2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第三讲 概率教案 理
- 格式:doc
- 大小:438.50 KB
- 文档页数:13
明、概率与统计第三讲统计与统计案例课时作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高考数学二轮复习第一部分专题篇专题六算法、复数、推理与证明、概率与统计第三讲统计与统计案例课时作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高考数学二轮复习第一部分专题篇专题六算法、复数、推理与证明、概率与统计第三讲统计与统计案例课时作业理的全部内容。
证明、概率与统计第三讲统计与统计案例课时作业理A组——高考热点基础练1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人.现采取分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为()A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20解析:先确定抽样比为错误!=错误!,则依次抽取的人数分别为错误!×300=15,错误!×200=10和错误!×400=20。
故选D。
答案:D2.某同学进入高三后,4次月考的数学成绩的茎叶图如图.则该同学数学成绩的方差是 ( )A.125 B.5错误!C.45 D.3错误!解析:由茎叶图知平均值为错误!=125,∴s2=错误![(125-114)2+(125-126)2+(125-128)2+(125-132)2]=45.答案:C3.(2016·重庆模拟)为了判定两个分类变量X和Y是否有关系,应用K2独立性检验法算得K2的观测值为5,又已知P(K2≥3。
841)=0.05,P(K2≥6.635)=0。
01,则下列说法正确的是( )A.有95%的把握认为“X和Y有关系”B.有95%的把握认为“X和Y没有关系"C.有99%的把握认为“X和Y有关系”D.有99%的把握认为“X和Y没有关系"解析:依题意,K2=5,且P(K2≥3。
第一讲 算法、复数、推理与证明一、选择题1.(2018·福州四校联考)如果复数z =2-1+i ,则( )A .z 的共轭复数为1+iB .z 的实部为1C .|z |=2D .z 的实部为-1解析:∵z =2-1+i =-1--1+-1-=-2-2i2=-1-i ,∴z 的实部为-1,故选D.答案:D2.(2018·辽宁五校联考)执行如图所示的程序框图,如果输入的x =-10,则输出的y =( )A .0B .1C .8D .27解析:开始x =-10,满足条件x ≤0,x =-7;满足条件x ≤0,x =-4,满足条件x ≤0,x =-1;满足条件x ≤0,x =2,不满足条件x ≤0,不满足条件y =23=8.故输出的y =8.故选C.答案:C3.i 是虚数单位,则复数i(2 018-i)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:复数i(2 018-i)=1+2 018i ,在复平面内对应的点为(1,2 018),故选A. 答案:A4.(2018·广州模拟)若复数z 满足(1+2i)z =1-i ,则|z |=( ) A.25 B.35 C.105D.10解析:法一:由(1+2i)z =1-i ,可得z =1-i1+2i =--+-=1-2i -i -25=-15-35i ,所以|z |=1+95=105,选C.法二:由(1+2i)z =1-i 可得|(1+2i)z |=|1-i|,即|1+2i||z |z |=2,故|z |=105,选C. 答案:C5.(2018·南宁模拟)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.答案:C6.(2018·沈阳模拟)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为( )A .-3B .-3或9C .3或-9D .-9或-3解析:当输出的y =0时,若x ≤0,则y =(12)x-8=0,解得x =-3,若x >0,则y =2-log 3x =0,解得x =9,两个值都符合题意,故选B.答案:B7.(2018·长春模拟)已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列的前2 017项和B .求首项为1,公差为2的等差数列的前2 018项和C .求首项为1,公差为4的等差数列的前1 009项和D .求首项为1,公差为4的等差数列的前1 010项和解析:由程序框图可得S =1+5+9+…+4 033,故该算法的功能是求首项为1,公差为4的等差数列的前1 009项和.故选C.答案:C8.(2018·山西八校联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b i a +i ,则a +b等于( )A .-9B .5C .13D .9解析:由3-4i 3=2-b i a +i 得,3+4i =2-b i a +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a+3)i =2-b i ,则⎩⎪⎨⎪⎧3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9,故选A.答案:A9.(2018·石家庄模拟)当n =4时,执行如图所示的程序框图,则输出的S 的值为( )A .9B .15C .31D .63解析:执行程序框图,k =1,S =1;S =3,k =2;S =7,k =3;S =15,k =4;S =31,k =5>4,退出循环.故输出的S =31,故选C.答案:C10.(2018·西安八校联考)如图给出的是计算12+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018不满足,输出的S =12+14+16+…+12 014+120 16,所以题中的判断框内应填入的是“i ≤2 016”.答案:B11.(2018·重庆模拟)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( )A.120斤B.125斤C.130斤 D.136斤 解析:假设原来持金为x ,则第1关收税金12x ;第2关收税金13(1-12)x =12×3x ;第3关收税金14(1-12-16)x =13×4x ;第4关收税金15(1-12-16-112)x =14×5x ;第5关收税金16(1-12-16-112-120)x =15×6x .依题意,得12x +12×3x +13×4x +14×5x +15×6x =1,即(1-16)x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B.答案:B12.(2018·惠州调研)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.答案:B 二、填空题13.若a +b ii (a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 解析:a +b i i=a +bi2=b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.答案:-714.(2018·昆明模拟)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1 a 2,a 3 a 4,a 5,a 6 a 7,a 8,a 9,a 10……若第11行左起第1个数为a m ,则m =________.解析:要求这个数阵第11行左起的第1个数是这个数列中的第几项,只需求出这个数阵的前10项,且每一行都比上一行多1项,所以前10行共有1+2+3+…+10+2=m =56.答案:5615.在学习等差数列这一节时,可以这样得到等差数列的通项公式:设等差数列{a n }的首项为a 1,公差为d ,根据等差数列的定义,可以得到a 2-a 1=d ,a 3-a 2=d ,…,a n -a n -1=d ,将以上n -1个式子相加,即可得到a n =a 1+(n -1)d .