诱导公式五、六
- 格式:ppt
- 大小:896.50 KB
- 文档页数:26
专题49 诱导公式五和公式六1.公式五(1)角π2-α与角α的终边关于直线y =x 对称,如图所示.(2)公式:sin ⎝⎛⎭⎫π2-α=cos α,cos ⎝⎛⎭⎫π2-α=sin α. 2.公式六(1)公式五与公式六中角的联系π2+α=π-⎝⎛⎭⎫π2-α. (2)公式:sin ⎝⎛⎭⎫π2+α=cos α,cos ⎝⎛⎭⎫π2+α=-sin α. 3.诱导公式一~六中的角可归纳为k ·π2±α的形式,可概括为“奇变偶不变,符号看象限”.①“变”与“不变”是针对互余关系的函数而言的. ②“奇”“偶”是对诱导公式k ·π2±α中的整数k 来讲的.③“象限”指k ·π2±α中,将α看成锐角时,k ·π2±α所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.4.利用诱导公式五、六,结合诱导公式二,还可以推出如下公式:sin ⎝⎛⎭⎫3π2-α=-cos α,cos ⎝⎛⎭⎫3π2-α=-sin α,sin ⎝⎛⎭⎫3π2+α=-cos α,cos ⎝⎛⎭⎫3π2+α=sin α. 题型一 利用诱导公式化简与求值1.下列与sin θ的值相等的是( )A .sin(π+θ)B .sin ⎝⎛⎭⎫π2-θC .cos ⎝⎛⎭⎫π2-θD .cos ⎝⎛⎭⎫π2+θ [解析]sin(π+θ)=-sin θ;sin ⎝⎛⎭⎫π2-θ=cos θ;cos ⎝⎛⎭⎫π2-θ=sin θ;cos ⎝⎛⎭⎫π2+θ=-sin θ. 2.化简sin ⎝⎛⎭⎫3π2+α=________. [解析]sin ⎝⎛⎭⎫3π2+α=sin ⎝⎛⎭⎫π+π2+α=-sin ⎝⎛⎭⎫π2+α=-cos α. 3.下列各式中,不正确的是( ) A .sin(180°-α)=sin α B .cos ⎝⎛⎭⎫180°+α2=sin α2 C .cos ⎝⎛⎭⎫3π2-α=-sin α D .tan(-α)=-tan α[解析]由诱导公式知A 、D 正确.cos ⎝⎛⎭⎫32π-α=cos ⎝⎛⎭⎫π+π2-α=-cos ⎝⎛⎭⎫π2-α=-sin α,故C 正确. cos ⎝⎛⎭⎪⎫180°+α2=cos ⎝⎛⎭⎫90°+α2=-sin α2,故B 不正确. 4.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三角限角D .第四象限角[解析]由于sin ⎝⎛⎭⎫π2+θ=cos θ<0,cos ⎝⎛⎭⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B. 5.化简sin(π+α)cos ⎝⎛⎭⎫3π2+α+sin ⎝⎛⎭⎫π2+αcos(π+α)=________. [解析]原式=(-sin α)·sin α+cos α·(-cos α)=-sin 2α-cos 2α=-1. 6.化简:sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2+αcos (π+α)-sin (2π-α)cos ⎝⎛⎭⎫π2-αsin (π-α).[解析]原式=cos α(-sin α)-cos α-sin (-α)sin αsin α=sin α-(-sin α)=2sin α.7.化简:sin (θ-5π)cos ⎝⎛⎭⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θ[解析]原式=sin (θ-π)cos ⎝⎛⎭⎫π2+θcos θcos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.8.化简:sin (2π+α)cos (π-α)cos ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫7π2-αcos (π-α)sin (3π-α)sin (-π+α)sin ⎝⎛⎭⎫5π2+α=________.[解析]原式=sin α·(-cos α)·sin α·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·[-sin (π-α)]sin ⎝⎛⎭⎫π2+α=sin α·(-sin α)-sin α·cos α=tan α9.化简:cos (α-π)sin (π-α)·sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫π2+α. [解析]原式=cos[-(π-α)]sin α·sin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α(-sin α)=cos (π-α)sin α·⎣⎡⎦⎤-sin ⎝⎛⎭⎫π2-α(-sin α) =-cos αsin α·(-cos α)(-sin α)=-cos 2α.10.sin (2π-α)·cos ⎝⎛⎭⎫π3+2αcos (π-α)tan (α-3π)sin ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫7π6-2α等于( )A .-cos αB .cos αC .sin αD .