题5分,共10分)4.设X ~N(0,1),则P(|X |>1)= .5.在等差数列{ a n }中,a 4=2,a 7=-4,现从{ a n }的前10项中随机取数,每次取一个,取后放回,连取3次,假定每次取数都互不影响,那么在这三次取数中,取出的数恰好为两正一负的概率为 .三.解答题(每小题10分,共20分)6.A 、B 、C 三名乒乓选手间的胜负情况如下:A 胜B 的概率为0.4,B 胜C 的概率为0.5,C 胜A 的概率为0.6,本次竞赛按以下顺序进行:第一轮:A 与B ;第二轮:第一轮的胜者与C ;第三轮:第二轮的胜者与第一轮的败者; 第四轮:第三轮的胜者与第二轮的败者.求:(1)B 连胜四轮的概率;(2)C 连胜三轮的概率.7. 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.附加题(5分)ξ,则小白某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若E()=4.2得5分的概率至少为。
描述:高中数学选修2-3(人教A版)知识点总结含同步练习题及答案第二章随机变量及其分布 2.3离散型随机变量的均值与方差一、学习任务了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望、方差.二、知识清单离散型随机变量的数字特征三、知识讲解1.离散型随机变量的数字特征离散型随机变量的均值①一般地,若离散型随机变量的分布列为则称为随机变量 的均值(mean)(mean)或或数学期望(mathematical expectation)(mathematical expectation).它反映了离散型随机变量取值的平均水平..它反映了离散型随机变量取值的平均水平.②若 ,其中 , 为常数,则 也是随机变量.因为所以, 的分布列为于是,即③一般地,如果随机变量 服从两点分布,那么 ;如果 ,那么 .离散型随机变量的方差① 设离散型随机变量 的分布列为则 描述了 (,,,)相对于均值 的偏离程度.而X Px 1p 1x2p2⋯⋯x i p i⋯⋯x n p nE (X )=++⋯++⋯+x 1p 1x 2p 2x i p i x n p nX Y =aX +b a b Y P (Y =a +b )=P (X =),i =1,2,⋯,n ,x i x i Y Y Pa +b x 1p 1a +b x 2p 2⋯⋯a +b x i p i ⋯⋯a +bx n p n.E (X )=(a +b )+(a +b )+⋯+(a +b )+⋯+(a +b )x 1p 1x 2p 2x i p i x n p n=a (++⋯++⋯+)+b (++⋯+)x 1p 1x 2p 2x i p i x n p n p 1p 2p n =aE (X )+bE (aX +b )=aE (X )+b .X E (X )=p X ∼B (n ,p )E (X )=np X X P x 1p 1x 2p 2⋯⋯x i p i⋯⋯x n p n(−E (X )x i )2x i i =12⋯n E (X )D (X )=(−E (X )∑i =1nx i )2p iE (X )D (X )例题:为这些偏离程度的加权平均,刻画了随机变量 与其均值 的平均偏离程度.我们称 为随机变量 的方差(variance),并称其算术平方根 为随机变量 的标准差(standard deviation).随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.② 若 服从两点分布,则 ;若 ,则 .③ .X E (X )D (X )X D (X )−−−−−√X X D (X )=p (1−p )X ∼B (n ,p )D (X )=np (1−p )D (aX +b )=D(X )a 2某食品企业一个月内被消费者投诉的次数用 表示,据统计,随机变量 的概率分布如下:则 的值和 的数学期望分别是( )A., B., C., D.,解:B由概率分布可知:,解得 ,所以 .ξξξP 00.110.322a 3aa ξ0.2 1.80.2 1.70.1 1.80.1 1.70.1+0.3+2a +a =1a =0.2E (ξ)=0×0.1+1×0.3+2×0.4+3×0.2=1.7从饭店到火车站途中有 个交通岗,一出租车司机,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是 .(1)求这位司机遇到红灯前,已经通过了 个交通岗的概率;(2)求这位司机在途中遇到红灯数 的数学期望.解:(1)因为这位司机在第一个、第二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以(2)因为 ,所以 .6132ξP =(1−)×(1−)×=.131313427ξ∼B (6,)13E (ξ)=6×=213已知随机变量 的分布列为:求.