高数复习公式word版
- 格式:doc
- 大小:95.00 KB
- 文档页数:7
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
平方关系:sin A2( a )+cos A2( a )=1tan A2( a )+仁sec A2( a )C0t A2( a )+ 仁CSC A2( a )•积的关系:sin a=tan a*cos acos a =cot a*sin atan a=sin a*sec acot a=cos a*csc asec a=tan a*csc acsc a =sec a *cot a•倒数关系:tan a,cot a =1sin a,CSC a =1cos a,sec a =1直角三角形 ABC 中,角 A 的正弦值就等于角 A 的对边比斜边余弦等于角 A 的邻边比斜边正切等于对边比邻边 ,三角函数恒等变形公式两角和与差的三角函数:cos( a + B )=cos a,-sOs (&• sin Bcos( a B )=cos a,cos B +sin a* sin Bsin( a±B )=sin a,cos B±cos a,sin Btan( a + B )=(tan a +tan-tanf(a • tan B )tan( -B )=(tan -tan B )/(1+tan a,tan B )三角和的三角函数:sin( a + B + Y )=sin a* cos B,cos Y +cos a,sin B‘ cos ys+cos • sircos B sirsir v Y cos( a + B + Y )=cos a,cos B cosco s y sin B -ssin a cos B -sisin ar sin B‘ cos Ytan( a + B + Y )=(tan a +tan B t+ta a 丫tan B,tartan )/(• tana B B‘ tana y 丫^ tan a )辅助角公式:Asin a +Bcos a =(A A2+B A2)A(1/2)sin( ,其中sint=B/(A A2+B A2)A(1/2)cost=A/(A A2+B A2)A(1/2) tant=B/A Asin a +Bcos a =(A A2+B A2)A(1/2)cos( -t) ,tant=A/B倍角公式:sin(2 a )=2sin a,cos a =2/(tan a +cot a )cos(2 a )=cos A2( -s)八2( a )=2cos^2( -0=1- 2sin A2( a )tan(2 a )=2tan a-tOn A2( a)]•半角公式:sin( a /2)= ±/o(1a )/2)cos( a /2)= 土" ((1+cos a )/2)tan( a /2)= 土必o(1a )/(1+cos a ))=sin a /(1+cos-c©9=(1/sin a•降幕公式sin A2( a )=-cos(2 a ))/2=versin(2 a )/2cos A2( a )=(1+cos(2 a ))/2=covers(2 a )/2tan A2( a )=(tos(2 a ))/(1+cos(2 a ))•万能公式:sin a =2tan( a /2)/[1+tanT( a /2)]cos a =[ttan9( a /2)]/[1+tan9( a /2)]tan a =2tan( a /2)-(an9( a /2)]•积化和差公式:sin a •cos B=(1/2)[sin( +B-B)+)s]in(cos a •sin B=(1/2)[sin( -sin( + -B))]cos a •cos B=(1/2)[cos( + B )-+B co)]s(sin a •sin-(B1/2=)[cos( -+c B os)( -B)]•和差化积公式:sin a +sin B =2sin[( a + p )/2]cos[/2] asin (-sin B =2cos[( a + B )/2]sin[0 )/2] acos a +cos B =2cos[( a + B )/2]cos R )/2] a•三倍角公式:sin(3 a )=3sin-4ain A3( a ) cos(3 a )=4cos A3( -3)s acos a-cos B=2sin[( a + B )/2]sin[© )/2]a•推导公式tan a+cot a=2/sin2 atan a-cot a=-2cot2 a1+cos2 a =2cos A2 a1-cos2 a =2sin A2 a1+sin a =(sin a /2+cos a /2)八2•其他:sin a +sin( a +2n /n)+sin( a +2n *2/n)+sin( a +2 n *3/n)+ ........ +sit)/n]==0+2 n *(n cos a +cos( a +2 n /n)+cos( a +2n *2/n)+cos( a +2 n *3/n)+ ........ +cos-1”r+=n *1以及sin A2( a )+sin A2(-2 n/3)+sin A2( a +2n /3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin (2k n+ a) = sin acos (2k n+ a) = cos atan (2k n+a) = tan acot (2k n+ a) = cot a公式二:设a为任意角,n+a的三角函数值与a的三角函数值之间的关系:sin ( n+ a) = —sin a cos ( n+ a)= —cos a tan ( n+ a) = tan a cot ( n+ a) = cot a公式三:任意角a与- a的三角函数值之间的关系:sin(-a)=-sin acos(-a)= cos a tan(-a)=-tan acot(-a)=-cot a公式四:利用公式二和公式三可以得到n a与a的三角函数值之间的关系:sin ( n— a) = sin aCOS ( n— a)= —COS a tan ( n— a) =—tan a cot ( n— a) =—cot a公式五:利用公式一和公式三可以得到2n-a与a的三角函数值之间的关系:sin(2 n— a) =—sin aCOS (2 n— a) = COS atan (2 n—a) =—tan aCOt (2 n—a ) = —COt a公式六:n /2 ±a 3 n /2 土与a的三角函数值之间的关系Sin ((n /2+ a)=COS aCOS(n /2+ a)二二一sin a tan (n /2+ a)=—COt a COt (n /2+ a)=—tan aSin ((n /2—a)=COS aCOS(n /2—a)二Sin a tan (n /2—a)=COt a COt (n /2—a)=tan aSin ((3 n /2+ a)=—COS aCOS(3 n /2+ a)=Sin a tan (3 n /2+ a)=—COt a COt (3 n /2+ a)=—tan aSin ((3 n /2—a)=—COS aCOS(3n /2- a)=—Sin atan (3n /2- a)=COt aCOt (3n /2- a)=tan a(以上k€ Z)部分高等内容[编辑本段]•高等代数中三角函数的指数表示(由泰勒级数易得):sin x=[eA(ix)-eA(-ix)]/(2i) COSx=[e A(ix)+e A(-ix)]/2 ta nx=[eA(ix)-eA(-ix)]/[ieA(ix)+ieA(-ix)]泰勒展开有无穷级数,e A z=exp (z) = 1 + z/1 ! + z A2/2 ! + z A3/3 ! + z A4/4 !+•••+ z A n/n !+•••此时三角函数定义域已推广至整个复数集。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式导数公式:基本积分表:kdx kx C =+⎰(k 为常数) 11u ux x dx C u +=++⎰1ln dx x C x =+⎰ 21arctan 1dx x C x =++⎰arcsin x C =+ cos sin xdx x C =+⎰sin cos xdx x C =-+⎰221sec tan cos dx xdx x C x ==+⎰⎰221csc cot sin dx xdx x C x ==-+⎰⎰ sec tan sec x xdx x C =+⎰csc cot csc x xdx x C =-+⎰ x xe dx e C =+⎰ln xxa a dx C a =+⎰两个重要极限:三角函数公式:sin 22sin cos ααα= 2222cos 22cos 112sin cos sin ααααα=-=-=-22sin cos 1αα+= 22sec 1tan αα=+22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln 1(log )ln x x a x x x x x x x x x x a a ax x a'='=-'=⋅'=-⋅'='=22(arcsin )(arccos )1(arctan )11(arccot )1x x x x x x '='='=+'=-+0sin lim 11lim(1)x x x x x e x →→∞=+=零点定理: 设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 上至少一点ε,使()0fε=。
(考点:利用定理证明方程根的存在性。
当涉及唯一根时,还需证明方程对应的函数的单调性)罗尔定理:如果函数()f x 满足三个条件: (1)在闭区间[],a b 上连续; (2)在开区间(),a b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =,那么在(),a b 内至少有一点()a b εε<<,使得()'0f ε=。
高等数学公式汇总第一章一元函数的极限与连续1、常用初等函数公式:和差角公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβm sinαsinβtanα±tanβ1m tanα⋅tanβcotα⋅cotβm1cot(α±β)=cotβ±cotαsh(α±β)=shαchβ±chαshβtan(α±β)=ch(α±β)=chαchβ±shαshβ和差化积公式:22α+βα−βsinα−sinβ=2cos sin22α+βα−βcosα+cosβ=2cos cos22α+βα−βcosα−cosβ=2sin sin22 sinα+sinβ=2sinα+βcosα−β积化和差公式:1sinαcosβ=[sin(α+β)+sin(α−β)]21cosαsinβ=[sin(α+β)−sin(α−β)]21cosαcosβ=[cos(α+β)+cos(α−β)]21sinαsinβ=[cos(α+β)−cos(α−β)]2倍角公式:sin2α=2sinαcosαcos2α=2cos2α−1=1−2sin2α=cos2α−sin2α2tanα1−tan2αcot2α−1cot2α=2cotαsh2α=2shαchαtan2α=ch2α=1+2sh2α==2ch2α−1=ch2α+sh2αsin 2α+cos 2α=1;tan 2x +1=sec 2x ;cot 2x +1=csc 2x ;ch 2x −sh 2x =1半角公式:sin cos tan cot α2=±=±=±=±1−cos α21+cos α21−cos α1−cos αsin α== 1+cos αsin α1+cos α1+cos α1+cos αsin α==1−cos αsin α1−cos αα2α2α2e x −e −x 双曲正弦:shx =;反双曲正弦:arshx =ln(x +x 2+1)2e x +e −x双曲余弦:chx =;反双曲余弦:archx =±ln(x +x 2−1)2shx e x −e −x 11+x双曲正切:thx ==x −x ;反双曲正切:arthx =lnchx e +e 21−x(a 3±b 3)=(a ±b )(a 2m ab +b 2),12+22+L +n 2=n (n +1)(2n +1)6n 2(n +1)21+2+L +n =43332、极限➢常用极限:q <1,lim q n =0;a >1,lim n a =1;lim n n =1n →∞n →∞n →∞➢若f (x )→0,g (x )→∞,则lim[1±f (x )]➢两个重要极限g (x )=elimln(1+f (x ))1/g (x )ln(1+f (x ))~f (x )⎯⎯⎯⎯⎯⎯→e ±lim[f (x )g (x )]1sin x sin x 1x lim =1,lim =0;lim(1+)=e =lim(1+x )xx →0x →∞x →∞x →0x x x ➢常用等价无穷小:1−cos x ~121x ;x ~sin x ~arcsin x ~arctan x ;n 1+x −1~x ;2na x −1~x ln a ;e x ~x +1;(1+x )a ~1+ax ;ln(1+x )~x3、连续:定义:lim ∆y =0;lim f (x )=f (x 0)∆x →0x →x 0−+极限存在⇔lim f (x )=lim f (x )或f (x )=f (x )00−+x →x 0x →x 0第二章导数与微分基本导数公式:f (x 0+∆x )−f (x 0)f (x )−f (x 0)∆y=lim=lim =tan α∆x →0∆x ∆x →0x →x 0∆x x −x 0f '(x 0)=lim −+导数存在⇔f _'(x 0)=f +'(x 0)C '=0; (x a )'=ax a −1; (sin x )'=cos x ; (cos x )'=sin x ; (tan x )'=sec 2x ; (cot x )'=−csc 2x ;(sec x )'=sec x ⋅tan x ; (csc x )'=−csc x ⋅ctgx ; (a x )'=a x ln a ;(e x )'=e x ;1111; (ln x )'=; (arcsin x )'=; (arccos x )'=−;22x ln a x 1−x 1−x 11'(arctan x )'=; (arc cot x )=−; (shx )'=hx ;(chx )'=shx ;221+x 1+x 1111(thx )'=2; (arshx )'=; (archx )'=;(arthx )'=2ch x x −11+x 2x 2−1(log a x )'=2、高阶导数:(x n )(k )=n !x n −k ⇒(x n )(n )=n !; (a x )(n )=a x ln n a ⇒(e x )(n )=e x (n −k )!1(n )(−1)n n !1(n )(−1)n n !1(n )n !()=; ()=; ()=x x n +1x +a (x +a )n +1a −x (a −x )n +1ππ(sin kx )(n )=k n ⋅sin(kx +n ⋅); (cos kx )(n )=k n ⋅cos(kx +n ⋅);22[ln(a +x )](n )=(−1)n −1(n −1)!1(n −1)(n )n −1(n −1)!⇒[ln(x )]=()=(−1)n n(a +x )x x 牛顿-莱布尼兹公式:(uv )(n )k (n −k )(k )=∑C nu v k =0n=u (n )v +nu (n −1)v '+n (n −1)(n −2)n (n −1)L (n −k +1)(n −k )(k )u v ''+L +u v +L +uv (n )2!k !3、微分:∆y =f (x +∆x )−f (x )=dy +o (∆x );dy =f '(x 0)∆x =f '(x )dx ;连续⇒极限存在⇔收敛⇒有界;不连续⇒不可导可微⇔可导⇔左导=右导⇒连续;第三章基本定理微分中值定理与微分的应用拉格朗日中值定理:f (b )−f (a )=f '(ξ)(b −a ),ξ∈(a ,b )f (b )−f (a )f '(ξ)柯西中值定理:=,ξ∈(a ,b )F (b )−F (a )F '(ξ)当F(x )=x 时,柯西中值定理就是拉格朗日中值定理。
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos (π/2-α)=sinαtan (π/2-α)=cotαcot (π/2-α)=tanαsin (3π/2+α)=-cosαcos (3π/2+α)=sinαtan (3π/2+α)=-cotαcot (3π/2+α)=-tanαsin (3π/2-α)=-cosαcos (3π/2-α)=-sinαtan (3π/2-α)=cotαcot (3π/2-α)=tanα(以上k ∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n !+…此时三角函数定义域已推广至整个复数集。
全部高等数学计算公式word版本部高等数学计算公2222211cos12sinududxxtguuuxuux,,,两个重要极限:axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(se c)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxxCaxxax dxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxC tgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxa xaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxC xtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222Caxax axdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)l n(221cossin222222222222222222222020函数A sin cos tg ctgα -cosα -tgα -ctgα-α cosα sinα ctgα tgα+α cosα --ctgα -tgα-α sinα --tgα -ctgα+α --cosα tgα ctgα-α --sinα ctgα tgα+α -sinα -ctgα -tgα-α -cosα -tgα -ctgα+α sinα cosα tgα ctgα·和差化积公式:2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2si nsinctgctgctgctgctgtgtgtgtgtg1)(1)(sinsincoscos)cos(sincoscossi n)sin(xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx1 1ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim1sinlim0exxxxxx1sinsincos1cos1cos12cos1sinsincos1cos1cos122cos12cos2c os12sinctgtgRcBbAa2si nsinsin ·余弦定理:Cabbaccos2222arcctgxarctgxxxarccos2arcsinLeibniz)公式:()()()2()1()(0)()()()1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()(23333133cos3cos43cossin4sin33sintgtgtgtg222222122212sincossin211cos22coscossin22sintgtgtgctgctgctg1;0.)1(limMsMM:.,13202KaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x +-+6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b Ca -14.2x ⎰=22232(34815a x abx b C a -+ 15.⎰(0)(0)C b C b ⎧+><16.⎰2a b - 17.d x x ⎰=b ⎰18.2d x x ⎰=2a + (三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ 21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a ++24.22d x x ax b +⎰=2d x b xa a ax b-+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.⎰=1arshxC a+=ln(x C ++ 32.C +33.x ⎰C34.x=C +35.2x2ln(2a x C +36.2x =ln(x C +++37.⎰1ln aC a x -+38.⎰C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C ++41.x ⎰C +42.xx ⎰=422(2ln(88x a x a x C +++43.d x x ⎰a C +44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.⎰=1arch x xC x a+=ln x C ++ 46.C +47.x ⎰C48.x =C+49.2x 2ln 2a x C +++50.2x =ln x C +++51.⎰1arccos aC a x+52.⎰C +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -+57.x ⎰arccos a a C x -+58.x ⎰=ln x C +++(0)a >的积分 59.⎰=arcsinxC a+ 60.C +61.x ⎰=C+62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.⎰1C a +66.⎰2C a x -+67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x ⎰a C +72.x ⎰=arcsin xC a-+(0)a >的积分73.⎰2ax b C +++74.x22ax b C ++++75.x ⎰2ax b C -+++76.⎰=C +77.x 2C +78.x ⎰=C ++79.x ⎰=((x b b a C --+80.x ⎰=((x b b a C -+-81.⎰=C ()a b <82.x 2()arcsin 4b a C -+ ()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C-+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x Ca b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x Ca+114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d xx a ⎰=arccos x x C a-+117.arccos d x x x a⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a --⎰128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
高等数学知识点总结(公式)第一章 极限 1.常用极限:1||1||0)80)7sin )6)1(,)1()52arctan ,2arctan )4ln ,ln )31(,,0),1(,0,)2;0,1,1,1)1lim lim lim lim lim lim lim lim lim lim lim lim lim 1lim lim lim lim 01010100000>∞<=>∞<==++++++==+=+-==-∞=+∞=<+∞==>=+∞==-∞=+∞=∞=∞→∞→→→∞→-∞→+∞→→+∞→-∞→+∞→-∞→+∞→∞→→→→+-+q q q nm nm n m b a b x b x b a x a x a k x kxe ax e x ax x x x a a a a a a x xx nn nm nnm m x x axx a x x x x x x x x x x x x x x x x x x xππ9)下列极限不存在也不为无穷:xx x x x x a x x x x 1000lim lim lim lim lim ;1cos ;1sin ;cos ;sin →→→∞→∞→2.常用的等价无穷小(当0→x 时)sinx~x tanx~x 1-cosx~22x arcsinx~x arctanx~xln(1+x)~x 1-x a ~xlnx 第二章 导数 1.导数基本公式2.双曲函数:3.求导法则:2''''''''''')()()())(()(v uv v u v u uv v u uv v u v u Cu Cu -=+=-+=-+=y=f(x)的反函数为x=g(y)则)(1)('y g x f =)0)(('≠y g 复合函数求导 4.