数学分析四练习一
- 格式:docx
- 大小:132.27 KB
- 文档页数:3
数学分析练习题函数函数概念1. 证明下列不等式: (1) x y x y - ≥ - ;(2) 1212n n x x x x x x ++ ≤ +++ ;(3) 1212(||||||n n x x x x x x x x |+++| ≥ ||- + ++ ).2.求证 ||||||1||1||1||a b a b a b a b + ≤ +++ + +. 3.求证||max(,)22a b a b a b + -=+ ; ||min(,)22a b a b a b + -=- . 4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ ,试求此三角形的面()s θ ,并求其定义域.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.6.某公共汽车路线全长为 20km ,票价规定如下:乘坐 5km 以下(包括5km )者收费 1 元;超过 5km 但在15km 以下(包括 15km )者收费 2 元;其余收费 2 元 5 角. 试将票价表为路程的函数,并作出函数的图形.7.一脉冲发生器产生一个三角波. 若记它随时间t 的变化规律为()f t ,且三个角分别有对应关系(0)0f = ,(10)20f = ,(20)0f = ,求()20f t t (0≤≤) ,并作出函数的图形.8.判别下列函数的奇偶性:(1) 42()12x f x x = + - ;(2) ()sin f x x x = + ;(3) 22()x f x x e - = ;(4) ()lg(f x x = .9.判别下列函数是否是周期函数,若是,试求其周期: (1) 2()cos f x x = ;(2) ()cos sin 23x xf x = +2 ;(3) ()cos f x x π= 4;(4)()f x . 10.证明 2()1x f x x=+在 (,) -∞ +∞ 有界. 11.用肯定语气叙述函数无界,并证明21()f x x =在(0,1) 无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设()f x 为定义在(,) -∞ +∞ 内的任何函数,证明()f x 可分解成奇函数和偶函数之和.14.用肯定语气叙述:在(,) -∞ +∞ 上 (1) ()f x 不是奇函数;(2) ()f x 不是单调上升函数; (3) ()f x 无零点; (4) ()f x 无上界.复合函数与反函数1. 设()1x f x x 1-=+,求证 (())f f x x = . 2. 求下列函数的反函数及其定义域:(1) 112y x x x= (+) , 1 < < +∞ ;(2) 12x x y e e x -= ( - ) , -∞ < < +∞ ;(3) 2,1,,4,2,4.x x x y x x x -∞ < < ⎧⎪= 1≤ ≤⎨⎪ < <+∞⎩3.设()f x ,()g x 为实轴上单调函数,求证(())f g x 也是实轴上的单调函数. 4.设2,0,1,0,()(),0.,0.x x x x f x g x x x x x ≤ - - ≤ ⎧⎧ = = ⎨⎨ > - > ⎩⎩求复合函数(())f g x ,()g f x ( ). 5.设()f x ,求n f f f x () ()次. 6.设 ()|1|||f x x x + - 1 - =,试求n f f f x () ()次.7.设 1()f x x =1-,求(())f f x ,((()))f f f x ,1()()f f x .初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) ||y x = ; (2) []y x x = - ;(3) tan ||y x = ; (4)y (5) 2sin y x = ;(6) sin cos y x x = | | + | |.2.若已知函数()y f x = 的图形,作函数1()y f x = ,2()y f x = - ,3()y f x = --的图形,并说明123y y y , , 的图形与y 的图形的关系. 3.若已知函数(),()f x g x 的图形,试作函数[()()()()y f x g x f x g x 1=+ ±- ] 2的图形,并说明y 的图形与()f x 、()g x 图形的关系.4. 作出下列函数的图形: (1) sin y x x = ;(2) 1sin y x =. 5.符号函数0,0,0,1,0,x y sgn x x x 1 , > ⎧⎪= = = ⎨⎪- < ⎩试分别作出sgn x ,sgn )x (2 ,sgn(2)x - 的图形.6.作出下列函数的图形: (1) cos y sgn x = ;(2) ]22x y x ⎡⎤= [ - ⎢⎥ ⎣⎦.数列的极限1. 