-sin α[解析]原式=sin (-α)·cos ⎝⎛⎭⎫π3+2α·(-cos α)tan α·cos α·sin ⎣⎡⎦⎤32π-⎝⎛⎭⎫π3+2α=sin αcos α·cos ⎝⎛⎭⎫π3+2αtan αcos α⎣⎡⎦⎤-cos ⎝⎛⎭⎫π3+2α=-cos α.故选A.11.化简:sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)cos ⎝⎛⎭⎫π2+αsin (π+α).[解析]因为sin ⎝⎛⎭⎫π2+α=cos α,cos ⎝⎛⎭⎫π2-α=sin α, cos(π+α)=-cos α,sin(π-α)=sin α,cos ⎝⎛⎭⎫π2+α=-sin α,sin(π+α)=-sin α, 所以原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.12.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α= [解析]sin ⎝⎛⎭⎫5π2+α=sin ⎝⎛⎭⎫2π+π2+α=sin ⎝⎛⎭⎫π2+α=cos α=15. 13.已知cos θ=-35,则sin ⎝⎛⎭⎫θ+π2=________. [解析]sin ⎝⎛⎭⎫θ+π2=cos θ=-35. 14.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ=________. [解析]cos ⎝⎛⎭⎫π2+φ=-sin φ=32,sin φ=-32,又∵|φ|<π2,∴cos φ=12,故tan φ=- 3. 15.如果cos(π+A )=-12,那么sin ⎝⎛⎭⎫π2+A = [解析]∵cos(π+A )=-cos A =-12,∴cos A =12,∴sin ⎝⎛⎭⎫π2+A =cos A =1216.已知cos ⎝⎛⎭⎫π2+α=-35,且α是第二象限角,则sin ⎝⎛⎭⎫α-3π2的结果是 [解析]∵cos ⎝⎛⎭⎫π2+α=-sin α=-35,∴sin α=35,且α是第二象限角, ∴cos α=-1-sin 2α=-45.而sin ⎝⎛⎭⎫α-3π2=-sin ⎝⎛⎭⎫3π2-α=-(-cos α)=cos α=-4517.若cos(α+π)=-23,则sin(-α-3π2)=[解析]因为cos(α+π)=-cos α=-23,所以cos α=23.所以sin ⎝⎛⎭⎫-α-3π2=cos α=23. 18.已知cos α=15,且α为第四象限角,那么cos ⎝⎛⎭⎫α+π2=________. [解析]因为cos α=15,且α为第四象限角,所以sin α=-1-cos 2α=-265,所以cos ⎝⎛⎭⎫α+π2=-sin α=265. 19.若sin(3π+α)=-12,则cos ⎝⎛⎭⎫7π2-α等于 [解析]∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎫7π2-α=cos ⎝⎛⎭⎫3π2-α=-cos ⎝⎛⎭⎫π2-α=-sin α=-12. 20.已知cos(π+α)=-12,α为第一象限角,求cos ⎝⎛⎭⎫π2+α的值. [解析]因为cos(π+α)=-cos α=-12,所以cos α=12,又α为第一象限角.则cos ⎝⎛⎭⎫π2+α=-sin α=-1-cos 2α=-1-⎝⎛⎭⎫122=-32. 21.已知α∈⎝⎛⎭⎫0,3π2,cos ⎝⎛⎭⎫3π2-α=32,则tan(2018π-α)= [解析]由cos ⎝⎛⎭⎫3π2-α=32得sin α=-32, 又0<α<3π2,所以π<α<3π2,所以cos α=-1-⎝⎛⎭⎫-322=-12,tan α= 3.因为tan(2 018π-α)=tan(-α)=-tan α=- 322.已知sin ⎝⎛⎭⎫α+π4=13,则cos ⎝⎛⎭⎫π4-α的值为 [解析]∵cos ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=13. 23.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α等于 [解析]cos ⎝⎛⎭⎫π4+α=cos ⎝⎛⎭⎫α-π4+π2=-sin ⎝⎛⎭⎫α-π4=-13. 24.已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α的值为________. [解析]cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12. 25.已知sin ⎝⎛⎭⎫α+π6=35,则cos ⎝⎛⎭⎫α+2π3的值为________.[解析]cos ⎝⎛⎭⎫α+2π3=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α+π6=-sin ⎝⎛⎭⎫α+π6=-35. 26.若sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12=________. [解析]cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫π12+α=-sin ⎝⎛⎭⎫π12+α=-13. 27.已知α是第四象限角,且cos(5°+α)=45,则cos(α-85°)=________.