5.5诱导公式
- 格式:doc
- 大小:340.00 KB
- 文档页数:6
【课题】5.5 诱导公式(第二课时)
【教学目标】
知识目标:
了解 “360k α+⋅”、“α-”、“180°α±”的诱导公式. 能力目标:
(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数; (2)会利用计算器求任意角的三角函数值;
(3)培养学生的数学思维能力及应用计算工具的能力.
【教学重点】
三个诱导公式.
【教学难点】
诱导公式的应用.
【教学设计】
(1)利用单位圆数形结合的探究诱导公式; (2)通过应用与师生互动,巩固知识;
(3)通过计算器的使用,体会数字时代科技的进步;
(4)提升思维能力,以诱导公式为载体,渗透化同的数学思想.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
3 -;
2
3
-
3
质疑
质疑
3
-;
2
2。
诱导公式—搜狗百科公式规律公式一到公式五函数名未改变,公式六函数名发生改变。
公式一到公式五可简记为:函数名不变,符号看象限。
即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
上面这些诱导公式可以概括为:诱导公式对于kπ/2±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。
(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<>所以sin(2π-α)=-sinα记忆口诀奇变偶不变,符号看象限。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的三角函数值都是“+”;第二象限内只有正弦和余割是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余函数是“-”;第四象限内只有正割和余弦是“+”,其余全部是“-”。
一全正,二正弦,三正切,四余弦。
诱导公式记忆口诀诱导公式大家知道它的记忆方式有哪些吗?哪个可以帮助你记得又快又准?下面是店铺给大家整理的诱导公式记忆口诀,供大家参阅!诱导公式记忆口诀规律公式一到公式五函数名未改变,公式六函数名发生改变。
公式一到公式五可简记为:函数名不变,符号看象限。
即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。
(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα口诀奇变偶不变,符号看象限。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的三角函数值都是“+”;第二象限内只有正弦和余割是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余函数是“-”;第四象限内只有正割和余弦是“+”,其余全部是“-”。
三角函数的诱导公式大全三角函数诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。
诱导公式有六组,共54个,接下来看一下具体内容。
三角函数诱导公式记忆方法奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±ak∈z的三角函数值(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数诱导公式诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin2kπ+α=sinαk∈Zcos2kπ+α=cosαk∈Ztan2kπ+α=tanαk∈Zcot2kπ+α=cotαk∈Z诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin-α=-sinαcos-α=cosαtan-α=-tanαcot-α=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin2π-α=-sinαco s2π-α=cosαtan2π-α=-tanαcot2π-α=-cotα诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系sinπ/2+α=cosαcosπ/2+α=-sinαtanπ/2+α=-cotαcotπ/2+α=-tanαsinπ/2-α=cosαcosπ/2-α=sinαtanπ/2-α=cotαcotπ/2-α=tanαsin3π/2+α=-cosαco s3π/2+α=sinαtan3π/2+α=-cotαcot3π/2+α=-tanαsin3π/2-α=-cosαcos3π/2-α=-sinαtan3π/2-α=cotαcot3π/2-α=tanα三角函数化简与求值时注意事项①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
梦想会让你与众不同,奋斗会使你改变命运5.5.1 诱导公式 (一)教学目标:知识与能力目标:1.能够借助三角函数的定义及单位圆推导出三角函数的诱导公式2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角的三角函数的化简、求值问题情感目标:1.通过诱导公式的探求,培养学生的探索能力、钻研精神和科学态度 2.通过诱导公式探求工程中的合作学习,培养学生团结协作的精神;3. 通过诱导公式的运用,培养学生的划归能力,提高学生分析问题和解决问题的能力。
一 导入:二、自学(阅读教材第110---112页,回答下列问题)在直角坐标系下,α角的终边与圆心在原点的单位圆相交于(),P x y ,则c o s x α=,sin y α=(一)终边相同的角:终边相同的角的公式一:()sin 2k απ+=_______ ()cos 2k απ+=________ ()tan 2k απ+=________(二)关于x 轴的对称点的特征: 。
