2016-2017年海南省三亚市民族中学高一(上)期中数学试卷及参考答案
- 格式:pdf
- 大小:483.88 KB
- 文档页数:12
【高一】海南省三亚市第一中学高一上学期期中考试数学试题(B)试卷说明:
“第一学期
高一
年级期间
中考
数学考试注意事项(B卷):1。
本试卷分为两部分:第一卷(选择题)和第二卷(非
选择题)。
在回答问题之前,考生必须在答题卡上填写自己的姓名和录取证号码。
2回答
第一卷时,在为每个小问题选择答案后,用铅笔涂黑答题卡上相应问题的答案标签。
如果
需要更改,请使用橡皮擦清洁,然后选择并绘制其他答案标签。
在这张试卷上写字是无效的。
3.回答第二卷时,将答案写在答题纸上。
写在这张试卷上是无效的。
4.考试结束后,
将试卷和答题纸一起退回。
卷++的所有值的集合是()a.{4}B.{-4}C.{0}D.{0,-4,4}2
已知集合a={YY=log2x,x>1},B={YY=()x,x>1},那么AB等于()a.{y0f(x),那么
实数x的取值范围是()(a)(b)(c)(d)8.在下面的区间中,函数的零点所在的区
间是()a.b.c.d.9.函数的不动点y=AX-1+2(a>0,a≠ 1)是()A.(0,1)B.(1,1)C.(1,2)d.(1,3)10。
设f(x)是区间上的奇数函数和减法函数,则f(x)的解集为()a.b。
c。
d、 11。
如果已知该函数有一个,并且当时,该函数的近似图像是()(a)(b)(c)(d)12,则该函数的值范围是()a.b.c.d.体积已知集,集b={XX。
高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
海南省三亚市第一中学高一数学上学期期中试题(A )新人教A 版注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.本试卷满分150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B 铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效。
) 1、设a 、b 、c 为非零实数,则x=||a a +b b ||+||c c +abcabc ||的所有值组成的集合为( )A .{4}B .{-4}C .{0}D .{0,-4, 4}2.已知集合A={y|y=log 2 x,x>1},B={y|y=(21)x,x>1},则A ⋂B 等于 ( ) A .{y|0<y<21} B. {y|0<y<1} C. {y|21<y<1} D.∅3.下列四个图像中,是函数图像的是( )A .(1)B .(1)、(3)、(4)C .(1)、(2)、(3)D .(3)、(4) 4.定义在R 上的函数)x (f 对任意两个不相等实数12x x 、,总有1212()()0f x f x x x ->-成立,则必有( ).A .函数)x (f 是先增加后减少B .函数)x (f 是先减少后增加C .)x (f 在R 上是增函数D .)x (f 在R 上是减函数x(1)(2)(3)(4)5. 函数2lg y x x =-+的定义域是( )A. (]0,2B. (0,2)C. []0,2D. []1,2 6.若2log a <0,1()2b>1,则 ( )A .a >1,b >0B .0<a <1, b <0 C. 0<a <1, b >0 D. a >1,b <07.已知函数3,0,()ln(1),>0.x x f x x x ⎧≤=⎨+⎩ 若f (2-x 2)>f (x ),则实数x 的取值范围是( )(A)(,1)(2,)-∞-⋃+∞ (B) (,2)(1,)-∞-⋃+∞ (C) (1,2)-(D) (2,1)-8.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)249. 函数y=a x-1+2(a>0,a ≠1)一定经过的定点是( )A. (0,1)B. (1,1) C).(1,2) D. (1,3)10.设f (x )为奇函数,且在区间(),0-∞上为减函数,()20f -=,则()0xf x <的解集为 ( ) A .()()2,02,-+∞U B .()(),20,2-∞-U C .()(),22,-∞-+∞U D .()()2,00,2-U11.函数6x )5a (2x y 2--+=在]5,(--∞上是减函数,则a 的范围是( ). A .0a ≥ B .0a ≤ C .10a ≥ D .10a ≤ 12.已知函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是( )A .B .C .D .第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的指定位置。
三亚市高一上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018高一上·西宁月考) 已知集合A={0,1},则下列关系表示错误的是()A . 0∈AB . {1}∈AC . ∅⊆AD . {0,1}⊆A2. (1分) (2018高三上·赣州期中) 幂函数的图像经过点,则()A .B .C .D .3. (1分)上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A . 13时~14时B . 16时~17时C . 18时~19时D . 19时~20时4. (1分)若点O,F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A . 6B . 3C . 4D . 85. (1分) (2018高一上·民乐期中) 下列函数在上是增函数的是()A .B .C .D .6. (1分)不等式组的解集为()A . (0,)B . (, 2)C . (, 4)D . (2,4)7. (1分) (2017高二下·临淄期末) 函数f(x)=e (e是自然对数的底数)的部分图象大致是()A .B .C .D .8. (1分)若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(﹣x)=f(x),则称f(x)为类偶函数.那么下列函数中,为类偶函数的是()A . f(x)=4cosxB . f(x)=x2﹣2x+3C . f(x)=2x+1D . f(x)=x3﹣3x9. (1分)函数的值域为()A .B .C .D .10. (1分) (2016高一上·台州期末) 已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为()A . (0,4)B . [0,4]C . (0,4]D . [0,4)二、填空题 (共7题;共7分)11. (1分) (2016高一上·浦东期中) 满足条件M⊊{1,2}的集合M有________个.12. (1分)已知函数y=3•2x+3的定义域为[﹣1,2],则值域为________.13. (1分) (2017高一上·安庆期末) 如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.14. (1分) (2017高二下·邢台期末) 已知函数,若,则________.15. (1分) (2016高一上·河北期中) 若a2x+1>()2x ,其中a>1,则x的取值范围是________.16. (1分)已知f(x),g(x)分别是定义域为R的奇函数和偶函数,且f(x)+g(x)=3x .则f(1)的值为________17. (1分) (2015高一下·金华期中) 已知函数f(x)=x2+(m+2)x+(2m+5)(m≠0)的两个零点分别在区间(﹣1,0)和区间(1,2)内,则实数m的取值范围是________.三、解答题 (共5题;共5分)18. (1分) (2017高一上·武汉期中) 已知集合A={x|x2﹣6x+5<0},B={x| <2x﹣4<16},C={x|﹣a <x≤a+3}(1)求A∪B和(∁RA)∩B(2)若A∪C=A,求实数a的取值范围.19. (1分) (2020高一上·拉萨期末)(1)计算:lg25+lg2•lg50+lg22(2)已知 =3,求的值.20. (1分)设函数f(x)=是奇函数,且f(1)=5.求a和b的值.21. (1分)已知函数f(x)=x2﹣2ax+2,x∈[﹣5,5](1)求实数a的取值范围,使y=f(x)在定义域上是单调递减函数;(2)用g(a)表示函数y=f(x)的最小值,求g(a)的解析式.22. (1分) (2017高二上·南通开学考) 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,.(Ⅰ)求函数f(x)在(-1,1)上的解析式;(Ⅱ)判断f(x)在(0,1)上的单调性;(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共5分) 18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、。
海南中学2016——2017学年第一学期期中考试高一数学试题(必修1)(考试时间:2016年11月;总分:150;总时量:120分钟)第一卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,总分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将所选答案填涂在答题卡相应位置.) 1.已知集合A 、B 均为全集U={1,2,3,4}的子集,且()U A B U ð={4},B={1,2},则U A B I ð=A .{3}B .{4}C .{3,4}D .∅2.已知集合A=[0,8],集合B=[0,4],则下列对应关系中,不能..看作是从A 到B 的函数关系的是 A .f :x→y=18x B .f :x→y=14x C .f :x→y=12xD .f :x→y=x3.下列四组函数中,表示同一函数的是A .()||f x x =与2g(x)x =B .2()lg f x x =与()2lg g x x =C .2x 1f (x)x 1-=-与()1g x x =+D .f(x)=x 1+·x 1-与g(x)=2x 1-4.已知函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是A .2x+1B .2x -1C .2x -3D .2x+75.当1a >时,在同一坐标系中,函数x y a y a xlog ==-与的图象是.A B C D 6.函数21()f x x=的单调递增区间为 A .]0,(-∞ B .),0[+∞ C .),0(+∞ D .(,0)-∞7.设0.5log 0.8a =, 1.1log 0.8b =,0.81.1c =,则a 、b 、c 的大小关系为xy1 1Oxy O 1 1O y x 1 1 O y x1 1A .a b c <<B .b a c <<C .b c a <<D .a c b <<8.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 A .2p q+ B .(1)(1)12p q ++- C .pqD .(1)(1)1p q ++-9.已知对于任意两个实数,x y ,都有()()()f x y f x f y +=+成立.