[解析]因为α是第四象限角,且cos(5°+α)=45>0,所以5°+α是第四象限角,所以sin(5°+α)=-1-cos 2(5°+α)=-35,所以cos(α-85°)=cos(5°+α-90°)=sin(5°+α)=-35.28.已知sin 10°=k ,则cos 620°的值为( )A .kB .-kC .±kD .不确定[解析]c os 620°=cos(360°+260°)=cos 260°=cos(270°-10°)=-sin 10°=-k . 29.已知cos α=13,则sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+αtan(π-α)=________. [解析]sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan(π-α)=-cos αsin α(-tan α)=sin 2α=1-cos 2α=1-⎝⎛⎭⎫132=89. 30.已知cos 31°=m ,则sin 239°tan 149°的值是( )A.1-m 2mB.1-m 2C .-1-m 2mD .-1-m 2[解析]s in 239°tan 149°=sin(180°+59°)·tan(180°-31°)=-sin 59°(-tan 31°)=-sin(90°-31°)·(-tan 31°)=-cos 31°·(-tan 31°)=sin 31°=1-cos 231°=1-m 2. 31.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是 [解析]由sin(180°+α)+cos(90°+α)=-a ,得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α)=-sin α-2sin α=-3sin α=-32a .32.化简sin400°sin (-230°)cos850°tan (-50°)的结果为________.[解析]sin400°sin (-230°)cos850°tan (-50°)=sin (360°+40°)[-sin (180°+50°)]cos (720°+90°+40°)(-tan50°)=sin40°sin50°sin40°tan50°=sin50°sin50°cos50°=cos50°.33.若f (cos x )=cos 2x ,则f (sin 15°)的值为 [解析]因为f (sin 15°)=f (cos 75°)=cos 150°=-32.34.已知f (sin x )=cos 3x ,则f (cos 10°)的值为[解析] f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12.35.若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[解析] f (cos x )=f ⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-x =3-cos(π-2x )=3+cos2x ,故选C. 36.计算sin 21°+sin 22°+sin 23°+…+sin 289°=[解析]原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.37.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C =________.[解析]由题意得⎩⎪⎨⎪⎧3cos A =3sin A , ①cos A =3cos B , ②由①得tan A =33,故A =π6.由②得cos B =cos π63=12,故B =π3.故C =π2.题型二 利用诱导公式证明恒等式1.求证:tan (2π-α)cos ⎝⎛⎭⎫3π2-αcos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.[解析]左边=tan (2π-α)cos ⎝⎛⎭⎫3π2-αcos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=tan (-α)(-sin α)cos α-cos αsin α=-tan αsin αcos αcos αsin α=-tan α=右边,所以原等式成立. 2.求证:cos (π-θ)cos θ⎣⎡⎦⎤sin ⎝⎛⎭⎫3π2-θ-1+cos (2π-θ)cos (π+θ)sin ⎝⎛⎭⎫π2+θ-sin ⎝⎛⎭⎫3π2+θ=2sin 2θ.[解析]左边=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=1-cos θ+1+cos θ(1+cos θ)(1-cos θ)=21-cos 2θ=2sin 2θ=右边.∴原式成立. 3.求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).[解析]右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边,所以原等式成立. 4.求证:cos (6π+θ)sin (-2π-θ)tan (2π-θ)cos ⎝⎛⎭⎫3π2+θsin ⎝⎛⎭⎫3π2+θ=-tan θ.[解析]左边=cos θsin (-θ)tan (-θ)cos ⎝⎛⎭⎫π2+θsin ⎝⎛⎭⎫π2+θ=cos θsin θtan θ-sin θcos θ=-tan θ=右边,所以原等式成立.5.