解:,所以ξξP 00.110.1520.2530.2540.1550.1D (ξ)Eξ=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5D (ξ)=(0−2.5×0.1+(1−2.5×0.15+(2−2.5×0.25+(3−2.5×0.25+(4−2.5×0.15+(5−2.5×0.1=2.05)2)2)2)2)2)2如果 是离散型随机变量,且 ,那么( )A.,B.,C.,D.,解:A由随机变量的均值与方差的性质可得答案.ξη=3ξ+2E (η)=3E (ξ)+2D (η)=9D (ξ)E (η)=3E (ξ)D (η)=3D (ξ)+2E (η)=3E (ξ)+2D (η)=9D (ξ)+4E (η)=3E (ξ)+4D (η)=3D (ξ)+2某人投弹击中目标的概率为 .(1)求投弹一次,击中次数 的均值和方差;(2)求重复投弹 次,击中次数 的均值和方差.解:(1)由题意可知 服从两点分布,其分布列为所以(2)由题意可知击中次数 服从二项分布,即 ,所以p =0.8X 10Y X X P00.210.8E (X )=0×0.2+1×0.8=0.8,D (X )=(0−0.8×0.2+(1−0.8×0.8=0.16.)2)2Y Y ∼B (10,0.8)E (Y )=np =10×0.8=8,D (Y )=10×0.8×0.2=1.6.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为 、, 和 的分布列如表.试对这两X Y X Y四、课后作业 (查看更多本章节同步练习题,请到快乐学)名工人的技术水平进行比较.解:工人甲生产出次品数 的数学期望和方差分别为工人乙生产出次品数 的数学期望和方差分别为由知,两人生产出次品的平均数相同,技术水平相当,但,可见乙的技术水平比较稳定.X P 061011102310Y P051013102210X E (X )=0×+1×+2×=0.7,610110310D (X )=(0−0.7×+(1−0.7×+(2−0.7×=0.81.)2610)2110)2310Y E (Y )=0×+1×+2×=0.7,510310210D (Y )=(0−0.7×+(1−0.7×+(2−0.7×=0.61)2510)2310)2210E (X )=E (Y )D (X )>D (Y )答案:1. 下列有关离散型随机变量的期望与方差的说法中,不正确的是 A .离散型随机变量的期望 反映了 取值的平均值B .离散型随机变量的方差 反映了 取值的集中与离散的程度C .离散型随机变量 的期望和方差都是一个数值,它们不随试验结果而变化D .离散型随机变量的方差是非负的A()ξEξξξDξξξ答案:解析:2. 已知离散型随机变量 的概率分布列如下表,则其数学期望 等于 .A .B .C .D .D所有随机变量取值概率之和是ξE (ξ)()ξP 10.53m 50.210.62+3m 2.41答案:解析:3. 已知 ,,,则 与 的值分别为 A . 和B . 和C . 和D . 和A ,,解得 ,.X ∼B (n ,p )E (X )=8D (X )=1.6n p ()100.8200.4100.21000.8E (X )=np =8D (X )=np (1−p )=1.6p =0.8n =10答案:解析:4. 在 个电子产品中,有 个次品, 个合格品,每次任取一个测试,测试完后不放回,直到两个次品都找到为止,如果两个次品找出为完成一次测试,那么测试次数 的数学期望是 A .B .C .D .D由题意知 的可能取值是 ,结合变量对应的事件写出变量的概率,当 时,表示取出的 只都是次品,当时,表示第三次取出的是次品,前两次中一个正品一个次品,以此类推,得到结果.624ξ()17151115536415ξ2,3,4,5ξ=22ξ=3高考不提分,赔付1万元,关注快乐学了解详情。
第二章 离散型随机变量及其分布列
【典型范例】
例1.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时则终止,每个球在每一次被取出的机会是等可能的,用 ξ表示取球终止所需要的取球次数.
(1)求袋中所有的白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
例2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中的2篇才能及格,某同学只能背出其中的6篇,试求
(1)抽到他能背诵的课文的数量Z 的分布列;
(2)他能及格的概率.
例3.在某次考试的试卷中共有8道选择题(4个选项中有且有一个正确),评分标准规定:每题只选1项,答对得5分,不答或答错得零分,某考生每题都给出了答案,已确定有4道题的答案是正确的,在其余的题中,有两道题每题都可判断其有两个选项是错误的,有一道题可以判断有1个选项是错误的,还有1道题只能乱猜.对这8道选择题
(1)该考生得分为40分的概率;
(2)该考生所得分数 的分布列及均值.。