若(3)2f -=,则(2)f = A .12-B .21C .43D .43-10.已知函数()ln 26f x x x =+-有唯一的零点在区间(2,3)内,且在零点附近的函数值用二分法逐x 2.5 2.53125 2.546875 2.5625 2.625 2.75 f(x) -0.084-0.0090.0290.0660.2150.512 A .2.5B .2.53C .2.54D .2.562511.已知()y f x =是R 上的奇函数.当0x ≥时,3()ln(1)f x x x =++;则当0x <时,()f x =A .3ln(1)x x --- B .3ln(1)x x +- C .3ln(1)x x --D .3ln(1)x x -+-12.已知函数f(x)为R 上的减函数,则满足1(||)(1)f f x<的实数x 的取值范围是 A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞, -1)∪(1,+∞)海南中学2016——2017学年第一学期期中考试高一数学试题(必修1) 第二卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若幂函数y =()x f 的图象经过点(2,8),那么()f x 的解析式是_____▲_____. 14.函数1()4ln(1)f x x x =+-+的定义域为 ▲ .15.某校高一(1)班50个学生选择校本课程,他们在A 、B 、C 三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:模块 模块选择的学生人数模块 模块选择的学生人数A 28 A 与B 11 B 26 A 与C 12 C26B 与C13则三个模块都选择的学生人数是 ▲ .16.函数()33xx f x =+,则1220152016()()()()2016201620162016f f f f ++++=L ▲ .三、解答题(本大题共6小题,共70分) 17.(本题满分10分)化简、求值.(Ⅰ14a a a ⋅⋅(5分)(Ⅱ)235log 3log 5log 4⋅⋅.(5分)18.(本题满分12分)试用函数单调性的定义证明:2()1xf x x =-在(1,)+∞上是减函数.19.(本题满分12分)已知函数f(x)=xax b,x 02,x 0+<⎧⎨≥⎩,且f(-2)=3,f(-1)=f(1).(Ⅰ)求f(x)的解析式,并求((2))f f -的值;(Ⅱ)请在给定的直角坐标系内,利用“描点法”画出()y f x =的大致图象.20.(本题满分12分)已知集合2{|230}A x x x =+->,集合2{|210,0}B x x ax a =--≤>.(Ⅰ)若1a =,求A B I ;(Ⅱ)若A∩B 中恰含有一个整数,求实数a 的取值范围.21.(本题满分12分)设函数f (x )=log 2(a x-b x),且f (1)=1,f (2)=log 212. (Ⅰ)求a ,b 的值;(Ⅱ)当x ∈[1,2]时,求f (x )的最大值.22.(本题满分12分)定义在数集U 内的函数y=f(x),若对任意12,x x U ∈都有12|()()|1f x f x -<,则称函数y=f(x)为U 上的storm 函数.(Ⅰ)判断下列函数是否为[1,1]-内storm 函数,并说明理由:①121x y -=+,②2112y x =+; (Ⅱ)若函数21()12f x x bx =-+在x ∈[-1,1]上为storm 函数,求b 的取值范围. 海南中学2016——2017学年第一学期期中考试高一数学(评分标准)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D A B A D B D D C C C二、填空题(本大题共4小题,每小题5分,共20分)13.___3y x =__;14. (1,0)(0,4]-U ;15. 6 ;16. 310092- . 三、解答题(本大题共6小题,共70分) 17.(本题满分10分)化简、求值.(Ⅰ)14a a a ⋅⋅;(5分)(Ⅱ)235log 3log 5log 4⋅⋅.(5分) 17.解:(Ⅰ)111111442222(())a a a a a a a a ⋅⋅=⋅==;(5分) (Ⅱ)235lg3lg5lg 4lg 4log 3log 5log 42lg 2lg3lg5lg 2⋅⋅=⋅⋅==.(5分) 18.(本题满分12分)试用函数单调性的定义证明:2()1xf x x =-在(1,)+∞上是减函数. 18.解:19.(本题满分12分)已知函数f(x)=xax b,x 02,x 0+<⎧⎨≥⎩,且f(-2)=3,f(-1)=f(1).(Ⅰ)求f(x)的解析式,并求((2))f f -的值;(Ⅱ)请在给定的直角坐标系内,利用“描点法”画出()y f x =的大致图象.19.解:(Ⅰ)由f(-2)=3,f(-1)=f(1) 得2a b 3a b 2-+=⎧⎨-+=⎩,(2分)解得a =-1,b=1,(1分)所以f(x)=xx 1,x 0,2,x 0.-+<⎧⎨≥⎩,(1分)从而3((2))((2)1)(3)28f f f f -=--+===;(2分)(Ⅱ)“描点法”作图:1°列表;(关键点一定要呈现,比如(0,1),至少三个点)x -2-10 1 2 f(x)321242°描点;3°连线(无作图痕迹扣1分)f(x)的图象如右图所示(要求过程完整,线条清晰, 突出关键点,酌情给分).(6分)20.(本题满分12分)已知集合2{|230}A x x x =+->,集合2{|210,0}B x x ax a =--≤>.(Ⅰ)若1a =,求A B I ;(Ⅱ)若A∩B 中恰含有一个整数,求实数a 的取值范围. 20.解:(Ⅰ)A={x|x 2+2x -3>0}={x|x>1或x<-3},(2分)当1a =时,由2210x x --≤得1212x -≤≤+,集合[12,12]B =-+,(2分)∴(1,12]A B =+I ;(2分)(Ⅱ)因为函数y=f(x)=x 2-2a x -1的对称轴为x=a >0,f(0)=-1<0,(1分)根据对称性可知要使A∩B 中恰含有一个整数,则这个整数为2,(1分) 所以有f(2)≤0且f(3)>0,(1分)即44a 1096a 10--≤⎧⎨-->⎩,(1分)∴34a 43≤<.(2分)21.(本题满分12分)设函数f (x )=log 2(a x-b x),且f (1)=1,f (2)=log 212. (Ⅰ)求f(x)的解析式,并写出其定义域;(Ⅱ)当x ∈[1,2]时,求f (x )的最大值.21.解:(Ⅰ)依题意,⎩⎪⎨⎪⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212,∴⎩⎪⎨⎪⎧a -b =2,a 2-b 2=12,解得a =4,b =2; ∴2()log (42),(0,)x xf x x =-∈+∝;(6分)(Ⅱ)记211()42(2)24x x xu x =-=--,令2xt =,2()u g t t t ==-,∵[1,2]x ∈,∴[2,4]t ∈,由()u g t =在[2,4],及2xt =在R 上单调增知,u (x )在[1,2]上是增函数, ∴u (x )max =(2)u =⎝⎛⎭⎪⎫22-122-14=12.∴f (x )的最大值为(2)f =log 212=2+log 23.(6分)22.(本题满分12分)定义在数集U 内的函数y=f(x),若对任意12,x x U ∈都有12|()()|1f x f x -<,则称函数y=f(x)为U 上的storm 函数.(Ⅰ)判断下列函数是否为[1,1]-内storm 函数,并说明理由:①121x y -=+,②2112y x =+;(Ⅱ)若函数21()12f x x bx =-+在x ∈[-1,1]上为storm 函数,求b 的取值范围. 22.解:(Ⅰ)①121x y -=+是[1,1]-内storm 函数,理由:121x y -=+在[1,1]-上单调增,且2max min 52,214y y -==+=, ∵max min 3||14y y -=<,∴满足12,x x U ∀∈,12|()()|1f x f x -<;(3分) ②2112y x =+是[1,1]-内storm 函数,理由:2112y x =+在[1,1]-上,且max min 3,12y y ==,∵max min 1||12y y -=<,∴满足12,x x U ∀∈,12|()()|1f x f x -<;(3分)(Ⅱ)依题意,若()f x 为storm 函数,有max min ()()1,[1,1]f x f x x -<∈-,21()12f x x bx =-+的对称轴为x=b .1°若1b <-,max min 11()(1)1,()(1)122f x f b f x f b ==-+=-=++, ∴121,2b b -<>-,无解; 2°若10b -≤<,22max min 11()(1)1,()()122f x f b f x f b b b ==-+==-+,∴2210,10b b b --<<<;3°若01b ≤≤,22max min 11()(1)1,()()122f x f b f x f b b b =-=++==-+,∴2210,01b b b +-<≤<;4°若b>1,max min 11()(1)1,()(1)122f x f b f x f b =-=++==-+,∴121,2b b <<,无解.综上,b 的取值范围为(11).(6分)。
三亚市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知集合U={1,2,3,4,5,6},A={1,4,5},B={2,3,4},则=A . {4},B . U={1,5},C . U={1,5,6},D . U={1,4,5,6}2. (2分) (2019高一上·罗庄期中) 下列四组函数中,表示同一函数的是A . ,B . ,C . ,D . ,3. (2分) (2020高一上·台州期末) 函数的定义域为()A .B .C .D .4. (2分) (2018高一上·山西月考) 已知,且,则的值等于()A . 8B . 1C . 5D . -15. (2分)二次函数的对称轴为,则当x=1时,y的值为()A . -7B . 1C . 17D . 256. (2分) (2019高一上·漯河月考) 已知是定义在R上的偶函数,当时,,则不等式的解集为()A .B .C .D .7. (2分) (2018高一上·长安期末) 设,,,则()A .B .C .D .8. (2分) (2016高一上·乾安期中) 下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A . (4)(1)(2)B . (4)(2)(3)C . (4)(1)(3)D . (1)(2)(4)9. (2分) (2018高一下·汕头期末) 函数的零点所在的区间是()A .B .C .D .10. (2分) (2016高二下·南阳期末) 函数y=f(x)的图象如图所示,则导函数y=f′(x)的图象大致是()A .B .C .D .11. (2分) (2018高一上·大连期中) 已知函数是定义域(-∞,+∞)上的单调递减函数,则实数a的取值范围是()A .B .C .D .12. (2分) (2019高三上·桂林月考) 已知函数,若 ,且,则的取值范围为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)用列举法表示集合{(x,y)|2x+y﹣5=0,x∈N,y∈N}=________.14. (1分)已知函数y=f(x)满足f(x)=+3x,则f(x)的解析式为________.15. (1分) (2019高一上·杭州期中) 已知幂函数图象经过点,则它的表达式为________;单调递减区间为________.16. (1分)某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成________个.17. (1分)(2017·青岛模拟) 已知函数f(x)= 则f(log27)=________.18. (1分) (2018高一上·扬州月考) 已知函数是二次函数,且满足,则 = ________.