求证:cos ⎝⎛⎭⎫5π2+x sin ⎝⎛⎭⎫x -5π2tan (6π-x )=-1. [解析]因为cos ⎝⎛⎭⎫5π2+x sin ⎝⎛⎭⎫x -5π2tan (6π-x )=cos ⎝⎛⎭⎫2π+π2+x sin ⎝⎛⎭⎫x -π2-2πtan (-x )=cos ⎝⎛⎭⎫π2+x -sin ⎝⎛⎭⎫x -π2tan x=-sin xcos x tan x =-1=右边,所以原等式成立.6.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1.[解析]左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ=-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ)=sin θ+cos θsin θ-cos θ,右边=tan (8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ,所以等式成立.题型三 诱导公式的综合应用1.已知锐角α终边上一点P 的坐标是(2sin 2,-2cos 2),则α等于________. [解析] cos α=2sin 2(2sin 2)2+(-2cos 2)2=sin 2,∴α=2-π2.2.已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-253π的值为________. [解析] ∵f (α)=(-sin α)(-cos α)(-cos α)(-tan α)=cos α,∴f ⎝⎛⎭⎫-253π=cos ⎝⎛⎭⎫-253π=cos 253π=cos ⎝⎛⎭⎫8π+π3=cos π3=12.3.已知cos ⎝⎛⎭⎫π6-α=13,求cos ⎝⎛⎭⎫56π+α·sin ⎝⎛⎭⎫2π3-α的值. [解析]cos ⎝⎛⎭⎫56π+α·sin ⎝⎛⎭⎫2π3-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α·sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-cos ⎝⎛⎭⎫π6-α·sin ⎝⎛⎭⎫π3+α =-cos ⎝⎛⎭⎫π6-α·sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α·cos ⎝⎛⎭⎫π6-α=-13×13=-19. 4.已知cos(15°+α)=35,α为锐角,求tan (435°-α)+sin (α-165°)cos (195°+α)·sin (105°+α)的值.[解析]原式=tan (360°+75°-α)-sin (α+15°)cos (180°+15°+α)·sin[180°+(α-75°)]=tan (75°-α)-sin (α+15°)-cos (15°+α)·[-sin (α-75°)]=-1cos (15°+α)·sin (15°+α)+sin (α+15°)cos (15°+α)·cos (15°+α).因为α为锐角,所以0°<α<90°,所以15°<α+15°<105°.又cos(15°+α)=35,所以sin(15°+α)=45,故原式=-135×45+4535×35=536.5.已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解析] (1)因为点P ⎝⎛⎭⎫45,-35,所以|OP |=1,sin α=-35. (2)sin ⎝⎛⎭⎫π2-αtan (α-π)sin (α+π)cos (3π-α)=cos αtan α-sin α(-cos α)=1cos α, 由三角函数定义知cos α=45,故所求式子的值为54.6.已知tan θ=2,求sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)的值.[解析] sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ-(-cos θ)cos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=21-2=-2.7.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin ⎝⎛⎭⎫π2-α-2cos ⎝⎛⎭⎫π2+α-sin (-α)+cos (π+α)=________.[解析]由tan(3π+α)=2,得tan α=2,所以原式=-sin α+(-cos α)+cos α-2(-sin α)sin α-cos α=sin αsin α-cos α=tan αtan α-1=22-1=2.8.已知sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝⎛⎭⎫32π-θ=________. [解析]∵sin θ+cos θsin θ-cos θ=2, sin θ=3cos θ,∴tan θ=3.sin(θ-5π)sin ⎝⎛⎭⎫32π-θ=sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310. 9.