“斐波那契数列”是数学史上一个著名的数列,在“斐波那契数列”{a n }中,令a 1=1,a 2=1,a 3=2,…,a n +2=a n +1+a n (n ∈N *),当a 2 018=t 时,根据上述方法可知数列{a n }的前2 016项和是________.解析:由题意知,a 3-a 2=a 1,a 4-a 3=a 2,…,a 2 018-a 2 017=a 2 016, 将以上2 016个式子相加,可得a 2 018-a 2=a 1+a 2+…+a 2 016=S 2 016. 因为a 2 018=t ,所以S 2 016=t -1.故答案为t -1. 答案:t -116.(2018·重庆模拟)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数; ②物理课时数多于体育课时数; ③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为________.解析:法一:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.法二:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.答案:12。
2019-2020年高考数学二轮复习第一部分专题六算法复数推理与证明概率与统计第一讲算法复数推理与证明习题一、选择题1.(xx·高考全国卷Ⅲ)设复数z满足(1+i)z=2i,则|z|=( )A.12B.22C. 2 D.2解析:法一:由(1+i)z=2i得z=2i1+i=1+i,∴|z|= 2.故选C.法二:∵2i=(1+i)2,∴由(1+i)z=2i=(1+i)2,得z=1+i,∴|z|= 2.故选C.答案:C2.(xx·高考全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=( )A.2 B.3C.4 D.5解析:当K=1时,S=0+(-1)×1=-1,a=1,执行K=K+1后,K=2;当K=2时,S=-1+1×2=1,a=-1,执行K=K+1后,K=3;当K=3时,S=1+(-1)×3=-2,a=1,执行K=K+1后,K=4;当K=4时,S=-2+1×4=2,a=-1,执行K=K+1后,K=5;当K=5时,S=2+(-1)×5=-3,a=1,执行K=K+1后,K=6;当K=6时,S=-3+1×6=3,执行K=K+1后,K=7>6.输出S=3.结束循环.故选B.答案:B3.(xx·高考山东卷)已知a∈R,i是虚数单位.若z=a+3i,z·z=4,则a=( ) A.1或-1 B.7或-7C .- 3D. 3解析:∵z ·z =4,∴|z |2=4,即|z |=2.∵z =a +3i ,∴|z |=a 2+3,∴a 2+3=2,∴a =±1.故选A. 答案:A4.(xx·高考全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2解析:假设N =2,程序执行过程如下:t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意. ∴N =2成立.显然2是最小值. 故选D. 答案:D5.(xx·高考全国卷Ⅰ)设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R.其中的真命题为( ) A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:设z =a +b i(a ,b ∈R),z 1=a 1+b 1i(a 1,b 1∈R),z 2=a 2+b 2i(a 2,b 2∈R). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B. 答案:B6.(xx·高考山东卷)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )A .x >3B .x >4C .x ≤4D .x ≤5解析:输入x =4,若满足条件,则y =4+2=6,不符合题意;若不满足条件,则y =log 24=2,符合题意,结合选项可知应填x >4.故选B. 答案:B7.(xx·高考全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2解析:因为题目要求的是“满足3n-2n>1 000的最小偶数n ”,所以n 的叠加值为2, 所以内填入“n =n +2”.由程序框图知,当内的条件不满足时,输出n , 所以内填入“A ≤1 000”.故选D. 答案:D8.(xx·高考全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩解析:由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D. 答案:D 二、填空题9.(xx·高考天津卷)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.解析:∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2. 答案:-210.(xx·高考山东卷)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.解析:第一次循环:S =2-1,1<3,i =2;第二次循环:S =3-1,2<3,i =3; 第三次循环:S =4-1=1,3≥3,输出S =1.答案:111.已知数列{a n }是等比数列,a 1,a 2,a 3依次位于下表中第一行,第二行,第三行中的某一格内,又a 1,a 2,a 3中任何两个都不在同一列,则a n =________(n ∈N *).第一列 第二列 第三列 第一行 1 10 2 第二行 6 14 4 第三行9188解析:观察题中的表格可知a 1,a 2,a 3分别为2,6,18,即{a n }是首项为2,公比为3的等比数列, ∴a n =2·3n -1. 答案:2·3n -112.(xx·高考全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n 1+n2.由题意知,N >100,令n 1+n2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.第n 组的各项和为1-2n1-2=2n -1,前n 组所有项的和为21-2n1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -n 1+n2项的和即第n +1组的前k 项的和2k-1应与-2-n 互为相反数,即2k-1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×1+292+5=440.答案:440 三、解答题13.(xx·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2) a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4. (2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3a +b24(a +b )=2+3a +b34,所以(a +b )3≤8,因此a +b ≤2.14.(xx·高考山东卷)由四棱柱ABCD A1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD.又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.15.(xx·高考江苏卷)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n,对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明:(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3.所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.。