三、解答题 (共5题;共50分)19. (10分)求值:(1)已知:,求的值;(2)若,求的值.20. (5分) (2019高一上·西安月考) 已知集合, .(1)求;(2)若集合且,求的取值范围.21. (15分) (2019高一上·重庆月考) 已知函数,对于任意的,都有 ,当时,,且 .(1)求的值;并证明函数在R上是递减的奇函数.(2)设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.22. (10分) (2020高一下·扬州期中) 如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,O为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得, .(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.23. (10分) (2020高一上·天门月考) 设函数 .(1)若对于一切实数,恒成立,求实数的取值范围;(2)若对于,恒成立,求实数的取值范围.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共5题;共50分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
海南中学2016——2017学年第一学期期末考试高一数学试题(必修4)(考试时间:2017年1月;总分:150;总时量:120分钟)第一卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,总分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将所选答案填涂在答题卡相应位置.)1. 如果角α的终边经过点31,2⎛⎫- ⎪ ⎪⎝⎭,那么tan α的值是( )A. 3-B. 33-C. 3D. 332. cos555︒的值为( ) A.624+ B. 624- C. 624+- D. 264- 3. 化简 AB CD BD AC -+- 的结果是( ) A.0 B.AC C. BD D. DA4. sin 20cos110cos160sin70︒︒+︒︒的值是( ) A.0 B. 12- C. 1 D. 1-5. 已知三点()()()1,1,1,,2,5A B x C --共线,则x 的值是( )A. 1B. 2C. 3D. 4 6. 已知一扇形的圆心角是60︒,弧长是π,则这个扇形的面积是( ) A. 3π B. 32π C. 6π D. 34π 7. 已知向量,a b 满足()2,3,1a b a b a ==•-=,则a b -=( )A 3B .22C 7D 238. 已知,0,2παβ⎛⎫∈ ⎪⎝⎭,()111cos ,cos 714ααβ=+=-,则角β=( ) A. 3π B. 6π C. 512πD. 4π 9. 已知sin 11cos 2x x +=,则sin 1cos x x-的值是( ) A.12 B. 2 C. 12- D. 2- 10. 两个粒子A ,B 从同一源发射出来,在某一时刻,它们的位移分别为()()2,10,4,3A B s s ==,粒子B 相对粒子A 的位移是s ,则s 在B s 的投影是( )A .135 B. 135- C. 135353 D. 135353-11. 动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
海南中学2016――2017学年第一学期期末考试高一数学试题(必修4)(考试时间:2017年1月;总分:150;总时量:120分钟)第一卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,总分60分.在每小题给出的四个选项中,只有一项是符合 题目要求的•请将所选答案填涂在答题卡相应位置RTCrpUDGiT已知向量 a,b 满足 a| =2,|b| = 3,a ・(b_a}=1,则 a_b =.)b5E2RGbCAP1. 如果角”边经过点匕訂那么的值是()A.B. .3_ 3C. .3D ^3p1EanqFDPw32. COS555的值为( ) A.B.C.3.化简A^-C D B^-AC 的结果是TACB4. A.sin 20 cos110 cos160 sin70 的值是( B. -丄2C. BDD. DADXDiTa9E3dC.5. 已知三点A -1, -1 ,B 1,x ,C 2,5共线, 则x 的值是(A.B. 2C. 3D. 45PC Z VD7H X A6. A.已知一扇形的圆心角是60,弧长是「I , 3 二 则这个扇形的面积是( B. 2C. 6二D.3 ―'jLBHrnAlLg47. B . 2.2C . J7238.已知 a ,0 e ,0,I 2丿1 11cos"严弘呵"打,则角4(小「亦 sin x +1 1 9.已知 则s ^-1的值是( )cosx 2 cosxA. 1B. 2C. -1D. -2LDAYtRyKfE2210.两个粒子A , B 从同一源发射出来,在某一时刻,它们的位移分别为 S A 二2,10 二4,3 ,粒子B 相对粒子A 的位移是s ,则S 在S B 的投影是()11.动点A x,y 在圆x 2 y 2 =1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
已知时间t = 0时,点A 的坐标是(丄,乜),则当0乞亡12时,动点A 的纵坐标y 关于t (单位:2 2秒)的函数的单调递增区间是( )A . 0,11B . 1,71C .1.7,12D . 1.0,1 和 1.7,12112. 若厶ABC 内接于以0为圆心, 1为半径的圆,且 T T T3OA 4OB 5OC =0,贝U OC AB 的值为 1 ()1 r 1 小 66A. 5B.5C.5D.5海南中学2016――2017学年第一学期期末考试高一数学试题(必修4)第二卷(非选择题,共 90分)、填空题(本大题共4小题,每小题5分,共20 分)15. 一质点受到平面上的三个力F 「F 2,F 3 (单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成A.B. 6C. 5二12小 兀D. xHAQX74J0X413 5B.13 C 13辰D.13 Z53 535313.设sin 2 :-sin 〉, 二),则tan2‘的值是14 .在 ABC 中,BC = 5,CA =8, C =60 ,则60°角,且F i , F2的大小分别为2和4,则F3的大小为.Zzz6ZB2Ltk16. 设〉为锐角,若cos 4,则sin(2 )的值为I 6丿 5 12 -----------------------三、解答题(本大题共6小题,共70分)1 3 tan n17. (本题满分10分)已知si n :•「二—,si n - 一--,求——'的值•5 5 tan P18. (本题满分12分)已知e,e2是夹角为60°的单位向量,且a = 2e+e2, 6 = -3e+2q(I)求a b ;(U)求a与b的夹角v19. (本题满分12 分)在平面直角坐标系xOy 中,点A( —1, —2)、B(2,3)、C(-2,—1)。
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
三亚市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二下·武威月考) 设集合M={-1,0,1},N={ | = },则M∩N=()A . {-1,0,1}B . {0,1}C . {1}D . {0}2. (2分) (2019高二上·田阳月考) 从1,2,3,4,5中任取2个不同的数,设事件为取到的两个数之和为偶数,则()A .B .C .D .3. (2分)从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A . 至少有一个黒球与都是黒球B . 至少有一个黑球与都是红球C . 至少有一个黒球与至少有个红球D . 恰有个黒球与恰有个黒球4. (2分)求和的等差中项和等比中项分别是()A . 7, 2B . -7,2C . 7,D . 7,-25. (2分) (2016高一下·郑州期中) 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生.现将800名学生从1到800进行编号,如果抽到的是7,则从33~48这16个数中应取的数是()A . 40B . 39C . 38D . 376. (2分)如右图所示的算法流程图中(注:“A=1”也可写成“A:=1”或“”, 均表示赋值语句),第3个输出的数是A . 1B .C . 2D .7. (2分)(2017·广西模拟) 直线y=x﹣1的斜率等于()A . ﹣1B . 1C .D .8. (2分)(2018高一上·寻乌期末) 定义在上的奇函数,当时,,则关于的函数的所有零点之和为()A .B .C .D .9. (2分)设非负实数x,y满足约束条件则z=2x+3y的最大值为()A . 4B . 8C . 9D . 1210. (2分)已知三点共线,则k的值是A . 7B . -5C .D . 311. (2分)在等差数列中,且,则的最大值等于()A . 3B . 6C . 9D . 3612. (2分) (2016高一上·陆川期中) 二次方程x2+(a2+1)x+a﹣2=0,有一个根比1大,另一个根比﹣1小,则a的取值范围是()A . ﹣3<a<1B . ﹣2<a<0C . ﹣1<a<0D . 0<a<2二、填空题 (共4题;共5分)13. (2分) (2016高二上·孝感期中) 二进制数101101110(2)化为十进制数是________(10),再化为八进制数是________(8).14. (1分) (2016高二下·安徽期中) 已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程 =bx+a必过点________.15. (1分) (2015高三上·廊坊期末) 现有10张奖券,其中4张有奖,若有4人购买,每人一张,至少有一人中奖的概率是________ .16. (1分) (2016高一上·陆川期中) 已知下列四个命题:①函数f(x)= x﹣lnx(x>0),则y=f(x)在区间(,1)内无零点,在区间(1,e)内有零点;②函数f(x)=log2(x+ ),g(x)=1+ 不都是奇函数;③若函数f(x)满足f(x﹣1)=﹣f(x+1),且f(1)=2,则f(7)=﹣2;④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,其中正确命题的序号是________.