已知cos α=-45,且α为第三象限角.求f (α)=tan (π-α)·sin (π-α)·sin ⎝⎛⎭⎫π2-αcos (π+α)的值.[解析]因为cos α=-45,且α为第三象限角,所以sin α=-1-cos 2α=-1-⎝⎛⎭⎫-452=-35. 所以f (α)=-tan α·sin α·cos α-cos α=tan αsin α=sin αcos α·sin α=-35-45×⎝⎛⎭⎫-35=-920. 10.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,则sin (π-α)+cos (π+α)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α=________. [解析]因为cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,所以sin α=2cos α.原式=sin α-cos α5sin α-3cos α=2cos α-cos α10cos α-3cos α=17. 11.已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin (3π2-α)-sin (-α)的值.[解析]因为sin(α-3π)=2cos(α-4π),所以-sin(3π-α)=2cos(4π-α),所以-sin(π-α)=2cos(-α),所以sin α=-2cos α,且cos α≠0, 所以原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.12.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上, 则sin ⎝⎛⎭⎫3π2+θ+2cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=________.[解析]设θ的终边上一点为P (x,3x )(x ≠0),则tan θ=y x =3xx=3.因此sin ⎝⎛⎭⎫3π2+θ+2cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=-cos θ-2cos θcos θ-sin θ=-3cos θcos θ-sin θ=-31-tan θ=-31-3=32.13.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是[解析] sin(α-15°)+cos(105°-α)=sin[(75°+α)-90°]+cos[180°-(75°+α)] =-cos(75°+α)-cos(75°+α)=-2cos(75°+α)=-23.14.已知α,β∈(0,π2),且α,β的终边关于直线y =x 对称,若sin α=35,则sin β=[解析]由α,β∈(0,π2),且α,β的终边关于直线y =x 对称知α+β=π2,因此β=π2-α,所以sin β=sin(π2-α)=cos α=1-sin 2α=4515.已知角α的终边在第二象限,且与单位圆交于点P (a ,35),求sin (π2+α)+2sin (π2-α)2cos (3π2-α)的值.[解析]因为角α的终边在第二象限且与单位圆交于点P (a ,35),所以a 2+925=1(a <0),所以a =-45,所以sin α=35,cos α=-45,所以原式=cos α+2cos α-2sin α=-32·cos αsin α=⎝⎛⎭⎫-32×-4535=2.16.已知f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π).(1)化简f (α);(2)若f ⎝⎛⎭⎫π2-α=-35,且α是第二象限角,求tan α. [解析](1)f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π)=-tan α·cos α·cos α-cos α=sin α.(2)由sin ⎝⎛⎭⎫π2-α=-35,得cos α=-35, 又α是第二象限角,所以sin α=1-cos 2 α=45,则tan α=sin αcos α=-43.17.已知f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫-α+3π2cos ⎝⎛⎭⎫π2-αsin (-π-α).(1)化简f (α);(2)若α为第三象限角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值;(3)若α=-31π3,求f (α)的值. [解析] (1)f (α)=sin αcos α(-sin α)sin α[-sin (π+α)]=cos α(-sin α)sin α=-cos α (2)∵cos ⎝⎛⎭⎫α-3π2=-sin α=15,∴sin α=-15,又∵α为第三象限角, ∴cos α=-1-sin 2α=-265,∴f (α)=265. (3)f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-6×2π+5π3=-cos 5π3=-cos π3=-12. 18.