第十二章⎪⎪⎪推理与证明、算法、复数第一节 合情推理与演绎推理本节主要包括2个知识点: 1.合情推理; 2.演绎推理.突破点(一) 合情推理[基本知识][基本能力]1.判断题(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是a n =________.解析:a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 答案:n 2(2)由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是合情推理中的________推理.答案:类比(3)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3.则第5个不等式为____________________________________________________.答案:12+16+112+120+130< 5[全析考法]运用归纳推理时的一般步骤(1)通过观察特例发现某些相似性(特例的共性或一般规律);(2)把这种相似性推广到一个明确表述的一般命题(猜想);(3)对所得出的一般性命题进行检验.类型(一)与数字有关的推理[例1](1)给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=()A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)(2)(2018·兰州模拟)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.[解析](1)由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).(2)由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.[答案](1)A(2)n2解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. [易错提醒]类型(二) 与式子有关的推理[例2] (1)(2016·山东高考)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________.(2)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x3+x 3+27x3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________. [解析] (1)观察前4个等式,由归纳推理可知⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=43×n ×(n +1)=4n (n +1)3.(2)第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .[答案] (1)4n (n +1)3 (2)n n[方法技巧]与式子有关的推理类型及解法(1)与等式有关的推理.观察每个等式的特点,找出等式左右两侧的规律及符号后可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. 类型(三) 与图形有关的推理[例3] 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55[解析] 因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.[答案] D [方法技巧]与图形有关的推理的解法与图形变化相关的归纳推理,解决的关键是抓住相邻图形之间的关系,合理利用特殊图形,找到其中的变化规律,得出结论,可用赋值检验法验证其真伪性.类比推理1.类比推理的应用一般分为类比定义、类比性质和类比方法,常用技巧如下: 类比定义 在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解 类比性质 从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键 类比方法有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移2.平面中常见的元素与空间中元素的类比:平面 点 线 圆 三角形 角 面积 周长 … 空间 线面球三棱锥二面角体积表面积…[例4] 如图,在△ABC 中,O 为其内切圆圆心,过O 的直线将三角形面积分为相等的两部分,且该直线与AC ,BC 分别相交于点F ,E ,则四边形ABEF 与△CEF 的周长相等.试将此结论类比到空间,写出一个与其相关的命题,并证明该命题的正确性.[解] 如图,截面AEF 经过四面体ABCD 的内切球(与四个面都相切的球)的球心O ,且与BC ,DC 分别交于点E ,F ,若截面将四面体分为体积相等的两部分,则四棱锥A -BEFD 与三棱锥A -EFC 的表面积相等.下面证明该结论的正确性, 设内切球半径为R ,则V A -BEFD =13(S △ABD +S △ABE +S △ADF +S 四边形BEFD )×R =V A -EFC =13(S △AEC+S △ACF +S △ECF )×R ,即S △ABD +S △ABE +S △ADF +S 四边形BEFD =S △AEC +S △ACF +S △ECF ,两边同加S △AEF 可得结论.[方法技巧]类比推理的步骤和方法(1)类比推理是由特殊到特殊的推理,其一般步骤为: ①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想). (2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.[全练题点]1.[考点二]由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”; ⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B ①②正确,③④⑤⑥错误.2.[考点二]在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.3.[考点一·类型(一)]将正奇数排成如图所示的三角形数阵(第k 行有k 个奇数),其中第i 行第j 个数表示为a ij ,例如a 42=15,若a ij =2 017,则i -j =( )1 3 5 7 9 11 13 15 17 19…A .26B .27C .28D .29解析:选A 前k 行共有奇数为1+2+3+…+k =k (1+k )2个,所以第k 行的最后一个数为2·k (1+k )2-1=k 2+k -1,第k +1行的第一个数为k (k +1)+1,当k +1=45时,k (k+1)+1=44×45+1=1 981,即第45行的第一个数为1 981,因为2 017-1 9812=18,所以2 017是第45行的第19个数,即i =45,j =19,所以i -j =45-19=26.故选A.4.[考点一·类型(二)]观察下列各等式:55-4+33-4=2,22-4+66-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( ) A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A 各等式可化为55-4+8-5(8-5)-4=2,22-4+8-2(8-2)-4=2;77-4+8-7(8-7)-4=2,1010-4+8-10(8-10)-4=2,可归纳得一般等式:n n -4+8-n (8-n )-4=2,故选A.5.[考点一·类型(三)]蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.则f(4)=________,f(n)=________.