三、解答题 (共6题;共60分)17. (10分) (2016高一下·合肥期中) 设数列{an}的前n项和Sn满足:Sn=n2 ,等比数列{bn}满足:b2=2,b5=16(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和Tn.18. (10分) (2015高三上·平邑期末) 已知函数f(x)= sinxcosx+cos2x,x∈R.(1)把函数f(x)的图象向右平移个单位,得到函数g(x)的图象,求g(x)在[0, ]上的最大值;(2)在△ABC中,角A,B,C对应的三边分别为a,b,c,b= ,f()=1,S△ABC=3 ,求a 和c的值.19. (10分)某军区新兵50m步枪射击个人平均成绩X(单位:环)服从正态分布N(μ,σ2),从这些个人平均成绩中随机抽取,得到如下频率分布表:X456789频数122640292(1)求μ和σ2的值(用样本书序期望、方差代替总数数学期望、方差);(2)如果这个军区有新兵10000名,试估计这个军区新兵步枪射击个人平均成绩在区间(7.9,8.8]上的人数.20. (10分) (2019高二上·安徽月考) 已知三棱锥中:,,,是的中点,是的中点.(1)证明:平面平面;(2)求点到平面的距离.21. (10分) (2018高二上·武汉期末) 选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知曲线,,直线( 是参数)(1)求出曲线的参数方程,及直线的普通方程;(2)为曲线上任意一点,为直线上任意一点,求的取值范围.22. (10分) (2016高二上·乐清期中) 已知函数f(x)=x2﹣(a+1)x+1(a∈R)(1)若关于x的不等式f(x)>0的解集为R,求实数a的取值范围;(2)若关于x的不等式f(x)≤0的解集为P,集合Q={x|0≤x≤1},若P∩Q=∅,求实数a的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。
三亚市民族中学2016届高三第二次月考(文科)数学试卷第Ⅰ卷说明:本试卷分第Ⅰ卷(试卷)和第Ⅱ卷(答题卷)两部分,共150分,考试时间120分钟。
一.选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
并把选项答案填写在第3页答题栏内)1.已知全集U 为实数集,{}}{220,1A x x x B x x =-<=≥,则U A B ð=( )。
A .{|01}x x <<B .{|02}x x <<C .{|1}x x <D .∅ 2.函数()2()log 6f x x =-的定义域是( )。
A .{}|6x x >B .{}|36x x -<< C.{}|3x x >-D .{}|36x x -<≤3.设()f x 是定义在R 上的奇函数,且当0x >时,)lg()(2x x x f -=,则(2)f -=( )。
A .21lgB .2lg C.2lg 2 D .6lg4.若指数函数x a y =经过点)3,1(-.则a 等于( )。
A .3 B .2C . 21D .315.若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围是( )。
A .03≥-≤m m 或B .03≤≤-m C.3-≥m D .3-≤m 6.命题“若0a >,则1a >”的逆命题.否命题.逆否命题中,真命题的个数是( )。
A.0B.1C.2D.37.设f(x) 是定义域为R 的奇函数,且在()+∞,0上是减函数.若()01=f ,则不等式()0>x f 的解集是( )。
A .()()+∞-∞-,11,B .()()1,00,1 -C .()()1,01, -∞-D .()()+∞-,10,1 8.一物体作竖直上抛运动,它距地面的高度()h m 与时间()t s 间的函数关系式为2() 4.910h t t t =-+,则'(1)h =( )。
2016-2017学年海南省三亚市民族中学高一(上)期中数学试卷一、选择题:(本大题共12小题,每小题3分,共36分)1.已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.函数f(x)=+的定义域是()A.[2,+∞)B.[2,3) C.(﹣∞,3)∪(3,+∞)D.[2,3)∪(3,+∞)3.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.34.已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a5.下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|6.如果函数f(x)=(1﹣2a)x在实数集R上是减函数,那么实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣∞,)D.(﹣,)7.函数y=2x+2x﹣6的零点必定位于的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A. B. C. D.9.已知函数:①y=2x;②y=log2x;③y=x﹣1;④y=.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是()A.②①③④B.②③①④C.④①③②D.④③①②10.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a11.图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)12.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,则()A.f(﹣2)<f(1)<f(3)B.f(1)<f(﹣2)<f(3)C.f(3)<f(﹣2)<f(1)D.f(3)<f(1)<f(﹣2)二、填空题:(本大题共4小题,每小题4分,共16分)13.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x﹣3,则f (﹣2)+f(0)=.14.f(x)=,若f(x)=10,则x=.15.设23﹣2x<23x﹣4,则x的取值范围是.16.函数f(x)=的定义域为.三、解答题:(10分+10+10+10+8=48)17.(1)设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.求A∪B,∁U(A∩B);(2)化简求值: ++0.027×(﹣)﹣2.18.已知函数.(1)用定义证明f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.19.已知函数f(x)=x m﹣,且f(4)=3.(1)求m的值;(2)求f(x)的奇偶性.20.设定义域为R的函数f(x)=.(1)在如图所示的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);(2)求函数f(x)在区间[1,4]上的最大值与最小值.21.已知函数f(x)对一切实数x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式.2016-2017学年海南省三亚市民族中学高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分)1.已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【考点】交集及其运算.【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选C2.函数f(x)=+的定义域是()A.[2,+∞)B.[2,3) C.(﹣∞,3)∪(3,+∞)D.[2,3)∪(3,+∞)【考点】函数的定义域及其求法.【分析】由偶次根式内部的代数式大于等于0,分式的分母不等于0,分别求出x的取值集合后取交集即可得到原函数的定义域.【解答】解:要使原函数有意义,则,解得x≥2且x≠3.所以原函数的定义域为[2,3)∪(3,+∞).故选D.3.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【考点】分段函数的解析式求法及其图象的作法.【分析】考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.4.已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a【考点】不等关系与不等式.【分析】利用指数函数的单调性即可判断出.【解答】解:∵,∴b>c>a.故选A.5.下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D6.如果函数f(x)=(1﹣2a)x在实数集R上是减函数,那么实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣∞,)D.(﹣,)【考点】函数单调性的判断与证明;函数单调性的性质.【分析】根据指数函数的单调性与底数之间的关系确定底数的取值范围,即可求出实数a的取值范围.【解答】解:∵函数f(x)=(1﹣2a)x在实数集R上是减函数,∴0<1﹣2a<1,解得0,即实数a的取值范围是(0,).故选A.7.函数y=2x+2x﹣6的零点必定位于的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【考点】函数零点的判定定理.【分析】根据连续函数f(x)满足f(a)f(b)<0,由此可得函数f(x)的零点所在的区间.【解答】解:令f(x)=y=2x+2x﹣6,则f(0)=20+2×0﹣6=﹣5<0,f(1)=21+2×1﹣6=﹣4<0,f(2)=22+2×2﹣6=2>0,故f(1)f(2)<0,根据零点的存在性定理可得,函数y=2x+2x﹣6的零点必定位于(1,2)内.故选:B.8.设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A. B. C. D.【考点】一次函数的性质与图象;函数单调性的性质.【分析】根据一次函数的单调性由x的系数可得2a﹣1<0,解可得答案.【解答】解:∵函数f(x)=(2a﹣1)x+b是R上的减函数,则2a﹣1<0∴a<故选B.9.已知函数:①y=2x;②y=log2x;③y=x﹣1;④y=.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是()A.②①③④B.②③①④C.④①③②D.④③①②【考点】对数函数的图象与性质;指数函数的图象与性质.【分析】本题考查的是幂函数、指数函数以及对数函数的图象和性质问题.在解答时可以逐一对比函数图象与解析式,利用函数的性质特别是单调性即可获得此问题的解答.【解答】解:第一个图象过点(0,0),与④对应;第二个图象为反比例函数图象,表达式为,③y=x﹣1恰好符合,∴第二个图象对应③;第三个图象为指数函数图象,表达式为y=a x,且a>1,①y=2x恰好符合,∴第三个图象对应①;第四个图象为对数函数图象,表达式为y=log a x,且a>1,②y=log2x恰好符合,∴第四个图象对应②.