用定义证明下列数列的极限为零: (1) 1lim 1n n n →∞+ +;(2) sin lim n n n →∞;(3) lim n n π→∞;(4) 2(1)lim nn n n →∞ + - - 1; (5)n →∞;(6) 10lim !nn n →∞;(7) lim 1n n na a →∞ ( > );(8) !lim n n n n →∞; (9) 2123lim n nn →∞ + + + +;(10) 1lim 1n n a a n -→∞(+ ) , >. 2.用定义证明:(1) 223lim 21n n n n →∞+3= 2 - ;(2)n →∞ 1 ; (3) lim n n x →∞ = 1 ,其中 1,1,n n n nx n n n-⎧ ⎪⎪ = ⎨ + ⎪ ⎪⎩为偶数,为奇数;(4) lim n n x →∞ = 3 ,其中31,1(1,2,)22n n k n x n k k n n k ⎧⎪ 3 = ⎪3 + ⎪= = 3 + = ⎨⎪⎪ = 3 + ⎪⎩,,.3.用定义证明:(1) 若lim n n a a →∞= ,则对任一正整数k ,有lim n k n a a +→∞= ;(2) 若lim n n a a →∞= ,则lim |n n a a →∞|| = | .反之是否成立?(3) 若lim n n a a →∞= ,且a b > ,则存在N ,当n N > 时,有n a b > ;(4) 若lim n n a a →∞= ,且0n a >,则n .4.极限的定义改成下面形式是否可以?(其中“ ∃ ”是逻辑符号,表示“存在”.) (1) ε ∀ > 0 ,0N ∃ > ,当n N ≥ 时,有n x a ε |-|<; (2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a ε ≤ |-|;(2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a M ε < |-|(M 为常数).5.若 {}n n x y 收敛,能否断定{}n x 、{}n y 也收敛? 6.设 (1,)n n x a y n ≤ ≤ = 2, ,且lim()0n n n y x →∞- = ,求证:lim n n x a →∞= ,lim n n y a →∞= .7.利用极限的四则运算法则求极限:(1) 3232321lim 32n n n n n n →∞ + - + 2 - +;(2) (2)3lim (2)3n nn →∞- +- + ; (3) 112lim 1144nn n→∞1 + + + 2 1 + + + ; (4)n →∞.8.求下列极限: (1) 111lim ()12(1)n n n →∞ + + + 2 3 + ; (2) 222111lim ()(1)(2)n n n n →∞+ + + + ; (3)lim n →∞; (4) 21321lim()222n n n →∞- + + + ;(5)lim(1cos n n →∞; (6)n ;(7)lim n →∞;(8) lim[(1)]n n n n n →∞+ - ,01a < < ; (9) lim 2n n n→∞132-124 ;(10) n ;(11) n ;(12) n .9.证明:若{}n a ,{}n b 中一个是收敛数列,另一个是发散数列,则{}n n a b ± 是发散数列;又问{}n n a b 和(0)n n n a b b ⎧⎫≠ ⎨⎬⎩⎭是否也是发散数列?为什么?10.设(1)n n x = - ,证明{}n x 发散. 11.若12,,,m a a a 为m 个正数,证明:12max(,,,)m n a a a .12.设lim n n a a →∞= ,证明:(1) []lim n n n a a n→∞ = ;(2) 若0,0n a a > >,则1n .13.利用单调有界原理,证明lim n n x →∞存在,并求出它:(1)122,x x n = 3, ; (2)1,2,n x x n = 3, ;(3) nn c x n = (c>0)!;(4) 101,1,1,1n n n xx x n x -- = 1= + = 2, + . 14.若11,0(),x a y b a b = > 0 = > <11,2n nn n x y x y ++ + =证明:lim lim n n n n x y →∞→∞= .15.证明:若0n a > ,且1lim 1nn n a l a →∞+ = > ,lim n n a →∞= 0.16.设lim n n a a →∞= ,证明:(1) 12lim nn a a a a n→∞ + + += ;(又问,它的逆命题成立否?) (2) 若0n a >,则n a . 17.应用上题的结果证明下列各题:(1) 113lim n n n→∞11 + ++ +2 = 0 ; (2)1(0)n a > ;(3)1n ;n (5)n →∞ 1 ;(6) 若1lim ()n n n nba b b +→∞ = >0,则n a .18.