对于角而言:角α关于x 轴对称的角为_______公式二:()sin α-=__________ ()cos α-=_________ ()tan α-=_________ 三、讨论1.求下列各三角函数值: ①cos 405 ②13sin 6π ; ③5tan()3π- ;④sin(60)- ⑤19cos()3π-⑥17tan()4π- 2. 化简(1)()()()sin 1071cos9sin 9sin 9-⋅+--(2)()()()sin 420cos 750sin 330cos 660⋅+--(3)252525sincos tan 634πππ⎛⎫++- ⎪⎝⎭四.检测1、利用公式求下列三角函数值: (1)cos315(2)11sin 3π (3)17sin 3π⎛⎫- ⎪⎝⎭(4)()cos 2100-(5)()cos 300-(6)11sin 6π⎛⎫-⎪⎝⎭ (7)85cos 6π⎛⎫- ⎪⎝⎭ (8)17sin 4π⎛⎫- ⎪⎝⎭五 反思本节课你有那些收获?存在那些不足? 六 运用1. P 111练习 5.5.1, P 112练习5.5.22.学习与训练;训练题5.5.1, 训练题5.5.2梦想会让你与众不同,奋斗会使你改变命运5.5.2 诱导公式 (二)教学目标:知识与能力目标:1.能够借助三角函数的定义及单位圆推导出三角函数的诱导公式2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角的三角函数的化简、求值问题情感目标:1.通过诱导公式的探求,培养学生的探索能力、钻研精神和科学态度 2.通过诱导公式探求工程中的合作学习,培养学生团结协作的精神;3. 通过诱导公式的运用,培养学生的划归能力,提高学生分析问题和解决问题的能力。
第五单元5.5《诱导公式》教案7sinsin33ππ=,7cos cos 33ππ=.如图1所示,角α的终边与单位圆的交点为(cos ,sin )P αα,终边继续旋转2()k k Z π∈后,点(cos ,sin )P αα又回到原来的位置,所以其各三角函数值并不发生变化.二、新知学习我们已知,所有与α终边相同的角,连同α在内,可以组成一个集合:{}|+2,S k k ββαπ==∈Z由三角函数的定义可知,角+2()k k απ∈Z 与角α的同名三角函数的值相等. (“同名”指同为正弦、余弦或正切,下同).于是,当k ∈Z 时,可以得到下面的一组公式:()()()()()()+2 +2 +2 .sin k sin k Z cos k cos k Z tan k tan k Z απααπααπα=∈=∈=∈;; 公式一 即,终边相同的角的同名三角函数值相等.例题讲解理解记忆相关概念和结论直观展示新知和结论,突出本节教学重点图1例1求下列三角函数的值.13(1)sin 2π;19(2)cos 3π;(3)tan 405.解 13(1)sin sin(+6)sin 1.222191(2)cos cos(+6)cos .3332(3)tan 405tan(45+360)tan 45 1.ππππππππ=========课堂练习利用诱导公式求下列三角函数的值.2517(1)sin 750(2)cos(3)tan.64ππ;;诱导公式二的推导和运用 一、提出问题如图2所示,6π和76π(76π可写成6ππ+)所对应的角的终边关于原点对称.想一想,和7sin 6π,cos 6π和7cos 6π之间有什么关系?分析:如图2所示,6π和76π所对应的角的终边与单位圆的交点分别是点P 与点认真读题,积极思考根据老师给出的问题,积极主动的思考掌握解题的基本思路激发好奇心,更主动参与到课堂学习图2P '.根据对称性可知,它们的横坐标与纵坐标都互为相反数. 由此可得7sinsinsin()666ππππ=-=-+,7cos cos cos()666ππππ=-=-+.二、新知探究由以上的特殊情况,下面来研究一般情形. 结论推导:如图3所示,设单位圆与任意角α,πα+的终边分别相交于点P 与点P '.则点P 与点P '关于原点中心对称.如果点P的坐标是(cos ,sin )αα,那么点P '的坐标应该是(cos ,sin )αα--.又由于点P '作为角πα+的终边与单位圆的交点,其坐标应该是(cos(),sin())παπα++,由此得到() cos cos παα+=-, () sin sin παα+=-,由同角三角函数的关系式可知图3第2课时教学过程教学活动学生活动设计思路 诱导公式三的推导和运用 一、提出问题如图4所示,6π和6π-所对应的角的终边关于x 轴对称.想一想,sin 6π和sin()6π-,cos 6π和cos()6π-之间有什么关系?分析:如图4所示,6π和6π-所对应的角的终边与单位圆的交点分别是点P 与点P '.根据对称性可知,它们的横坐标相同,纵坐标互为相反数.由此可得cos cos()66ππ=-,sin sin()66ππ--.二、新知探究由以上的特殊情况,下面来研究一般情形. 结论推导:结合老师给出的问题,积极主动的思考,进行初步的探究.激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.图4如图5所示,设单位圆与任意角α,α-的终边分别相交于点P 与点P '.则点P 与点P '关于x 轴对称.如果点P 的坐标是(cos ,sin )αα,那么点P '的坐标应该是(cos ,sin )αα-.又由于点P '作为角α-的终边与单位圆的交点,其坐标应该是(cos(),sin())αα--,由此得到() cos cos αα-=, () sin sin αα-=-,由同角三角函数的关系式可知()sin()cos()sin .cos tan tan αααααα--=--==-结论:与任意角α的终边关于x 轴对称的角α-的正弦函数、余弦函数和正切函数的计算公式如下.()()() .sin sin cos cos tan tan αααααα-=--=-=-;; 公式三积极参与推导任意角α的终边关于x 轴对称的角α-的正弦函数、余弦函数和正切函数的计算公式培养生观察、思考、总结能力图5例题 求下列三角函数的值.