∴四个函数图象与函数序号的对应顺序为④③①②.故选D.10.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【考点】对数值大小的比较.【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:D.11.图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)【考点】函数的图象与图象变化.【分析】求已知图象函数的解析式,常使用特殊值代入排除法.【解答】解:由已知函数图象易得:点(0,0)、(1、)在函数图象上将点(0,0)代入可排除A、C将(1、)代入可排除D故选B.12.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,则()A.f(﹣2)<f(1)<f(3)B.f(1)<f(﹣2)<f(3)C.f(3)<f(﹣2)<f(1)D.f(3)<f(1)<f(﹣2)【考点】函数单调性的性质;函数单调性的判断与证明.【分析】先根据对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,可得函数f(x)在(﹣∞,0](x1≠x2)单调递增.进而可推断f(x)在[0,+∞)上单调递减,进而可判断出f(3),f(﹣2)和f(1)的大小.【解答】解:∵对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,故f(x)在x1,x2∈(﹣∞,0](x1≠x2)单调递增.又∵f(x)是偶函数,∴f(x)在[0,+∞)上单调递减,且满足n∈N*时,f(﹣2)=f(2),由3>2>1>0,得f(3)<f(﹣2)<f(1),故选:C.二、填空题:(本大题共4小题,每小题4分,共16分)13.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x﹣3,则f(﹣2)+f(0)=﹣1.【考点】函数奇偶性的性质.【分析】由题意,f(0)=0,f(﹣2)=﹣f(2)=﹣1,即可得出结论.【解答】解:由题意,f(0)=0,f(﹣2)=﹣f(2)=﹣1,∴f(﹣2)+f(0)=﹣1,故答案为:﹣1.14.f(x)=,若f(x)=10,则x=﹣3.【考点】函数的零点与方程根的关系.【分析】利用函数的解析式列出方程求解即可.【解答】解:f(x)=,若f(x)=10,可得x2+1=10,解得x=﹣3.x=3(舍去)故答案为:﹣3.15.设23﹣2x<23x﹣4,则x的取值范围是x>.【考点】指、对数不等式的解法.【分析】利用指数函数的增减性确定出x的范围即可.【解答】解:由y=2x为增函数,且23﹣2x<23x﹣4,得到3﹣2x<3x﹣4,解得:x>,故答案为:x>.16.函数f(x)=的定义域为(2,+∞).【考点】函数的定义域及其求法.【分析】要使函数有意义,则需x>0,且log2x﹣1>0,运用对数函数的单调性,即可得到定义域.【解答】解:要使函数有意义,则需x>0,且log2x﹣1>0,即x>0且x>2,即有x>2.则定义域为(2,+∞).故答案为:(2,+∞).三、解答题:(10分+10+10+10+8=48)17.(1)设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.求A∪B,∁U(A∩B);(2)化简求值: ++0.027×(﹣)﹣2.【考点】有理数指数幂的化简求值;交、并、补集的混合运算.【分析】(1)先分别求出集合A,B,由此能求出A∪B,A∩B,∁U(A∩B).(2)利用有理数指数幂性质及运算法则求解.【解答】解:(1)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}={x|x≥2}.∴A∪B={x|x≥﹣1},A∩B={x|2≤x<3},∁U(A∩B)={x|x<2或x≥3}.(2)++0.027×(﹣)﹣2=+4+×9=.18.已知函数.(1)用定义证明f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.【考点】函数的最值及其几何意义;函数单调性的判断与证明.【分析】(1)任取1≤x1<x2,我们构造出f(x2)﹣f(x1)的表达式,根据实数的性质,我们易得出f(x2)﹣f(x1)的符号,进而根据函数单调性的定义,得到答案.(2)利用函数的单调性,即可求f(x)在[1,4]上的最大值及最小值.【解答】解:(1)设1≤x1<x2,f(x2)﹣f(x1)=﹣x1﹣=,因为1≤x1<x2,所以x2﹣x1>0,x2x1﹣1>0,x2x1>0,所以f(x2)﹣f(x1)>0,即f(x2)>f(x1)故函数f(x)在区间[1,+∞)上是增函数;(2)由(1),可得f(x)在[1,4]上的最大值是f(4)=,最小值f(1)=2.19.已知函数f(x)=x m﹣,且f(4)=3.(1)求m的值;(2)求f(x)的奇偶性.【考点】函数奇偶性的判断;函数解析式的求解及常用方法.【分析】(1)利用函数f(x)=x m﹣,且f(4)=3,即可求m的值;(2)利用奇函数的定义,即可求f(x)的奇偶性.【解答】解:(1)∵函数f(x)=x m﹣,且f(4)=3,∴4m﹣1=3,∴m=1;(2)∵f(x)=x﹣,∴f(﹣x)=﹣x+=﹣f(x),∴f(x)是奇函数.20.设定义域为R的函数f(x)=.(1)在如图所示的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);(2)求函数f(x)在区间[1,4]上的最大值与最小值.【考点】函数的最值及其几何意义;分段函数的应用.【分析】(1)根据函数解析式,可得函数的图象,根据图象写出函数f(x)的单调区间;(2)根据图象的性质,求出结果.【解答】解:(1)如图,单调增区间为(﹣∞,0),(1,+∞);单调减区间为(0,1);(2)函数在区间[1,4]上单调递增,f(x)min=f(1)=0,f(x)max=f(4)=921.已知函数f(x)对一切实数x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式.【考点】抽象函数及其应用.【分析】(1)根据对一切实数x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且题中已经给出了f(1)=0,要求的值是f(0),所以,令x=1,y=0即可求f(0);(2)在(1)中已经求出了f(0)的值,只需在给出的等式中取y=0即可求f (x)的解析式.【解答】解:(1)因为函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立.且f(1),所以令x=1,y=0,代入上式得f(1)﹣f(0)=2,所以f(0)=﹣2.(2)因为函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,所以令y=0,代入上式得f(x)﹣f(0)=x(x+1),又由(1)知f(0)=﹣2,所以f(x)=x(x+1)﹣2.2017年4月13日。
海南高一高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.cos600°等于()A.B.C.-D.-2.函数的最小正周期为()A.B.C.D.3.已知cos(+α)=,则cos2α的值为()A.B.-C.D.-4.已知单位向量a,b的夹角为,那么()A.B.C.2D.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位6.若|a|=2sin15°,|b|=4cos15°,a与b的夹角为30°,则a·b的值是()A.B.C.2D.7.已知向量,,且(+)⊥,则与的夹角是()A.B.C.D.8.函数的图象的一条对称轴的方程是()A.B.C.D.9.已知,则向量方向上的投影为()A.B.C.2D.10 10.()A.B.C.0D.11.若函数在与直线有两个交点,则的取值范围为()A.B.C.D.二、填空题1.已知向量,,且∥,则x的值是 _______________.2.已知tanα=−2,tan(α+β)=17,tanβ值为___________.3.函数的最大值为 .三、解答题1.已知,,且向量与不共线.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.2.已知函数f(x)=2sin x cos x-cos2x.(1)求f(0)的值及函数f(x)的单调递增区间;(2)求函数f(x)在区间上的最大值和最小值.3.已知向量a=(cos x,sin x),b=(-cos x,cos x),c=(-1,0).(1)若x=,求向量a,c的夹角;(2)当x∈时,求函数f(x)=2a·b+1的值域.海南高一高中数学期中考试答案及解析一、选择题1.cos600°等于()A.B.C.-D.-【答案】D【解析】2.函数的最小正周期为()A.B.C.D.【答案】C【解析】根据周期公式计算得:故选C3.已知cos(+α)=,则cos2α的值为()A.B.-C.D.-【答案】A【解析】由cos(+α)=得4.已知单位向量a,b的夹角为,那么()A.B.C.2D.【答案】B【解析】得5.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】C【解析】向右移即得到故选C6.若|a|=2sin15°,|b|=4cos15°,a与b的夹角为30°,则a·b的值是()A.B.C.2D.【答案】D【解析】7.已知向量,,且(+)⊥,则与的夹角是()A.B.C.D.【答案】A【解析】,得8.函数的图象的一条对称轴的方程是()A.B.C.D.【答案】A【解析】=,令,令k=0得x=9.已知,则向量方向上的投影为()A.B.C.2D.10【答案】C【解析】向量方向上的投影为:10.()A.B.C.0D.【答案】B【解析】由题可知:,,故点睛:首先根据函数表达式可求出周期,那么再看2017是多少个周期,然后求出每个周期的和,最后进行计算即可11.若函数在与直线有两个交点,则的取值范围为()A.B.C.D.【答案】C【解析】当当所以画出函数图像所以点睛:解决函数交点问题可将函数图形画出分析,对于分段函数则要注意将区间分段,写出每段函数表达式然后再画图求解即可二、填空题1.已知向量,,且∥,则x的值是 _______________.【答案】6【解析】∥得2.已知tanα=−2,tan(α+β)=17,tanβ值为___________.【答案】3【解析】由代入得点睛:根据正切函数的和差公式打开代入求解即可,本题要熟练三角函数的和差公式3.函数的最大值为 .【答案】【解析】===,因为,所以当时,y取最大值,最大时为. 【考点】二倍角公式和二次函数的性质.三、解答题1.已知,,且向量与不共线.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.【答案】(1)(2).【解析】(1)根据题意化简然后将已知代入即可(2)向量与互相垂直,则去括号求解即可试题解析:解:(1)(2)由题意可得:,即,∴,∴.点睛:熟练向量的平行和垂直结论以及向量的数量积公式即可2.已知函数f(x)=2sin x cos x-cos2x.