解析:因为f(1)=1,f(2)=7=1+6,f(3)=19=1+6+12,所以f(4)=1+6+12+18=37,所以f(n)=1+6+12+18+…+6(n-1)=3n2-3n+1.答案:373n2-3n+1突破点(二)演绎推理[基本知识](1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)模式:“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(3)特点:演绎推理是由一般到特殊的推理.[基本能力]1.判断题(1)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.()(2)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案:(1)√(2)×2.填空题(1)下列说法:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.其中正确的有________个.解析:易知①③④正确.答案:3(2)推理“①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形”中的小前提是________(填序号).答案:②[全析考法]演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义)(2)由(1)可知数列⎩⎨⎧⎭⎬⎫S n n 是等比数列,(大前提)所以S n +1n +1=4·S n -1n -1(n ≥2),即S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) 所以对于任意正整数n ,都有S n +1=4a n .(结论)[方法技巧]演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本例中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.[全练题点]1.已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m .证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提) b <a ,m >0,(小前提) 所以mb <ma .(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提) mb <ma ,(小前提)所以mb +ab <ma +ab ,即b (a +m )<a (b +m ).(结论)因为不等式两边同除以一个正数,不等号不改变方向,(大前提) b (a +m )<a (b +m ),a (a +m )>0,(小前提) 所以b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .(结论)2.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调递增函数.证明:设任意x 1,x 2∈R ,取x 1<x 2, 则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),所以x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0,[f (x 2)-f (x 1)](x 2-x 1)>0, 因为x 1<x 2,即x 2-x 1>0,所以f (x 2)-f (x 1)>0,即f (x 2)>f (x 1).(小前提) 所以y =f (x )为R 上的单调递增函数.(结论)[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩解析:选D 依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选D.2.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:由丙所言可能有两种情况.一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3”.答案:1和33.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三个去过同一城市. 由此判断乙去过的城市为________.解析:由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过的同一城市应为A ,而甲去过的城市比乙多,但没去过B 城市,所以甲去过A ,C 城市,乙去过的城市应为A.答案:A[课时达标检测][小题对点练——点点落实]对点练(一) 合情推理1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:选A (1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .211解析:选B 令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( )A .n (n +1) B.n (n -1)2C.n (n +1)2D .n (n -1)解析:选C 由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2. 4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选B 55=3 125 ,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m+4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z+3=0的距离为( )A .3B .5 C.5217D .3 5解析:选B 类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是________.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n次操作后,三角形共有4+3(n-1)=3n+1个.当3n+1=100时,解得n=33.答案:337.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.12345…3579…81216…2028…2 013 2 014 2 015 2 0164 027 4 029 4 0318 0568 06016 116……该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为____________.解析:观察数列,可以发现规律:每一行都是一个等差数列,且第一行的公差为1,第二行的公差为2,第三行的公差为4,第四行的公差为8,…,第2 015行的公差为22 014,故第一行的第一个数为2×2-1,第二行的第一个数为3×20,第三行的第一个数为4×21,第四行的第一个数为5×22,…,第n行的第一个数为(n+1)·2n-2,故第2 016行(最后一行)仅有一个数为(1+2 016)×22 014=2 017×22 014.答案:2 017×22 0148.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0172的格点的坐标为____________.解析:因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 009,1 008)处标2 0172.答案:(1 009,1 008)对点练(二)演绎推理1.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,大前提均错误.故选B.2.