用定义证明下列数列为无穷大量: (1){ ;(2) {}n !; (3) {}ln n ;(4) 113n11+ ++ + 2 .19.利用1lim 1nn e n →∞⎛⎫+ = ⎪⎝⎭,求下列极限:(1) 1lim 1nn n →∞⎛⎫- ⎪⎝⎭;(2) 1lim 11n n n →∞⎛⎫ + ⎪+⎝⎭; (3) 1lim 12n n n →∞⎛⎫ + ⎪⎝⎭;(4) 21lim 1n n n →∞⎛⎫ + ⎪⎝⎭.函数的极限1.用极限定义证明下列极限:(1) 2131lim 29x x x →- - = - ;(2) 331lim 69x x x → -= - ; (3)12x → ; (4) 1(2)(1)lim 03x x x x →--= - ;(5)23x → ;(6) 21(1)1lim 21x x x x →-= - ; (7) 3lim 9x xx →= ∞ - ;2x x →∞ + (9) 2lim 1x x xx →∞ + = ∞ + ;(10) 225lim 11x x x →∞ - = - .2.用极限的四则运算法则求下列极限:(1) 2201lim 21x x x x → - - - ;(2) 2211lim 21x x x x → - - - ;(3) 3230(1)(13)lim 2x x x x x → - + - + ;(4)1x → ; (5)3x → ; (6) 22356lim x x x x x → - + - 8 + 15;(7) 11lim 1n m x x x → - - (,n m 为正整数); (8)4x → . 3.设()0f x > ,证明:若0lim ()x x f x A → =,则0x x → n ≥ 2. 4.证明:若0lim ()x x f x A → = ,则0lim |()|||x x f x A → = ,但反之不真.5.求下列函数字所示点的左右极限:(1) 21,()1,2,1,x f x x x x ⎧ 0 , > ⎪= 1 , = ⎨⎪ + < ⎩ 在=1x ; (2) 21sin ,(),x x f x xx x ⎧, > 0⎪ = ⎨⎪ 1+ , < 0⎩在=0x ; (3) 2||1(),1x f x x x =+ 在=0x ; (4) 11()[],f x x x = - 在1=x n,n 是正整数;(5) 2,()0,,0,x x f x x x x ⎧ 2 , > 0⎪= 0 , = ⎨⎪ 1+ < ⎩在=x 0 .6.求下列极限:221x x x →∞ - - (2) limx ;(3) lim x x →+∞) ;(4) lim x x →-∞) ;(5) 23lim x x xx→∞ + ;(6) 2sin lim 4x x xx →+∞- ;(7) cos lim x x xx→-∞-;(8) lim x →+∞.7.用变量替换求下列极限:(1) 01lim []x x x+→ ;(2) 0lim ln (0)a x x x a +→ > ; (3) ln lim 0x xa x →+∞( > ) ;(4) 1lim x x →+∞.8.设()f x 在(,)a +∞ 上单调上升,lim n n x →∞= +∞,若l i m ()n n f x A →∞ = ,求证:lim ()x f x A →+∞= (A 可以为无穷).9.设()f x 在集合X 上定义,则()f x 在X 上无界的充要条件是:存在,n x X ∈1,2,n = ,使lim ()|n f x →∞| = +∞ .10.利用重要极限求极限: (1) 0sin 2lim x xx→;(2) 220sin lim (sin )x x x →; (3) 0tan 3lim sin 5x xx→ ;(4) 302sin sin lim x x xx → - 2 ;(5) 20cos 5cos 3lim x x xx → -;0x x →(7) 0arctan lim x xx→ ;(8)x → ;(9)0x → ; (10) 0cos(arccos )lim x n x n x→ ( )为奇数;(11) 4tan 1lim 4x x x ππ→- - ; (12) sin lim ,sin x mxm n nxπ→(为整数); (13) 2cos lim 2x x x ππ→-;(14) 1lim sin x x x→+∞ ;(15)lim x →+∞;(16)lim sin (x n π→+∞( )为整数;(17) lim xx x -→∞2⎛⎫ 1 ⎪ ⎝⎭-;(18) 1lim(1)xx nx n → + ( )为整数; (19) cot 0lim(1tan )x x x → + ; (20) 101lim()1x x x x→+ -;(21) 2132lim ()31x x x x -→+∞+ -;(22) tan 2lim (sin )x x x π→; (23) 2221lim 1x x x x →∞⎛⎫- ⎪ - ⎝⎭;(24) lim 1nx n x n →+∞+⎛⎫⎪-⎝⎭. 11.证明01limcos x x→不存在 .12.