(1)求f(0)的值及函数f(x)的单调递增区间;(2)求函数f(x)在区间上的最大值和最小值.【答案】(1),k∈Z (2)x=0时,f(x)取得最小值-,当2x-=,即x=时,f(x)取得最大值2【解析】试题分析(1)先将原式化简为2sin再令-+2kπ≤2x-≤+2kπ求出递增区间(2)先求出-≤2x-≤所以当2x-=-,即x=0时,f(x)取得最小值-当2x-=,即x=时,f(x)取得最大值2试题解析:解:(1)因为f(x)=sin2x-cos2x=2sin,所以f(0)=-由-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,所以f(x)的单调递增区间是,k∈Z(2)因为0≤x≤,所以-≤2x-≤所以,当2x-=-,即x=0时,f(x)取得最小值-当2x-=,即x=时,f(x)取得最大值23.已知向量a=(cos x,sin x),b=(-cos x,cos x),c=(-1,0).(1)若x=,求向量a,c的夹角;(2)当x∈时,求函数f(x)=2a·b+1的值域.【答案】(1)(2)[-,1]【解析】(1)根据公式cos〈a,c〉=代入数值计算(2)先化简f(x)=2a·b+1=sin,然后求出=1 当2x-=,即x=时,2x-∈,再根据函数图形便可得到当2x-=,即x=时,f(x)maxf(x)=-min试题解析:解:(1)∵a=(cos x,sin x),c=(-1,0),∴|a|==1,|c|==1.当x=时,a==,a·c=×(-1)+×0=-,cos〈a,c〉==-.∵0≤〈a,c〉≤π,∴〈a,c〉=(2)f(x)=2a·b+1=2(-cos2x+sin x cos x)+1=2sin x cos x-(2cos2x-1)=sin2x-cos2x=sin∵x∈,∴2x-∈,故sin∈,∴当2x-=,即x=时,f(x)=1max当2x-=,即x=时,f(x)=-min∴f(x)的值域为[-,1]点睛:首先要熟悉向量的坐标积运算,夹角公式:cos〈a,c〉=,然后根据二倍角公式,辅助角公式将函数化简求出2x-范围,根据正弦函数的图形便可轻松求出问题。
一、单选题。
(本大题共8小题,共40高一(上)期中数学试卷分。
在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。
高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.满足条件M∪{1}={1,2,3}的集合M的个数是()A.4 B.3 C.2 D.12.已知全集U=R,设集合A={x|y=lg(x﹣1)},集合B={y|y=2x,x≥1},则A∩(C U B)=()A.[1,2]B.[1,2)C.(1,2)D.(1,2]3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)4.已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1} B.{﹣1}C.{0}D.{﹣1,0}5.设函数f(x)=.若f(a)=4,则实数a=()A.﹣4 或﹣2 B.﹣4 或2 C.﹣2 或4 D.﹣2 或26.函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)7.已知函数f(x)=若f(x0)>3,则x0的取值范围是()A.x0>8 B.x0<0或x0>8 C.0<x0<8 D.x0<0或0<x0<88.如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是()A.a≤﹣3 B.a≥﹣3 C.a≤5 D.a≥59.已知对数函数f(x)=log a x是增函数,则函数f(|x|+1)的图象大致是()A.B.C.D.10.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a11.已知函数f(x)=是R上的减函数则a的取值范围是()A.(0,3)B.(0,3]C.(0,2)D.(0,2]12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0则<0的解集为()A.(﹣3,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣∞,﹣3)∪(0,+3)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在对应题号后的横线上)13.已知函数f(x)的定义域为(﹣1,1),则函数f(2x+1)的定义域为.14.计算:e ln3+log9+0.125=.15.已知集合A={x,,1},B={x2,x+y,0},若A=B,则x2014+y2015=.16.已知函数y=log a(2﹣ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.18.(12分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1)(1)求函数f(x)的定义域;(2)求函数f(x)的零点.19.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值;(2)证明f(x)在(0,+∞)上为增函数.20.(12分)已知函数f(x)=1﹣(1)求函数f(x)的定义域和值域;(2)试判断函数f(x)的奇偶性.21.(12分)经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)﹣f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)﹣p(x),某公司最多生产100 台报系统装置,生产x台的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.(1)求利润函数p(x)及边际利润函数M1(x);(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?22.(12分)定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,(1)求f(1)和f(﹣1)的值;(2)试判断f(x)的奇偶性,并加以证明;(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.2016-2017学年青海省师大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.满足条件M∪{1}={1,2,3}的集合M的个数是()A.4 B.3 C.2 D.1【考点】并集及其运算.【专题】计算题.【分析】根据集合并集的定义“由所有属于集合A或属于集合B的元素所组成的集合叫做并集”进行反向求解即可.【解答】解:∵M∪{1}={1,2,3}∴M={2,3}或{1,2,3}故选C.【点评】本题主要考查了集合中并集的运算,是求集合的并集的基础题,也是高考常会考的题型.2.已知全集U=R,设集合A={x|y=lg(x﹣1)},集合B={y|y=2x,x≥1},则A∩(∁U B)=()A.[1,2]B.[1,2)C.(1,2)D.(1,2]【考点】交、并、补集的混合运算.【专题】集合.【分析】先求出A、B,然后求解,从而求出∁U B,即可求解集合A∩(∁U B).【解答】解:全集U=R,设集合A={x|y=lg(x﹣1)}={x|x>1},集合B={y|y=2x,x≥1}={y|≥2},∁U B={y|y<2}则A∩(∁U B)=(1,+∞)∩(﹣∞,2)=(1,2).故选:C.【点评】本题考察了集合的运算,求出补集是解题的关键,本题是一道基础题.3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=a x+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=a x+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.4.已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1} B.{﹣1}C.{0}D.{﹣1,0}【考点】交集及其运算.【分析】N为指数型不等式的解集,利用指数函数的单调性解出,再与M求交集.求【解答】解:⇔2﹣1<2x+1<22⇔﹣1<x+1<2⇔﹣2<x<1,即N={﹣1,0}又M={﹣1,1}∴M∩N={﹣1},故选B【点评】本题考查指数型不等式的解集和集合的交集,属基本题.5.设函数f(x)=.若f(a)=4,则实数a=()A.﹣4 或﹣2 B.﹣4 或2 C.﹣2 或4 D.﹣2 或2【考点】函数的值.【专题】计算题;分类讨论;分类法;函数的性质及应用.【分析】当a>0时,f(a)=a2=4;当a≤0时,f(a)=﹣a=4.由此能求出实数a的值.【解答】解:∵f(x)=,f(a)=4,∴当a>0时,f(a)=a2=4,解得a=2或a=﹣2(舍);当a≤0时,f(a)=﹣a=4,解得a=﹣4.∴a=﹣4或a=2.故选:B.【点评】本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.6.函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.7.已知函数f(x)=若f(x0)>3,则x0的取值范围是()A.x0>8 B.x0<0或x0>8 C.0<x0<8 D.x0<0或0<x0<8【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【专题】计算题;压轴题;分类讨论.【分析】通过对函数f(x)在不同范围内的解析式,得关于x0的不等式,从而可解得x0的取值范围.【解答】解:①当x≤0时,f(x0)=>3,∴x0+1>1,∴x0>0 这与x≤0相矛盾,∴x∈∅.②当x>0时,f(x0)=log2x0>3,∴x0>8综上:x0>8故选A.【点评】本题主要考查对数函数的单调性,及分段函数,在解不等式时注意分类讨论,是个基础题.8.如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是()A.a≤﹣3 B.a≥﹣3 C.a≤5 D.a≥5【考点】二次函数的性质.【专题】计算题.【分析】先用配方法将二次函数变形,求出其对称轴,再由“在(﹣∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.【解答】解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2其对称轴为:x=1﹣a∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数∴1﹣a≥4∴a≤﹣3故选A【点评】本题主要考查二次函数的单调性,解题时要先明确二次函数的对称轴和开口方向,这是研究二次函数单调性和最值的关键.9.已知对数函数f(x)=log a x是增函数,则函数f(|x|+1)的图象大致是()A.B.C.D.【考点】对数函数的图象与性质;函数的图象与图象变化.【专题】数形结合.【分析】先导出再由函数f(x)=log a x是增函数知,a>1.再由对数函数的图象进行判断.