某人进行了如下的“三段论”:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的()A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:选A若f′(x0)=0,则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.4.(2018·湖北八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是()A.甲B.乙C.丙D.丁解析:选D若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名;若乙猜测正确,则3号不可能得第一名,即1,2,4,5,6号选手中有一位获得第一名,那么甲和丙中有一人也猜对比赛结果,与题意不符,故乙猜测错误;若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.5.在一次调查中,甲、乙、丙、丁四名同学的阅读量有如下关系:甲、丙阅读量之和与乙、丁阅读量之和相同,甲、乙阅读量之和大于丙、丁阅读量之和,丁的阅读量大于乙、丙阅读量之和.那么这四名同学按阅读量从大到小排序依次为____________.解析:因为甲、丙阅读量之和等于乙、丁阅读量之和,甲、乙阅读量之和大于丙、丁阅读量之和,所以乙的阅读量大于丙的阅读量,甲的阅读量大于丁的阅读量,因为丁的阅读量大于乙、丙阅读量之和,所以这四名同学按阅读量从大到小排序依次为甲、丁、乙、丙.答案:甲、丁、乙、丙[大题综合练——迁移贯通]1.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解:表4为13574 81212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.2.在Rt△ABC中,AB⊥AC,AD⊥BC于点D,求证:1AD2=1AB2+1AC2.在四面体ABCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.解:如图所示,由射影定理AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD 2. 证明:如图,连接BE 并延长交CD 于点F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD .∵AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF 2. ∵AB ⊥平面ACD ,∴AB ⊥CD .∵AE ⊥平面BCD ,∴AE ⊥CD .又AB ∩AE =A , ∴CD ⊥平面ABF ,∴CD ⊥AF . ∴在Rt △ACD 中1AF 2=1AC 2+1AD 2, ∴1AE 2=1AB 2+1AC 2+1AD 2. 3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-32sin αcos α-12sin2α=34sin2α+34cos2α=34.第二节直接证明与间接证明、数学归纳法本节主要包括3个知识点: 1.直接证明; 2.间接证明; 3.数学归纳法.突破点(一)直接证明[基本知识][基本能力]1.判断题(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(4)证明不等式2+7<3+6最合适的方法是分析法.()答案:(1)×(2)×(3)√(4)√2.填空题(1)6-22与5-7的大小关系是________.解析:假设6-22>5-7,由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.答案:6-22>5-7(2)已知a,b是不相等的正数,x=a+b2,y=a+b,则x、y的大小关系是________.解析:x2=12(a+b+2ab),y2=a+b=12(a+b+a+b)>12(a+b+2ab)=x2,又∵x>0,y>0,∴y>x.答案:y>x(3)设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________.解析:∵a>b>0,∴a>b,a-b>0,∴n2-m2=a-b-(a+b-2ab)=2ab-2b>2b2-2b=0,∴n2>m2,又∵m>0,n>0,∴n>m.答案:n>m[全析考法](1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式;(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.[例1](2018·武汉模拟)已知函数f(x)=(λx+1)ln x-x+1.(1)若λ=0,求f(x)的最大值;(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:f(x)x-1>0. [解](1)f(x)的定义域为(0,+∞).当λ=0时,f(x)=ln x-x+1.则f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0, 故f (x )在(0,1)上是增函数; 当x >1时,f ′(x )<0,故f (x )在(1,+∞)上是减函数. 故f (x )在x =1处取得最大值f (1)=0.(2)证明:由题可得,f ′(x )=λln x +λx +1x -1.由题设条件,得f ′(1)=1,即λ=1. ∴f (x )=(x +1)ln x -x +1.由(1)知,ln x -x +1<0(x >0,且x ≠1).当0<x <1时,x -1<0,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)<0,∴f (x )x -1>0.当x >1时,x -1>0,f (x )=(x +1)ln x -x +1=ln x +(x ln x -x +1)=ln x -x ⎝⎛⎭⎫ln 1x -1x +1>0, ∴f (x )x -1>0.综上可知,f (x )x -1>0. [方法技巧] 综合法证题的思路[例2] 已知a >0,1b -1a >1,求证:1+a >11-b. [证明] 由已知1b -1a >1及a >0,可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1,只需证1+a -b -ab >1,只需证a -b -ab >0,即a -b ab >1,即1b -1a >1.这是已知条件,所以原不等式得证.[方法技巧]分析法证题的思路(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.[全练题点]1.[考点一]命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:选B 因为证明过程是“由因导果”,即由条件逐步推向结论,故选B. 2.[考点一](2018·广州调研)若a ,b ,c 为实数,且a <b <0,则下列不等式成立的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b解析:选B a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a (a -b )>0,即a 2-ab >0,∴a 2>ab .①又∵ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.3.[考点一]已知a ,b ,c 为正实数,a +b +c =1,求证:a 2+b 2+c 2≥13.证明:因为a +b +c =1,所以(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2=3(a 2+b 2+c 2),当且仅当a =b =c =13时,等号成立.所以a 2+b 2+c 2≥13.4.[考点二]已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )·(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证m (a -b )2≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.