证明0lim ()x x D x → 不存在,其中1,(),.x D x x ⎧ = ⎨ 0 ⎩为有理数,为无理数13.求极限lim cos cos cos 242n n x x x→+∞ . 14.用定义证明:(1) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ,则lim ()()]x af xg x → [+ = +∞ ;(2) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ( >0) ,则lim ()()]x af xg x → [ = +∞ .15.若lim ()x f x A →+∞= ,lim ()x g x B →+∞= ,证明:lim ()()]x f x g x AB →+∞[ = .16.证明lim ()x f x A →+∞= 的充要条件是:对任何数列()n x n → +∞ →∞ ,有(()n f x A n ) → →∞ .17.证明0lim ()x x f x +→ = +∞ 的充要条件是:对任何数列0()n x x n → →∞ ,有 (()n f x A n ) → →∞ .18.设函数()f x 在(0,) +∞ 上满足方程(2)()f x f x = ,且lim ()x f x A →+∞= ,证明:(),(0,)f x A x ≡ ∈ +∞ .无穷小量与无穷大量的比较1. 当0x → 时,以x 为标准求下列无穷小量的阶: (1) sin sin x x 2 - 2 ; (2) 1(1)1x x- - +;(3)(4) (5) ln (1)x + ;(6)(7) 1; (8) 1x e - .2.当x →±∞ 时,以x 为标准求下列无穷大量的阶: (1) 26x x + ;(2) 2454x x x + 6 - ;(3)(4)223x x + - (6) 21arctan x x.3.当0x → 时,下列等式成立吗? (1) 2()()o x o x = ; (2) 2()()O x x = ο ; (3) 23()()x o x o x = ;(4) 2()()o x o x x = ;(5) 2()()()o x o x o x= ; (6) 2()()o x O x = . 4.试证下列各题:(1)3()(0)x O x x + →; (2) 32322()()x x O x x + = →∞; (3) 0(())(())(())o g x o g x o g x x x ± = (→); (4) ()()()00m n n o x o x o x x m n + = (→) , > > ; (5) ()()()00m n m n o x o x o x x m n + = (→) , > > . 5.证明下列各式:(1) tan (0)x x x → ; (2) arcsin (0)x x x → ; (3) arctan (0)x x x → ;(4) 21cos (0)x x x 1- → 2;(5) (0)x e x x - 1 → ;(6) (1)(0),a x x x α+- 1 → α ≠ 0 其中. 6.运用等价无穷小量求极限:(1) 2arctan lim cos x x x x→∞1- ; (2)0x →;sin x x → (4) 201lim sin x x e x x→ - .7.设0()()()f x g x x x → ,证明:()()(())f x g x o f x - = 或()()(())f x g x o g x - = .8.设x a → 时,1()f x 与2()f x 维等价无穷小,1()g x 与2()g x 是等价无穷大,且22lim ()()x af xg x → 存在,求证1122lim ()()lim ()()x ax af xg x f x g x →→ = .函数的连续性1. 用定义证明下列函数在定义域内连续: (1)y(2) 1y x =; (3) ||y x = ;(4) 1sin y x= .2.指出下列函数的间断点并说明其类型: (1) 1()f x x x = +; (2) 2()(1)xf x x =+;(3) 21()cos f x x= ;(4) ()[][]f x x x = + -;(5) sin ()||xf x x =; (6) ()sgn |f x x = |; (7) ()sgn(cos )f x x = ;(8) ()ln f x x1 =; (9) ,||1,()1,|1x x f x x ≤ ⎧ = ⎨|>⎩; (10) cos ,||1,()21,|1x x f x x x π⎧≤ ⎪ = ⎨⎪ | -| |>⎩; (11) sin ,,()0,x x f x x π ⎧ = ⎨⎩为有理数为无理数;(12) ,,(),x x f x x x ⎧ = ⎨- ⎩为有理数为无理数. 3.当0x = 时下列函数无定义,试定义(0)f 的值,使()f x 在0x = 连续:(1)()f x ;(2) tan 2()xf x x= ;(3) 1()sin sin f x x x= ;(4) ()xf x x 1 = (1+).4.