(1)sin()(2)cos().64ππ--;1(1)sin()sin ;6622(2)cos()cos .442ππππ-=-=--==解课堂练习求下列三角函数的值.7(1)tan()(2)sin().33ππ--;诱导公式四的推导和运用 一、提出问题如图6所示,α和πα-所对应的角的终边关于y 轴对称.想一想,sin α和sin()πα-,cos α和cos()πα-之间有什么关系?二、探究新知如图6所示,设单位圆与任意角α,πα-的终边分别相交于点P 与点P '.则点P 与点P '关于y 轴对称.如果点P 的坐认真读题,积极思考,掌握解题的基本思路结合老师给出的问题,积极主动的思考,进行初步的探究.培养与提升学生独立思考、探究问题的能力激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.图653535sin()-sin()sin(8+)666ππππ-==- 5sin sin sin 6661-.2ππππ⎛⎫=-=--=- ⎪⎝⎭= 1133(2)coscos(2)cos 444cos cos 442.2πππππππ=+=⎛⎫=-=- ⎪⎝⎭=-课堂练习求下列三角函数的值.14(1)tan()(2)sin870.3π-;运用数学工具求解任意角的三角函数值例 利用科学计算器计算.(精确到0.01)(1)sin 63°52′41″; (2)43cos π. 解 (1)先将精确度设置为0.01,再将计算器设置为角度计算模式. 依次按下列各键:计算器结果显示:所以 6352410.90sin ︒'"≈.(2)先将精确度设置为0.01,再将计算器设置为弧度计算模式,之后依次按下列各键:计算器结果显示:所以4 0.503cos π=-. 具体操作步骤参考课本. 课堂练习利用科学计算器,求下列各式的值.(精确到0.01) (1) 1 4801012sin ︒'"; (2)97cos π; (3)() 3.6tan π-.。
高中数学诱导公式大全概述诱导公式是数学三角函数中将角度比拟大的三角函数利用角的周期性,转换为角度比拟小的三角函数。
诱导公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin〔2kπ+α〕=sinα 〔k∈Z〕cos〔2kπ+α〕=cosα 〔k∈Z〕tan〔2kπ+α〕=tanα 〔k∈Z〕cot〔2kπ+α〕=cotα 〔k∈Z〕公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比拟好做。
5.5诱导公式一、选择题(本大题共10小题,共30.0分) 1. 对于α∈R ,下列等式中恒成立的是( )A. cos (−α)=−cosαB. sin (−α)=−sinαC. sin (180°−α)=−sinαD. cos (180°+α)=cosα2. 如果sinα=13,那么sin(π+α)−cos (π2−α)等于( )A. −2√23B. −23C. 23D. 2√233. sin600°的值等于( )A. 0.5B. −0.5C. √32D. −√324. 已知α是第二象限的角,且sinα=513,则tanα的值是( )A. −512B. 512C. 1213D. −12135. tan5π4=( )A. −√22B. √22C. −1D. 16. sin240°等于( )A. 12B. −√32C. √32D. −127. cos114π的值为( )A. 12B. −12C. √22D. −√228. sin225°=( )A. −12B. −√22C. −√32D. −19. cos173π等于( )A. 12B. √32C. −12 D. −√3210. sin 750∘等于( )A. √32B. −√32C. −12D. 12二、填空题(本大题共8小题,共24.0分) 11. 计算sin(−330∘)的值为 . 12. 求值:sin (−1740∘)= .13. 已知角α的终边经过点(−2,1),则tan(π−α)的值为 . 14. 已知sin (52π+α)=15,那么cosα=15. sin (−1020°)的值为________.16. 已知角α的终边经过点(−2,1),则tan(π−α)的值为_______. 17. cos 225∘=__________.18. 已知3sin (α−π)=cos α,则tan(π−α)的值是______. 三、解答题(本大题共6小题,共46.0分) 19. 已知角α的终边过点P (45,−35).(1)求sinα的值;(2)求式子sin (π2−α)sin (α+π)⋅tan (α−π)cos (3π−α)的值. 20.化简:tan(2π−α)⋅cos (2π−α)⋅sin (−α+3π2)cos (−α+π)⋅sin (−π+α).21. 已知3sin(5π−α)+cos(π+α)=0,求sinα+cosα4cosα−3sinα22. 化简−sin (180°+a)+sin (−a )−tan (360°+a)tan (a+180°)+cos (−a )+cos (180°−a ).23.化简:sin (2π−α)cos (π+α)cos (3π+α)cos (11π2−α)cos (π−α)sin (3π−α)sin (−π−α)sin (9π2+α)24. 已知,求下列各式的值.; ;(3)求的值.。
【课题】5.5 诱导公式
【教学目标】
知识目标:
了解 “360k α+⋅o ”、“α-”、“180°α±”的诱导公式. 能力目标:
(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数; (2)会利用计算器求任意角的三角函数值;
(3)培养学生的数学思维能力及应用计算工具的能力. 情感目标:
(1)体验计算器带来的便利,享受成功的快乐; (2)经历合作学习的过程,树立团队合作意识; (3)通过简化公式的学习体会化同的数学思想.
【教学重点】
三个诱导公式.
【教学难点】
诱导公式的应用.
【教学设计】
(1)利用单位圆数形结合的探究诱导公式; (2)通过应用与师生互动,巩固知识;
(3)通过计算器的使用,体会数字时代科技的进步;
(4)提升思维能力,以诱导公式为载体,渗透化同的数学思想.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】。