突破点(二)间接证明[基本知识]1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.用反证法证明问题的一般步骤3.常见的结论和反设词[基本能力]1.判断题(1)用反证法证明结论“a>b”时,应假设“a<b”.()(2)反证法是指将结论和条件同时否定,推出矛盾.()(3)用反证法证题时必须先否定结论,否定结论就是找出结论的反面的情况.()(4)反证法的步骤是:①准确反设;②从否定的结论正确推理;③得出矛盾.()答案:(1)×(2)×(3)√(4)√2.填空题(1)用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.答案:3a≤3b(2)应用反证法推出矛盾的推导过程中,可把下列哪些作为条件使用________(填序号).①结论相反的判断即假设;②原命题的条件;③公理、定理、定义;④原结论.答案:①②③(3)写出下列命题的否定.①若a,b,c满足a2+b2=c2,则a,b,c不都是奇数;否定为____________________________________________________________;②若p>0,q>0,p3+q3=2,则p+q≤2;否定为________________________________________________________;③所有的正方形都是矩形;否定为________________________________________________________________;④至少有一个实数x,使x2+1=0;否定为_______________________________________________________________.答案:①若a,b,c满足a2+b2=c2,则a,b,c都是奇数②若p>0,q>0,p3+q3=2,则p+q>2③至少存在一个正方形不是矩形④不存在实数x,使x2+1=0[全析考法][例1]设{a n}(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.[解](1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1, a 1(1-q n )1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.[例2] 若f (x )f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有{ h (a )=b , h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[例3] 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[证明] 假设三个方程都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0. 上述三个式子相加得:a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0, 即(a -b )2+(b -c )2+(c -a )2≤0.由已知a ,b ,c 是互不相等的非零实数.因此,上式“=”不能同时成立,即(a -b )2+(b -c )2+(c -a )2<0与事实不符, 故ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[全练题点]1.[考点三](2018·上海十二校模拟)用反证法证明命题“已知a ,b ∈N *,如果ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 不能被5整除解析:选B 用反证法证明命题时,应先假设结论的否定成立,而至少有一个能被5整除的否定是都不能被5整除,故作的假设是“a ,b 都不能被5整除”.2.[考点一、三]若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数是( )A .0B .1C .2D .3解析:选C 由于a ,b ,c 不全相等,则a -b ,b -c ,c -a 中至少有一个不为0,故①正确;②显然正确;令a =2,b =3,c =5,满足a ≠c ,b ≠c ,a ≠b ,故③错误.。
+---=-⎝ ⎛⎭⎪⎫-12⎝ ⎛⎭⎪⎫-12=13,,图乙是统计样本中身高在一定范围内的人数的算法流程图,则下列说法正确的是( )图甲=-2++++P(K2≥k)0.050k 3.841=-255×50×30×75≈6.109>=+-+--12=++-2-+-2,由已知得如下表),由最小二乘法求得回归直线方程y=0.67x+54.9.表中有一个数据模糊不清,经推断,该数据的值为__________.解析:设模糊不清部分的数据为m,x=10+20+30+40+505=30,由定义为“高个子”,身高在175 cm 以下(不包括175 cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取人是“高个子”的概率;(2)若从身高180 cm 以上(包括180 m)的志愿者中选出男、女各一人,求这解析:(1)根据茎叶图知,“高个子”有12人,“非高个子”有用分层抽样的方法,每个人被抽中的概率是530=16, 所以抽取的5人中,“高个子”有12×16=2人,“非高个子”有“高个子”用A ,B 表示,“非高个子”用a ,b ,c 表示,则从这b),(A ,c),(B ,a),(B ,b),(B ,c),(a ,b),(a ,c),(b ,至少有一名“高个子”被选中的情况有:(A ,B),(A ,a),(A ,天,求恰有一天空气质量达到一级的概率;日均值来估计供暖期间的空气质量情况,则供暖期间(按天中任取2天,恰有一天空气质量达到一级”为事件A {28,33},{28,31},{28,44},{28,45},{28,63},。
高三数学第二轮重点复习内容高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
8。
推理与证明、复数、算法1.归纳推理和类比推理共同点:两种推理的结论都有待于证明.不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.[问题1](1)若数列{a n}的通项公式为a n=错误!(n∈N*),记f(n)=(1-a1)(1-a2)…(1-a n),试通过计算f(1),f(2),f(3)的值,推测出f(n)=________.(2)若数列{a n}是等差数列,b n=错误!,则数列{b n}也为等差数列.类比这一性质可知,若正项数列{c n}是等比数列,{d n}也是等比数列,则d n的表达式应为__________________.答案(1)错误!(2)d n=错误!2.证明方法:综合法由因导果,分析法执果索因.反证法是常用的间接证明方法,利用反证法证明问题时一定要理解结论的含义,正确进行反设.[问题2]用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设_______________________.答案三角形三个内角都大于60°3.复数的概念对于复数a+b i(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+b i(a,b∈R)是实数a;当b≠0时,复数a+b i叫做虚数;当a=0且b≠0时,复数a+b i叫做纯虚数.[问题3] 若复数z=lg(m2-m-2)+i·lg(m2+3m+3)为实数,则实数m的值为________.答案-24.复数的运算法则与实数运算法则相同,主要是除法法则的运用,另外复数中的几个常用结论应记熟:(1)(1±i)2=±2i;(2)错误!=i;错误!=-i;(3)i4n=1;i4n+1=i;i4n+2=-1;i4n+3=-i;i4n+i4n+1+i4n+2+i4n+3=0;(4)设ω=-错误!±错误!i,则ω0=1;ω2=错误!;ω3=1;1+ω+ω2=0。