设()f x 是连续函数,证明对任何0c > ,函数,(),()(),(),,()c f x c g x f x f x c c f x c - < -⎧⎪= || ≤ ⎨⎪ > ⎩是连续的.5.若()f x 在0x 点连续,那么()f x | | 和2()f x 是否也在0x 点连续?反之如何? 6.若函数()f x 字0x = 点连续,而()g x 在0x = 点不连续,问此二函数的和、积在0x 点是否连续?又若()f x 和()g x 在0x 点都不连续,问此二函数的和、积在0x 点是否必不连续?7.证明若连续函数在有理点的函数值为0,则此函数恒为0.8.若()f x 在[,]a b 连续,恒正,按定义证明1()f x 在,a b [ ] 连续. 9.若()f x 和()g x 都在[,]a b 连续,试证明max(()())f x g x , 和min(()())f x g x , 都在[,]a b 连续.10.证明:设()f x 为区间(,)a b 上单调函数,若0,x a b ∈ ( ) 为()f x 的间断点,则必是()f x 的第一类间断点.11.若()f x 在[,]a b ,12n a x x x b < < < < < ,则在12[,]x x 中必有ξ ,使得12()[()()()]n f f x f x f x nξ1= + ++ .12.研究复合函数f g 和g f 的连续性. 设(1) 2()sgn ,()1f x x g x x = = +; (2) 2()sgn ,()1)f x x g x x x = = (-.13.证明:若()f x 在[,]a b 连续,且不存在,]x a b ∈ [ ,使()f x = 0 ,则()f x 在[,]a b 恒正或恒负.14.设()f x 为[,]a b 上的递增函数,值域为[(),()]f a f b ,证明()f x 在[,]a b 上连续. 15.设()f x 在[,)a +∞ 上连续,且0()(0)f x x x ≤ ≤ ≥ ,若10a ≥ ,1()(1,2,)n n a f a n + = = .求证:(1) lim n n a →∞存在;(2) 设lim n n a l →∞= ,则()f l l = ;(3) 如果将条件改为0()(0)f x x x ≤ < > ,则0l = . 16.求下列极限:(1)11lim 2x x x →+⎛⎪+⎝⎭;(2) 1lim arctan cos x x x→+∞ ( ) ;(3) 21lim(cos )x x x → ;(4) 20cos 5lim 1ln(1)x x e x x x → ++ + -.17.证明方程30(0)x px q p + + = > 有且只有一个实根.实数的完备性1.求数列的上、下确界: (1) 11;n x n=-(2) [2(2)];n n x n =+-(3)2211,1(1,2,3,);k k x k x k k += =+ =(4) 1[1(1)];n n n x n+=+- (5);n x (6)12cos .13n n n x n π-=+ 2.设()f x 在D 上定义,求证:(1) sup{()}inf ();x Dx Df x f x ∈∈-=-(2)inf{()}sup ().x Dx Df x f x ∈∈-=-3.设s u p E β=,且E β∉,试证自E 中可选取数列{}n x 且n x 互不相同,使lim n x x β→∞=;又若E β∈,则情形如何?4.试证收敛数列必有上确界和下确界,趋于+∞的数列必有下确界,趋于-∞的数列必有上确界.5.试分别举出满足下列条件的数列: (1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.实数完备性基本定理1.利用有限覆盖定理9.2证明紧致性定理9.4. 2.利用紧致性定理证明单调有界数列必有极限. 3.用区间套定理证明单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件1122[,][,]a b a b ⊃⊃ 去掉或将条件0n n b a -→去掉,结果怎样?试举例说明.5.若{}n x 无界,且非无穷大量,则必存在两个子列,k k n m x x a →∞→ (a 为有限数).6.有界数列{}n x 若不收敛,则必存在两个子列,)kk n m x a x b b →→ (α≠.7.求证:数列{}n a 有界的充要条件是,{}n a 的任何子数列{}k n a 都有收敛的子数列.8.设()f x 在[,]a b 上定义,且在每一点处函数的极限存在,求证:()f x 在[,]a b 上有界. 9.设()f x 在[,]a b 无界,求证:存在[,]c a b ∈,对任给0δ>,函数()f x 在(,)[,]c c a b δδ-+⋂上无界.10.设()f x 是(,)a b 上的凸函数,且有上界,求证:lim (),lim ()x ax bf x f x +-→→ 存在. 11.