【解答】解:由函数f(x)=log a x是增函数知,a>1.故选B.【点评】本小题主要考查了对数函数的图象与性质,以及分析问题和解决问题的能力.这类试题经常出现,要高度重视.10.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】对数值大小的比较.【专题】转化思想;函数的性质及应用.【分析】由于1<a=2<,c=log=log23>=,进而得出.【解答】解:∵1<a=2<=,b=log2<0,c=log=log23>=,∴c>a>b.故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.11.已知函数f(x)=是R上的减函数则a的取值范围是()A.(0,3)B.(0,3]C.(0,2)D.(0,2]【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】由f(x)为R上的减函数可知,x≤1及x>1时,f(x)均递减,且(a﹣3)×1+5≥,由此可求a的取值范围.【解答】解:因为f(x)为R上的减函数,所以x≤1时,f(x)递减,即a﹣3<0①,x>1时,f(x)递减,即a>0②,且(a﹣3)×1+5≥③,联立①②③解得,0<a≤2.故选D.【点评】本题考查函数单调性的性质,本题结合图象分析更为容易.12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0则<0的解集为()A.(﹣3,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣∞,﹣3)∪(0,+3)【考点】奇偶性与单调性的综合.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】根据题意和偶函数的性质画出符合条件的图象,利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.【解答】解:由题意画出符合条件的函数图象:∵函数y=f(x)为偶函数,∴<0转化为xf(x)<0,由图得,当x>0时,f(x)<0,则x>3;当x<0时,f(x)>0,则﹣3<x<0;综上得,<0的解集是:(﹣3,0)∪(3,+∞),故选C.【点评】本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在对应题号后的横线上)13.已知函数f(x)的定义域为(﹣1,1),则函数f(2x+1)的定义域为(﹣1,0).【考点】函数的定义域及其求法.【专题】函数思想;定义法;函数的性质及应用.【分析】根据复合函数定义域之间的关系进行求解即可.【解答】解:∵函数f(x)的定义域为(﹣1,1),∴由﹣1<2x+1<1,得﹣1<x<0,则函数f(2x+1)的定义域为(﹣1,0).故答案为:(﹣1,0)【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.根据复合函数定义域之间的关系是解决本题的关键.14.计算:e ln3+log9+0.125=11.【考点】对数的运算性质.【专题】转化思想;函数的性质及应用.【分析】利用指数幂与对数的运算法则即可得出.【解答】解:原式=3++=3+4+2﹣1×(﹣2)=11.故答案为:11.【点评】本题考查了指数幂与对数的运算法则,考查了推理能力与计算能力,属于基础题.15.已知集合A={x,,1},B={x2,x+y,0},若A=B,则x2014+y2015=1.【考点】集合的相等.【专题】计算题;方程思想;演绎法;集合.【分析】根据集合的性质得到x≠0,1,分别求出x,y的值,代入x2014+y2015,求出即可.【解答】解:∵集合{x2,x+y,0}={x,,1},由题意得:x≠0,1,∴=0,则y=0,∴x+y=1,x2=1,解得:x=﹣1,∴x2014+y2015=(﹣1)2014+02015=1,故答案为:1.【点评】本题考查了集合的运算,考查集合的性质,是一道基础题.16.已知函数y=log a(2﹣ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是(1,2).【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】先将函数f(x)=log a(2﹣ax)转化为y=log a t,t=2﹣ax,两个基本函数,再利用复合函数的单调性求解.【解答】解:令y=loga t,t=2﹣ax,(1)若0<a<1,则函y=loga t,是减函数,由题设知t=2﹣ax为增函数,需a<0,故此时无解;(2)若a>1,则函数y=loga t是增函数,则t为减函数,需a>0且2﹣a×1>0,可解得1<a<2综上可得实数a 的取值范围是(1,2).故答案为:(1,2).【点评】本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.【考点】交集及其运算.【专题】集合.【分析】由A与B的交集为A,得到A为B的子集,分A为空集与A不为空集两种情况求出a的范围即可.【解答】解:∵A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},且A∩B=A,∴A⊆B,当A=∅时,则有2a>a+3,即a>3,满足题意;当A≠∅时,则有2a≤a+3,即a≤3,且a+3<﹣1或2a>5,解得:a<﹣4或<a≤3,综上,a的范围为{a|a<﹣4或a>}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.18.(12分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1)(1)求函数f(x)的定义域;(2)求函数f(x)的零点.【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】(1)根据对数函数的性质得到关于x的不等式组,解出即可;(2)问题转化为解方程x2+2x﹣2=0,从而求出函数的零点即可.【解答】解:(1)要使函数由意义,则有,解得:﹣3<x<1,所以函数的定义域为(﹣3,1).(2)函数化为f(x)=log a(﹣x2﹣2x+3),由f(x)=0,得﹣x2﹣2x+3=1,即x2+2x﹣2=0,解得:x=﹣1±,∵﹣1±∈(﹣3,1),∴f(x)的零点是﹣1±.【点评】本题考查了求函数的定义域问题,考查函数的零点问题,是一道基础题.19.(12分)(2001•江西)设a>0,f(x)=+是R上的偶函数.(1)求a的值;(2)证明f(x)在(0,+∞)上为增函数.【考点】函数单调性的判断与证明;偶函数.【分析】(1)根据偶函数的定义f(﹣x)=f(x)即可得到答案.(2)用定义法设0<x1<x2,代入作差可得.【解答】解:(1)依题意,对一切x∈R,有f(﹣x)=f(x),即∴=0对一切x∈R成立,则,∴a=±1,∵a>0,∴a=1.(2)设0<x1<x2,则=,由x1>0,x2>0,x2﹣x1>0,得,得,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数.【点评】本题主要考查偶函数的定义和增函数的判断方法.20.(12分)已知函数f(x)=1﹣(1)求函数f(x)的定义域和值域;(2)试判断函数f(x)的奇偶性.【考点】函数奇偶性的判断;函数的定义域及其求法;函数的值域.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)求使解析式有意义的x范围;并结合指数函数的值域求f(x)的值域.(2)利用奇偶函数的定义判断奇偶性.【解答】解:(1)要使f(x)有意义,只要使2x+1≠0.由于对任意的x都成立,即函数的定义域为R.设y=f(x)=1﹣,2x>0,2x+1>1,0<<2,所以﹣1<1﹣<1,所以函数的值域为(﹣1,1);(2)对任意的x∈R,则有﹣x∈R,.∵f(﹣x)=1﹣=1﹣==﹣f(x),∴f(x)为奇函数.【点评】本题考查了函数的定义域和值域的求法以及奇偶性的判断;属于经常考查题型.21.(12分)经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)﹣f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)﹣p(x),某公司最多生产100 台报系统装置,生产x台的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.(1)求利润函数p(x)及边际利润函数M1(x);(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?【考点】函数模型的选择与应用.【专题】转化思想;配方法;函数的性质及应用.【分析】(1)P(x)=R(x)﹣C(x),M1(x)=P(x+1)﹣P(x).(1≤x≤100,x∈N*).(2)由P(x)=﹣20+74125,利用二次函数的单调性可得,P(x)max.利用一次函数的单调性可得M1(x)max.【解答】解:(1)P(x)=R(x)﹣C(x)=3000x﹣20x2﹣(500x+4000)=﹣20x2+2500x﹣4000(1≤x≤100,x∈N*),M1(x)=P(x+1)﹣P(x)=2480﹣40x.(1≤x≤100,x∈N*).(2)∵P(x)=﹣20+74125,∴当x=62 或63 时,P(x)max=74120.又∵M1(x)是减函数,∴当x=1 时,M1(x)max=2440.故利润函数p(x)与边际利润函数M1(x)不具有相等的最大值.【点评】本题考查了一次函数与二次函数的单调性,考查了推理能力与计算能力,属于中档题.22.(12分)定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,(1)求f(1)和f(﹣1)的值;(2)试判断f(x)的奇偶性,并加以证明;(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.【考点】抽象函数及其应用.【专题】转化思想;转化法;函数的性质及应用.【分析】(1)利用赋值法即可求f(1)、f(﹣1)的值;(2)根据函数奇偶性的定义即可证明f(x)是偶函数;(3)根据函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:(1)令x=y=1,得f(1)=f(1)+f(1)=2f(1),∴f(1)=0,令x=y=﹣1,得f(1)=f(﹣1)+f(﹣1)=2f(﹣1)=0,∴f(﹣1)=0,(2)令y=﹣1,则f(﹣x)=f(x)+f(﹣1)=f(x),∴f(﹣x)=f(x)∴f(x)是偶函数.(3)由式f(x+1)﹣f(2﹣x)≤0得式f(x+1)≤f(2﹣x),由(2)函数是偶函数,则不等式等价为f(|x+1|)≤f(|2﹣x|),∵x≥0时f(x)为增函数,∴不等式等价为|x+1|≤|2﹣x|,平方得x2+2x+1≤x2﹣4x+4,即6x≤3,即x≤,即满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合为(﹣∞,].【点评】本题主要考查函数奇偶性的判断以及不等式的求解,根据抽象函数的关系,利用赋值法是解决抽象函数的基本方法,。