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,求sin ⎝⎛⎭⎫-α-32πcos ⎝⎛⎭⎫32π-αcos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α·tan 2(π-α)的值. [解析]方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,因为-1≤sin α≤1,所以sin α=-35. 又α是第三象限角,所以cos α=-45,tan α=sin αcos α=34, 所以sin ⎝⎛⎭⎫-α-32πcos ⎝⎛⎭⎫32π-αcos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α·tan 2(π-α)=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2+αsin αcos α·tan 2α=cos α(-sin α)sin αcos α·tan 2α=-tan 2α=-916. 19.若sin α=55,求cos (3π-α)sin ⎝⎛⎭⎫π2+α⎣⎡⎦⎤sin ⎝⎛⎭⎫7π2+α-1+sin ⎝⎛⎭⎫5π2-αcos (3π+α)sin ⎝⎛⎭⎫5π2+α-sin ⎝⎛⎭⎫7π2+α的值. [解析] cos (3π-α)sin ⎝⎛⎭⎫π2+α⎣⎡⎦⎤sin ⎝⎛⎭⎫7π2+α-1+sin ⎝⎛⎭⎫5π2-αcos (3π+α)sin ⎝⎛⎭⎫5π2+α-sin ⎝⎛⎭⎫7π2+α =cos[2π+(π-α)]cos α⎣⎡⎦⎤sin ⎝⎛⎭⎫3π+π2+α-1+sin ⎣⎡⎦⎤2π+⎝⎛⎭⎫π2-αcos (π+α)sin ⎣⎡⎦⎤2π+⎝⎛⎭⎫π2+α-sin ⎣⎡⎦⎤3π+⎝⎛⎭⎫π2+α =-cos αcos α(-cos α-1)+cos α-cos αcos α+cos α=11+cos α+11-cos α=2sin 2α, 因为sin α=55,所以2sin 2α=10,即原式=10. 20.在△ABC 中,sin A +B -C 2=sin A -B +C 2,试判断△ABC 的形状. 解析]∵A +B +C =π,∴A +B -C =π-2C ,A -B +C =π-2B .∵sin A +B -C 2=sin A -B +C 2,∴sin π-2C 2=sin π-2B 2,∴sin ⎝⎛⎭⎫π2-C =sin ⎝⎛⎭⎫π2-B ,即cos C =cos B . 又∵B ,C 为△ABC 的内角,∴C =B ,∴△ABC 为等腰三角形.21.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. [解析] sin ⎝⎛⎭⎫-π2-α=-cos α,cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α, ∴sin α·cos α=60169,即2sin α·cos α=120169.① 又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169. 又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713,③ sin α-cos α=713,④ (③+④)÷2得sin α=1213,(③-④)÷2得cos α=513. 22.已知sin(π-α)-cos(π+α)=23(π2<α<π),求下列各式的值. (1)sin α-cos α;(2)cos 2(π2+α)-cos 2(-α). [解析]由sin (π-α)-cos(π+α)=23,得sin α+cos α=23.将两边分别平方,得1+2sin αcos α=29, 所以2sin αcos α=-79.又π2<α<π,所以sin α>0,cos α<0. (1)因为(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169, 又sin α-cos α>0,所以sin α-cos α=43.(2)cos 2(π2+α)-cos 2 (-α)=sin 2 α-cos 2 α=(sin α+cos α)(sin α-cos α)=23×43=429. 23.已知函数f (α)=sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan (2π-α)tan (α+π)sin (α+π). (1)化简f (α);(2)若f (α)·f ⎝⎛⎭⎫α+π2=-18,且5π4≤α≤3π2,求f (α)+f ⎝⎛⎭⎫α+π2的值;(3)若f ⎝⎛⎭⎫α+π2=2f (α),求f (α)·f ⎝⎛⎭⎫α+π2的值. [解析] (1)f (α)=-cos αsin α(-tan α)tan α(-sin α)=-cos α. (2)f ⎝⎛⎭⎫α+π2=-cos ⎝⎛⎭⎫α+π2=sin α,因为f (α)·f ⎝⎛⎭⎫α+π2=-18,所以cos α·sin α=18, 可得(sin α-cos α)2=34,由5π4≤α≤3π2,得cos α>sin α,所以f (α)+f ⎝⎛⎭⎫α+π2=sin α-cos α=-32. (3)由(2)得f ⎝⎛⎭⎫α+π2=2f (α)即为sin α=-2cos α,联立sin 2 α+cos 2 α=1,解得cos 2 α=15, 所以f (α)·f ⎝⎛⎭⎫α+π2=-sin αcos α=2cos 2 α=25. 