设()f x 在[,]a b 上只有第一类间断点,定义()|(0)(0)|.x f x f x ω=+--求证:任意0,()x εωε> ≥的点x 只有有限多个.12.设()f x 在[0,)+∞上连续且有界,对任意(,)a ∈-∞+∞,()f x a =在[0,)+∞上只有有限个根或无根,求证:lim ()x f x →+∞存在.实数完备性续1,设()f x 在(,)a b 连续,求证:()f x 在(,)a b 一致连续的充要条件是lim ()x a f x +→与lim ()x bf x -→都存在,2.求证数列1nx =+ n →∞时的极限不存在. 3.利用柯西收敛定理讨论下列数列的收敛性: (1) 012(||1,||);n n n k x a a q a q a q q a M =++++<≤(2)2sin1sin 2sin 1;222n n n x =++++ (3) 11111(1).23n n x n+=-+++- 4.证明0l i m ()x x f x →存在的充要条件是:对任意给定0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<5.证明()f x 在0x 点连续的充要条件是:任给0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<6.证明下列极限不存在: (1) 12cos ;13n n n x n π-=+(2) n x(3) sin(n x =(4) cos ;n x n = (5)t a n .n x n = 7.设()f x 在(,)a +∞上可导,|'()|f x 单调下降,且lim ()x f x →+∞存在,求证lim '()0x xf x →+∞=.8.设()f x 在(,)-∞+∞可导,且|'()|1f x k ≤<,任给0x ,令1()(0,1,2,),n n x f x n += =求证, (1)lim n x x →∞存在;(2) 上述极限为()x f x =的根,且是唯一的.9.设()f x 在[,]a b 满足条件:(1) |()()|||,,[,],1;f x f y k x y x y a b k -≤- ∀∈ 0<< (2)()f x 的值域包含在[,]a b 内.则对任意0[,]x a b ∈,令1()(0,1,2,)n n x f x n +== ,有(1)lim n x x →∞存在;(2)方程()x f x =的解在[,]a b 上是唯一的,这个解就是上述极限值.闭区间上连续函数的性质1.设()f x 在[,]a b 上连续,并且最大值点0x 是唯一的,又设0[,]x a b ∈,使0lim ()()n x f x f x →∞=,求证0lim n x x x →∞=2.设()f x 在[,]a b 上连续,可微,又设(1)min ()max ();a x ba x bf x p f x ≤≤≤≤<<(2) 如果()f x p =,则有'()0f x ≠,求证:()f x p =的根只有有限多个.3.设()f x 在[,]a b 连续,()0f a <,()0f b >,求证:存在(,)a b ξ∈,使()0f ξ=,且()0()f x x b ξ><≤.4.设()f x 是[,]a b 上的连续函数,其最大值和最小值分别为M 和()m m M <,求证:必存在区间[,]αβ,满足条件: (1)(),()f M f m αβ= =或(),()f m f M αβ= =; (2)()m f x M <<,当(,)x αβ∈.5.()f x 在[0,2]a 连续,且(0)(2)f f a =,求证:存在[0,]x a ∈,使()()f x f x a =+.6.设()f x 在[,]a b 上连续,且取值为整数,求证:()f x ≡常数. 7.设()f x 在(,)a b 上一致连续,,a b ≠±∞,证明()f x 在(,)a b 上有界;8.若函数()f x 在(,)a b 上满足利普希茨(Lipschitz)条件,即存在常数K ,使得|(')('')||'''|,',''(,).f x f x K x x x x a b -≤- ∈证明:()f x 在(,)a b 上一致连续.9.试用一致连续的定义证明:若函数()f x 在[,]a c 和[,]c b 上都一致连续,则()f x 在[,]a b 上也一致连续.10.设()f x 在(,)-∞+∞上连续,且lim ()x f x →-∞与lim ()x f x →+∞存在.证明;()f x 在(,)-∞+∞上一致连续.11.若()f x 在区间X (有穷或无穷)中具有有界的导数,即|'()|,f x M x X ≤ ∈,则()f x 在X 中一致连续.12.求证:()f x x =在(0,)+∞上一致连续.13.设()f x 在(,)a +∞上可导,且lim '()x f x →+∞=+∞,求证:()f x 在(,)a +∞上不一致连续.14.求证:()ln f x x x =在(0,)+∞上不一致连续.微分中值定理及应用微分中值定理1.证明:(1)方程330x x c -+=(c 是常数)在区间[0,1]内不可能有两个不同的实根;(2)方程nx0px q ++=(n 为正整数,,p q 为实数)当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根。