第三讲 概率几何概型授课提示:对应学生用书第67页[悟通——方法结论] 几何概型的两个基本特征(1)基本事件的无限性、等可能性. (2)其事件的概率为P (A ) =构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积),一般要用数形结合法求解.[全练——快速解答]1.(2017·高考全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B.π8 C.12D.π4解析:不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由于正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积为π2,故此点取自黑色部分的概率为π24=π8,故选B.答案:B2.(2018·高考全国卷Ⅰ)如图是来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3解析:∵S △ABC =12AB ·AC ,以AB 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫AC 22=π8AC 2,以BC 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC ,S Ⅱ=⎝ ⎛⎭⎪⎫π8AB 2+π8AC 2-⎝ ⎛⎭⎪⎫π8BC 2-12AB ·AC=12AB ·AC . ∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=S ⅠS 总,p 2=S ⅡS 总. ∴p 1=p 2. 故选A. 答案:A3.(2018·福州四校联考)如图,在圆心角为90˚的扇形AOB 中,以圆心O 为起点在A B上任取一点C 作射线OC ,则使得∠AOC 和∠BOC 都不小于30˚的概率是( )A.13B.23C.12D.16解析:记事件T 是“作射线OC ,使得∠AOC 和∠BOC 都不小于30˚”,如图,记A B 的三等分点为M ,N ,连接OM ,ON ,则∠AON =∠BOM =∠MON =30˚,则符合条件的射线OC 应落在扇形MON 中,所以P (T)=∠MON ∠AOB =30˚90˚=13,故选A. 答案:A几何概型的判断关键是注意事件发生的种数具有无限性、等可能性,否则不为几何概型,同时要注意分清是面积型、长度型,还是角度型.古典概型授课提示:对应学生用书第67页[悟通——方法结论] 古典概型的两个基本特征(1)基本事件的有限性、等可能性. (2)其事件的概率为P (A )= 事件A 中所含的基本事件数试验的基本事件总数=mn.[全练——快速解答]1.(2017·高考全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15 C.310 D.25解析:依题意,记两次取得卡片上的数字依次为a ,b ,则一共有25个不同的数组(a ,b ),其中满足a >b 的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为1025=25,选D.答案:D2.近期“共享单车”在全国多个城市持续升温,某移动互联网机构对使用者进行了调查,得到了使用者对常见的八个品牌的“共享单车”的满意度指数,并绘制出茎叶图(如图所示).(1)求出这组数据的平均数和中位数;(2)某用户从满意度指数超过82的品牌中随机选择两个品牌使用,求所选两个品牌的满意度指数均超过88的概率.解析:(1)这组数据的平均数x =3×70+3×80+2×90+4+7+8+3+5+9+1+48=83.875.将这组数据按从小到大的顺序排列,易知这组数据最中间的两个数为83,85,则其平均数为83+852=84,故这组数据的中位数为84.(2)满意度指数超过82的品牌有五个,其满意度指数分别为83,85,89,91,94,依次记为a ,b ,c ,d ,e ,从中任选两个的选法为{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种;满意度指数超过88的有三个,分别为c ,d ,e ,从中任选两个的选法为{c ,d },{c ,e },{d ,e },共3种.故所选两个品牌的满意度指数均超过88的概率P =310=0.3.对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.概率与统计的综合问题授课提示:对应学生用书第68页[悟通——方法结论](2017·高考全国卷Ⅲ)(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶❷的概率. (2)设六月份一天销售这种(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[学审题](2分)由表格数据知,最高气温低于25的频率为2+16+3690=0.6,(4分)所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(5分)(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;(7分)若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以Y的所有可能值为900,300,-100. (10分)Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+4=0.8,90因此Y大于零的概率的估计值为0.8. (12分)解决概率与统计综合问题的一般步骤[练通——即学即用](2018·广州五校联考)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(1)若电视台记者要从抽取的群众中选一人进行采访,估计被采访人恰好在第1组或第4组的概率;(2)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.解析:(1)设第1组[20,30)的频率为f 1,则由题意可知,f 1=1-(0.035+0.030+0.020+0.010)×10=0.05.被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25. ∴估计被采访人恰好在第1组或第4组的概率为0.25. (2)第1组[20,30)的人数为0.05×120=6. ∴第1组中共有6名群众,其中女性群众共3名.记第1组中的3名男性群众分别为A ,B ,C,3名女性群众分别为x ,y ,z ,从第1组中随机抽取2名群众组成志愿者服务队包含(A ,B ),(A ,C ),(A ,x ),(A ,y ),(A ,z ),(B ,C ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共15个基本事件.至少有一名女性群众包含(A ,x ),(A ,y ),(A ,z ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共12个基本事件.∴从第1组中随机抽取2名群众组成志愿者服务队,至少有1名女性群众的概率P =1215=45.授课提示:对应学生用书第152页一、选择题1.(2018·高考全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7解析:由题意可知不用现金支付的概率为1-0.45-0.15=0.4. 故选B. 答案:B2.(2018·云南模拟)在正方形ABCD 内随机生成n 个点,其中在正方形ABCD 内切圆内的点共有m 个,利用随机模拟的方法,估计圆周率π的近似值为( )A.m nB.2mnC.4m nD.6mn解析:依题意,设正方形的边长为2a , 则该正方形的内切圆半径为a ,于是有πa 24a 2≈mn ,即π≈4m n ,即可估计圆周率π的近似值为4mn.答案:C3.(2018·沧州联考)已知函数f (x )=x 2e x ,在区间(-1,4)上任取一点,则使f ′(x )>0的概率是( )A.12B.25C.13D.16解析:f ′(x )=2x -x 2e x ,由f ′(x )>0可得f ′(x )=2x -x2e x >0,解得0<x <2,根据几何概型的概率计算公式可得所求概率P =2-04-(-1)=25.