高阶导数2''1''2211)(arcsin cos )(sin )0()(0)(ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan x x x x x uxx C ax x aa a x x x x x x x x x x u u a x x -==>==='='⋅-='⋅='-='='-2'2'''222211)cot (11)(arccos 1)(ln )(11)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x xx e e x x arc x x x x x x x x +-=--===+-='+='--='-='xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦xn n x ax n n ax n n n n n n nn n n n n n n a a y a y ab n x e b a y bx e y n x y x y n x y x y a n y x a x a x a a y x n y x y xn y x y nn x n y x y )(ln ,).8arctan ),sin()(,sin ).7)2cos(,cos ).6)2sin(,sin ).5!,).4)1()!1()1(),1ln().3!)1(,1).20)1()1(,).1)(22)()()()(22101)(1)()(===++==+==+===++++=+--=+=-==<≥+--==-+-φφππααααααα5.莱布尼茨公式)()(0)()(k k n nk kn n v u uv C -=∑=三角公式6.基本初等函数的微分公式2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=±dxx x arc d dx xx d dxxx d dxxx d dx xx d dx ax x d e e d adx a a d xdx x x d xdx x x d x x d xdx x d xdx x d xdx x d dx ux x d C d a x x x x u u 222222111)cot ()1611)(arctan )1511)(arccos )1411)(arcsin )131)(ln )12ln 1)(log )11)()10ln )()9cot csc )(csc )8tan sec )(sec )7csc )(cot )6sec )(tan )5sin )(cos )4cos )(sin )3)()20)()1+-=+=--=-=====-==-==-====- 第三章 中值定理和导数应用1.费马引理;罗尔定理;拉格朗日中值定理;柯西中值定理;洛必达法则。
2.泰勒公式和麦克劳林公式1)1()(2'''10)1(00)(00'0)!1()(!)0(!2)0()0()0()()2)()!1()()(!)())(()()()1++++++++++=-++-++-+=n n n n n n nn x n f x n f x f x f f x f x x n f x x n x f x x x f x f x f ξξ3.麦克劳林公式特例)10()1(111)60()1()!1()()2)(1(!)1()1(!2)1(1)1)(5)10()1)(1()1()1(32)1ln()4)10()!22(])1(cos[)!2()1(!4!21cos )3)10()!12(]2)12(sin[)!12()1(!5!3sin )2)!1(!!21)11221121113222242121215312<<-+++++=-<++---++--++-++=+<<++-+-+-+-=+<<++++-+-+-=<<++++--+-+-=++++++=+--+--++-++--+θθθααααααααααθθθπθθπθααξn n n n n n n n n nn m m m m m m n n xx x x x x xx x n n x n n x x x x x n n x x x x x x m m x m x x x x x m m x m x x x x x x n e n x x x e 4.曲率 1)普通函数232'''232'''))(1(||))]([1(|)(|y y x f x f K +=+=2)参数方程:232'2''''''')])(())([(|)()()()(|),()()(t t t t t t K t t y t x ϕφϕφϕφβαϕφ+-=≤≤== 第四章 不定积分 1.不能做的积分dxx dxx dx x x dx x xdx e dx e x x ⎰⎰⎰⎰⎰⎰+-411)6ln 1)5cos )4sin )3)2)1222.积分表2222122tan 11cos 12sin u dudx x u u u x u u x +==+-=+=, , , 3.换元法和分部积分法第五章 定积分 1线性性质:⎰⎰⎰+=+b ababadx x g h dx x f k dx x hg x kf )()()]()([2.区间可加性:⎰⎰⎰+=babcc adx x f dx x f dx x f )()()(3.积分估值定理:⎰-≤≤-baa b M dx x f a b m )()()(4.积分中值定理:)()()(a b f dx x f ba-=⎰ξ5.变限函数积分)())(())(()())(())(()())(()())((')(')(''x x f dt t f x x f dt t f x f dt t f x f dt t f ax x a axxaφφφφφφ-==-==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x C x dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ6.牛顿-莱布尼茨公式7.换元法和分部积分法8.定积分的简捷算法:1)偶倍奇零 2)三角函数系的正交性3)周期函数9.广义积分(无穷限和无界函数)10.定积分的应用()元素法柱壳法平面图形的面积旋转体体积曲线弧长旋转体侧面积物理应用普通方程参数方程极坐标方程分别对x,y轴积分(注:本资料素材和资料部分来自网络,仅供参考。