统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。
数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
一元函数的连续性 第四章 函数的连续性 1连续性概念1. 按定义证明下列函数在其定义域内连续:(1)xx f 1)(=;(2) x x f =)(. 证明(1) xx f 1)(=的定义域是R x ∈且0≠x ,取00≠x ,由函数极限四则运算可知)(11lim)(lim 0000x f x x x f x x x x ===→→,所以)(x f 在0x 连续.由0x 在定义域内的任意性知)(x f 在其定义域内连续.(2) )(x f 的定义域是R x ∈,任取R x ∈0,由于00x x x x -≤-,所以对任给的0>ε,取εδ=,使得当δ<-0x x 时有ε<-≤-=-000)()(x x x x x f x f .按函数在一点连续的δε-定义, )(x f 在0x 连续,由0x 在R 中的任意性知)(x f 在定义域R 内连续.2. 指出下列函数的间断点并说明其类型: (1) xx x f 1)(+=;(2) x x x f sin )(=;(3) ]cos [)(x x f =;(4) x x f sgn )(=;(5))sgn(cos )(x x f =;(6) ⎩⎨⎧-=;,,)(为无理数为有理数x x x x x f(7) ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+=.1,11sin )1(,17,,7,71)(x x x x x x x x f解(1)因)(x f 仅在0=x 处无定义,故0=x 为函数的间断点,又因+∞=+→)(lim 0x f x ,-∞=-→)(lim 0x f x ,所以0=x 为第二类间断点.(2)因)(x f 仅在0=x 处无定义,故0=x 为函数的间断点, 又因,1sin lim sin lim )(lim ,1sin lim )(lim 0000-=-=-===---++→→→→→xxx x x f x x x f x x x x x 所以0=x 是)(x f 的第一类间断点,且为跳跃间断点.(3)由于,,0]cos [lim Z n x n x ∈=→π而0]1[])1([]cos [)(≠=-==n n n f ππ,所以)(Z n n x ∈=π为该函数的可去间断点.(4)由于,0,00,1sgn ⎩⎨⎧=≠=x x x 故1)(lim 0=→x f x ,而0)0(=f ,所以0=x 为函数的可去间断点.(5)由于⎪⎪⎪⎩⎪⎪⎪⎨⎧++∈-±=+-∈==)232,22(1220)22,22(1)sgn(cos )(ππππππππππk k x k x k k x x x f 故,1)(lim,1)(lim ,1)(lim ,1)(lim )22()22()22()22(-===-=-+-+-→-→+→+→x f x f x f x f k x k x k x k x ππππππππ所以),2,1,0(22 ±±=±=k k x ππ皆为函数的跳跃间断点.(6)当00≠x 时,由于存在有理数列{}n x '和无理数列{}n x ''使得: 0x x n <'且)(0∞→→'n x x n;0x x n <''且)(0∞→→''n x x n , 故,)(lim )(lim ,lim )(lim 00x x x f x x x f n n n n n n nn -=''-=''='='∞→∞→∞→∞→而且,00x x -≠ 据函数极限的归结原则, )(lim 0x f x x -→不存在,同理)(lim 0x f x x +→也不存在,所以0≠x 的点皆为函数的第二类间断点.(7)因为,71lim )(lim)7()7(+∞=+=---→-→x x f x x 所以7-=x 为函数的第二类间断点.因为,01sin )1(lim )(lim ,1lim )(lim 1111=⋅-===++--→→→→x x x f x x f x x x x 即),01()01(+≠-f f 所以1=x 为函数的跳跃间断点.综上, 7-=x 是该函数的第二类间断点, 1=x 是该函数的跳跃间断点. 3. 延拓下列函数,使其在R 上连续:(1) 28)(3--=x x x f ;(2) 2cos 1)(xx x f -=;(3) x x x f 1cos )(=. 分析:如果函数)(x f 在R 上无定义的点皆为可去间断点,那么只需在每个无定义的点0x 处补充定义)(lim )(00x f x f x x →=,就可以使)(x f 的定义扩大到R 上且处处连续.