24.是否存在角α,β,α∈(-π2,π2),β∈(0,π),使等式sin(3π-α)=2cos(π2-β),3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解析]由条件,得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②①2+②2,得sin 2α+3cos 2α=2,所以sin 2α=12. 又α∈(-π2,π2),所以α=π4或α=-π4.将α=π4代入②,得cos β=32. 又β∈(0,π),所以β=π6,代入①可知符合.将α=-π4代入②得cos β=32, 又β∈(0,π),所以β=π6,代入①可知不符合. 综上可知,存在α=π4,β=π6满足条件. 25.已知f (cos x )=cos 17x .(1)求证:f (sin x )=sin 17x ;(2)对于怎样的整数n ,能由f (sin x )=sin nx 推出f (cos x )=cos nx?[解析] (1)证明:f (sin x )=f ⎣⎡⎦⎤cos ⎝⎛⎭⎫π2-x =cos ⎣⎡⎦⎤17⎝⎛⎭⎫π2-x =cos ⎝⎛⎭⎫8π+π2-17x =cos ⎝⎛⎭⎫π2-17x =sin 17x . (2)f (cos x )=f ⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-x =sin ⎣⎡⎦⎤n ⎝⎛⎭⎫π2-x =sin ⎝⎛⎭⎫n π2-nx =⎩⎪⎨⎪⎧ -sin nx ,n =4k ,cos nx ,n =4k +1,sin nx ,n =4k +2,-cos nx ,n =4k +3.k ∈Z,故所求的整数为n =4k +1,k ∈Z .。
1、3、2三角函数的诱导公式(五、六)讲义编写者:前面我们学习了诱导公式一、二、三、四,本节课来学习诱导公式五、六.一、【学习目标】1、理解公式五、六;2、熟记公式一到六,并能熟练应用.二、【自学内容和要求及自学过程】阅读教材26—27页内容,回答问题<1>终边与角α的终边关于直线y=x对称的角有何数量关系.结论:如图所示,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角π/2-α的终边与角α的终边关于直线y=x对称,角π/2-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x).<2>理解并写出诱导公式五.结论:根据问题<1>,我们有:sinα=y,cosα=x,tanα=y/x;sin(π/2-α)=x,cos(π/2-α)=y,tan(π/2-α)=x/y.从而得到诱导公式五:cos(π/2-α)= sinα,sin(π/2-α)= cosα,tan(π/2-α)=cotα.<3>请你利用π/2+α=π-(π/2-α),由公式四及公式五写出诱导公式六.结论:sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα.公式一—六可以用一下十个字来概括奇变偶不变,符号看象限三、【综合练习与思考探索】练习一:教材例3、例4;练习二:教材4、5、6、7.四、【作业】1、必做题:习题1.3B组2;2、选做题:总结本节公式并形成文字到作业本上.五、【小结】本节主要学习了公式五、六,要求学生能掌握并理解.六、【教学反思】要求学生能在理解的基础上学习.。
1.3三角函数的诱导公式(五、六)一、学习目标:(1)借助单位圆,推导出正弦、余弦的诱导公式(五、六)(2)综合运用公式将任意角的三角函数化为锐角的三角函数并能解决有关三角函数求值、化简和恒等式证明问题。
2、教学重难点:诱导公式(五、六)的推导及三角函数求值、化简和恒等式证明二、教学内容分析〖 温故知新〗 直接写出下列三角函数值(1)sin 43π=_______ (2)cos 74π=_______ (3)tan (-1140°)=_______ 操作并思考:在单位圆中任意画出一个任意角α与2π-α的终边。
终边与单位圆的交点分别为(x,y )与(y,x )由任意角的三角函数定义可知:cos x= siny=cos (2π-α)= sin (2π-α)= 由此可知sin α与sin (2π-α)以及sin α与cos (2π-α)的值有何关系? 公式五:(1)___________________________(2)____________________________(3)___________________________2、讨论:利用公式二和公式五研究sin (2π+α)与cos (2π+α)的值与sin α以及 cos α的关系?公式六:(1)___________________________(2)____________________________(3)___________________________例1、求证:sin (32π-α)=-cos α cos (32π-α)=-sin α练习:sin (32π+α)=_____________ cos (32π+α)=_____________ 例2〖 反思·小结〗(1)六个公式都可以化为2πk±α的形式,可以总结为一句话概括记忆:奇变偶不变,符号看象限。
(2)任意角的三角函数求值,都可以化归为锐角三角函数求值。