2016-2017学年海南省三亚市民族中学高一(上)期中数学试卷一、选择题:(本大题共12小题,每小题3分,共36分)1.(3.00分)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(3.00分)函数f(x)=+的定义域是()A.[2,+∞)B.[2,3) C.(﹣∞,3)∪(3,+∞)D.[2,3)∪(3,+∞)3.(3.00分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.34.(3.00分)已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a5.(3.00分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|6.(3.00分)如果函数f(x)=(1﹣2a)x在实数集R上是减函数,那么实数a 的取值范围是()A.(0,)B.(,+∞)C.(﹣∞,) D.(﹣,)7.(3.00分)函数y=2x+2x﹣6的零点必定位于的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.(3.00分)设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A.B.C.D.9.(3.00分)已知函数:①y=2x;②y=log2x;③y=x﹣1;④y=.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是()A.②①③④B.②③①④C.④①③②D.④③①②10.(3.00分)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a11.(3.00分)图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)12.(3.00分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,则()A.f(﹣2)<f(1)<f(3)B.f(1)<f(﹣2)<f(3)C.f(3)<f(﹣2)<f(1)D.f(3)<f(1)<f(﹣2)二、填空题:(本大题共4小题,每小题4分,共16分)13.(4.00分)已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x ﹣3,则f(﹣2)+f(0)=.14.(4.00分)f(x)=,若f(x)=10,则x=.15.(4.00分)设23﹣2x<23x﹣4,则x的取值范围是.16.(4.00分)函数f(x)=的定义域为.三、解答题:(10分+10+10+10+8=48)17.(10.00分)(1)设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.求A∪B,∁U(A∩B);(2)化简求值:++0.027×(﹣)﹣2.18.(10.00分)已知函数.(1)用定义证明f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.19.(10.00分)已知函数f(x)=x m﹣,且f(4)=3.(1)求m的值;(2)求f(x)的奇偶性.20.(10.00分)设定义域为R的函数f(x)=.(1)在如图所示的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);(2)求函数f(x)在区间[1,4]上的最大值与最小值.21.(8.00分)已知函数f(x)对一切实数x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式.2016-2017学年海南省三亚市民族中学高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分)1.(3.00分)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.2.(3.00分)函数f(x)=+的定义域是()A.[2,+∞)B.[2,3) C.(﹣∞,3)∪(3,+∞)D.[2,3)∪(3,+∞)【解答】解:要使原函数有意义,则,解得x≥2且x≠3.所以原函数的定义域为[2,3)∪(3,+∞).故选:D.3.(3.00分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.4.(3.00分)已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a【解答】解:∵,∴b>c>a.故选:A.5.(3.00分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D.6.(3.00分)如果函数f(x)=(1﹣2a)x在实数集R上是减函数,那么实数a 的取值范围是()A.(0,)B.(,+∞)C.(﹣∞,) D.(﹣,)【解答】解:∵函数f(x)=(1﹣2a)x在实数集R上是减函数,∴0<1﹣2a<1,解得0,即实数a的取值范围是(0,).故选:A.7.(3.00分)函数y=2x+2x﹣6的零点必定位于的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:令f(x)=y=2x+2x﹣6,则f(0)=20+2×0﹣6=﹣5<0,f(1)=21+2×1﹣6=﹣4<0,f(2)=22+2×2﹣6=2>0,故f(1)f(2)<0,根据零点的存在性定理可得,函数y=2x+2x﹣6的零点必定位于(1,2)内.故选:B.8.(3.00分)设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A.B.C.D.【解答】解:∵函数f(x)=(2a﹣1)x+b是R上的减函数,则2a﹣1<0∴a<故选:B.9.(3.00分)已知函数:①y=2x;②y=log2x;③y=x﹣1;④y=.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是()A.②①③④B.②③①④C.④①③②D.④③①②【解答】解:第一个图象过点(0,0),与④对应;第二个图象为反比例函数图象,表达式为,③y=x﹣1恰好符合,∴第二个图象对应③;第三个图象为指数函数图象,表达式为y=a x,且a>1,①y=2x恰好符合,∴第三个图象对应①;第四个图象为对数函数图象,表达式为y=log a x,且a>1,②y=log2x恰好符合,∴第四个图象对应②.∴四个函数图象与函数序号的对应顺序为④③①②.故选:D.10.(3.00分)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.11.(3.00分)图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)【解答】解:由已知函数图象易得:点(0,0)、(1、)在函数图象上将点(0,0)代入可排除A、C将(1、)代入可排除D故选:B.12.(3.00分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,则()A.f(﹣2)<f(1)<f(3)B.f(1)<f(﹣2)<f(3)C.f(3)<f(﹣2)<f(1)D.f(3)<f(1)<f(﹣2)【解答】解:∵对任意的x1,x2∈(﹣∞,0](x1≠x2),都有(x2﹣x1)•[f(x2)﹣f(x1)]>0,故f(x)在x1,x2∈(﹣∞,0](x1≠x2)单调递增.又∵f(x)是偶函数,∴f(x)在[0,+∞)上单调递减,且满足n∈N*时,f(﹣2)=f(2),由3>2>1>0,得f(3)<f(﹣2)<f(1),故选:C.二、填空题:(本大题共4小题,每小题4分,共16分)13.(4.00分)已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x ﹣3,则f(﹣2)+f(0)=﹣1.【解答】解:由题意,f(0)=0,f(﹣2)=﹣f(2)=﹣1,∴f(﹣2)+f(0)=﹣1,故答案为:﹣1.14.(4.00分)f(x)=,若f(x)=10,则x=﹣3.【解答】解:f(x)=,若f(x)=10,可得x2+1=10,解得x=﹣3.x=3(舍去)故答案为:﹣3.15.(4.00分)设23﹣2x<23x﹣4,则x的取值范围是x>.【解答】解:由y=2x为增函数,且23﹣2x<23x﹣4,得到3﹣2x<3x﹣4,解得:x>,故答案为:x>.16.(4.00分)函数f(x)=的定义域为(2,+∞).【解答】解:要使函数有意义,则需x>0,且log2x﹣1>0,即x>0且x>2,即有x>2.则定义域为(2,+∞).故答案为:(2,+∞).三、解答题:(10分+10+10+10+8=48)17.(10.00分)(1)设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.求A∪B,∁U(A∩B);(2)化简求值:++0.027×(﹣)﹣2.【解答】解:(1)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}={x|x≥2}.∴A∪B={x|x≥﹣1},A∩B={x|2≤x<3},∁U(A∩B)={x|x<2或x≥3}.(2)++0.027×(﹣)﹣2=+4+×9=.18.(10.00分)已知函数.(1)用定义证明f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.【解答】解:(1)设1≤x1<x2,f(x2)﹣f(x1)=﹣x1﹣=,因为1≤x1<x2,所以x2﹣x1>0,x2x1﹣1>0,x2x1>0,所以f(x2)﹣f(x1)>0,即f(x2)>f(x1)故函数f(x)在区间[1,+∞)上是增函数;(2)由(1),可得f(x)在[1,4]上的最大值是f(4)=,最小值f(1)=2.19.(10.00分)已知函数f(x)=x m﹣,且f(4)=3.(1)求m的值;(2)求f(x)的奇偶性.【解答】解:(1)∵函数f(x)=x m﹣,且f(4)=3,∴4m﹣1=3,∴m=1;(2)∵f(x)=x﹣,∴f(﹣x)=﹣x+=﹣f(x),∴f(x)是奇函数.20.(10.00分)设定义域为R的函数f(x)=.(1)在如图所示的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);(2)求函数f(x)在区间[1,4]上的最大值与最小值.【解答】解:(1)如图,单调增区间为(﹣∞,0),(1,+∞);单调减区间为(0,1);(2)函数在区间[1,4]上单调递增,f(x)min=f(1)=0,f(x)max=f(4)=921.(8.00分)已知函数f(x)对一切实数x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式.【解答】解:(1)因为函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立.且f(1),所以令x=1,y=0,代入上式得f(1)﹣f(0)=2,所以f(0)=﹣2.(2)因为函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,所以令y=0,代入上式得f(x)﹣f(0)=x(x+1),又由(1)知f(0)=﹣2,所以f(x)=x(x+1)﹣2.。