答案:B4.在区间[0,1]上随意选择两个实数x ,y ,则使x 2+y 2≤1成立的概率为( ) A.π2 B.π4 C.π3D.π5解析:如图所示,试验的全部结果构成正方形区域,使得x 2+y 2≤1成立的平面区域为以坐标原点O 为圆心,1为半径的圆的14与x 轴正半轴,y 轴正半轴围成的区域,由几何概型的概率计算公式得,所求概率P =π41=π4.答案:B5.已知向量a =(x ,y ),b =(1,-2),从6张大小相同分别标有号码1,2,3,4,5,6的卡片中,有放回地抽取两张,x ,y 分别表示第一次、第二次抽取的卡片上的号码,则满足a·b >0的概率是( )A.112B.34C.15D.16解析:设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个,a·b>0,即x -2y >0,满足x -2y >0的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(6,2),共6个,所以所求概率P =636=16. 答案:D6.(2018·湖南五校联考)在矩形ABCD 中,AB =2AD ,在CD 上任取一点P ,△ABP 的最大边是AB 的概率是( )A.22B.32C.2-1D.3-1解析:分别以A ,B 为圆心,AB 的长为半径画弧,交CD 于P 1,P 2,则当P 在线段P 1P 2间运动时,能使得△ABP 的最大边是AB ,易得P 1P 2CD=3-1,即△ABP 的最大边是AB 的概率是3-1. 答案:D7.(2018·天津六校联考)连掷两次骰子分别得到点数m ,n ,则向量a =(m ,n )与向量b =(-1,1)的夹角θ>90˚的概率是( )A.512B.712C.13D.12解析:连掷两次骰子得到的点数(m ,n )的所有基本事件为(1,1),(1,2),…,(6,6),共36个.∵(m ,n )·(-1,1)=-m +n <0,∴m >n .符合要求的事件为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共15个,∴所求概率P =1536=512.答案:A8.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78解析:由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×12×1=74,则所求的概率P =742=78. 答案:D 二、填空题9.(2018·长沙模拟)在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:由题意,在正方体中与点O 距离等于1的是个半球面,V 正=23=8,V 半球=12×43π×13=23π, V 半球V 正=2π8×3=π12,∴所求概率P =1-π12. 答案:1-π1210.如图,在等腰直角△ABC 中,过直角顶点C 作射线CM 交AB 于M ,则使得AM 小于AC 的概率为________.解析:当AM =AC 时,△ACM 为以A 为顶点的等腰三角形,∠ACM =180˚-45˚2=67.5˚.当∠ACM <67.5˚时,AM <AC , 所以AM 小于AC 的概率P =∠ACM 的度数∠ACB 的度数=67.5˚90˚=34.答案:3411.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖,则中奖的概率是________.解析:由题意,所有可能的结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2},共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为P =412=13.答案:1312.一只受伤的候鸟在如图所示(直角梯形ABCD )的草原上飞,其中AD =3,CD =2,BC =5,它可能随机落在该草原上任何一处(点),若落在扇形沼泽区域(图中的阴影部分)CDE 以外候鸟能生还,则该候鸟生还的概率为________.解析:直角梯形ABCD 的面积S 1=12×(3+5)×2=8,扇形CDE 的面积S 2=14π×22=π,根据几何概型的概率公式,得候鸟生还的概率P =S 1-S 2S 1=8-π8=1-π8. 答案:1-π8三、解答题13.(2018·宝鸡模拟)为了解我市的交通状况,现对其6条道路进行评估,得分分别为5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:(1)(2)用简单随机抽样的方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.解析:(1)6条道路的平均得分为16×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从6条道路中抽取2条的得分组成的所有基本事件为(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本事件.事件A 包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7个基本事件.∴P(A)=715 .故该样本平均数与总体平均数之差的绝对值不超过0.5的概率为715.14.(2018·西安八校联考)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.解析:(1)设质量指标值落在区间[75,85]内的频率为x,则质量指标值落在区间[55,65),[65,75)内的频率分别为4x,2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,质量指标值落在区间[45,55),[55,65),[65,75)内的频率分别为0.3,0.2,0.1.用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,则在区间[45,55)内应抽取6×0.30.3+0.2+0.1=3件,记为A1,A2,A3;在区间[55,65)内应抽取6×0.20.3+0.2+0.1=2件,记为B1,B2;在区间[65,75)内应抽取6×0.10.3+0.2+0.1=1件,记为C.设“从样本中任意抽取2件产品,这2件产品都在区间[45,65)内”为事件M,则所有的基本事件有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C),(B2,C),共15种,事件M包含的基本事件有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B 2),(B 1,B 2),共10种,所以这2件产品都在区间[45,65)内的概率P =1015=23.15.(2018·长沙模拟)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)列出2×2列联表,并判断是否可以在犯错误的概率不超过0.01的前提下,认为抗倒伏与玉米矮茎有关?(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,则选取的植株均为矮茎的概率是多少?附:K 2=(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d.解析:(1)根据统计数据得2×2列联表如下:由于K 2的观测值k =19×26×25×20≈7.287>6.635,因此可以在犯错误的概率不超过0.01的前提下,认为抗倒状与玉米矮茎有关.(2)由题意得,抽到的高茎玉米有2株,设为A ,B ,抽到的矮茎玉米有3株,设为a ,b ,c ,从这5株玉米中取出2株的取法有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种,其中均为矮茎的选取方法有ab ,ac ,bc ,共3种,因此选取的植株均为矮茎的概率是310.。