解(1) )(x f 在2=x 时无定义,而12)42(lim 28lim)(lim 22322=++=--=→→→x x x x x f x x x ,故2=x为)(x f 的可去间断点,令,2,122),()(⎩⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓,且在),(+∞-∞上连续.(2) )(x f 在0=x 时无定义,而2122sin 21lim 2sin 2lim cos 1lim)(lim 0220200=⎪⎪⎪⎪⎭⎫⎝⎛⋅==-=→→→→x x x x xxx f x x x x ,所以0=x 为该函数的可去间断点.令,0,210),()(⎪⎩⎪⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓,且在),(+∞-∞上连续.(3) )(x f 在0=x 时无定义, 而01coslim )(lim 0=⋅=→→xx x f x x ,所以0=x 为该函数的可去间断点. 令,0,00),()(⎩⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓.4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续.又问:若f 或2f 在I 上连续,那么f在I 上是否必连续?分析 将)()(0x f x f -和)()(022x f x f -与)()(0x f x f -的不等式关系找出,从而利用极限定义求证其连续,即运用极限理论讨论可得结论.证明(1)因为)(x f 在点0x 连续,所以)()(lim 00x f x f x x =→,则根据极限的δε-定义,对任给的0>ε,存在0>δ,使得当δ<-0x x 时有ε<-)()(0x f x f .又因,)()()()(00x f x f x f x f -<-所以当δ<-0x x 时也有.所以)()(lim 00x f x f x x =→,即可知f 在点0x 连续.(2) 因)(x f 在0x 连续,即)()(lim 00x f x f x x =→,所以由函数极限的局部有界性知,存在0>M ,01>δ使得当10δ<-x x 时,有M x f x f ≤-)()(0.取},m in{1δδδ=',当δ'<-0x x 时,有)()()()()()(00022x f x f x f x f x f x f +⋅-=- ()εεM M x f x f x f x f 22)()()()(00=⋅<-⋅-≤.所以2f 在0x 连续.但是,当f 或2f 在I 上连续时, f 在I 上不一定连续.例如,,1,1)(⎩⎨⎧-=为无理数为有理数x x x f 则f ,2f 为常数1,故处处连续,但)(x f 却处处不连续.5. 设当0≠x 时, )()(x g x f ≡,而)0()0(g f ≠.证明: f 与g 两者中至多有一个在0=x 连续.证明:反证法 假设)(x f 和)(x g 都在0=x 连续,即)0()(lim 0f x f x =→,)0()(lim 0g x g x =→,又因0≠x 时,)()(x g x f ≡,所以)(lim )(lim 0x g x f x x →→=,从而有)0()0(g f =,这与题设)0()0(g f ≠相矛盾.因此假设错误. )(x f 与)(x g 两者中至多有一个在0=x 连续.6. 设f 为区间I 上的单调函数.证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间断点.证明:设)(x f 在I 上递增,当I x ∈0且0x 不是I 的端点时,必存在0x 的某邻域I x U ⊂)(0,因)(x f 在)(0x U -内递增且以)(0x f 为上界,在)(0x U +内递增且以)(0x f 为下界,据函数极限的单调有界原理知)(lim 0x f x x +→与)(lim 0x f x x -→都存在,从而0x 是)(x f 的第一类间断点.当I x ∈0且为I 的左(右)端点时, )(x f 在0x 处的右(左)极限存在,所以0x 仍为第一类间断点.7. 设函数f 只有可去间断点,定义)(lim )(y f x g xy →=.证明g 为连续函数.证明:设f 的定义域为I ,则对任意的I x ∈0,因为)(lim )(00y f x g x y →=,所以对任意的0>ε,存在0>δ,当),(0δx U y ∈时,有ε<-)()(0x g y f .对任意的),(0δx U x ∈,因为)(lim )(y f x g xy →=,所以对同一ε,存在0>'δ,使),(),(0δδx U x U ⊂',且对任意的),(δ'∈x U y 时,有ε<-)()(x g y f .从而有ε2)()()()()()()()()()(000<-+-≤-+-=-x g y f y f x g x g y f y f x g x g x g .从而得)()(lim 00x g x g x x =→,所以)(x g 在点0x 处连续.由0x 的任意性知, )(x g 在I 上连续.8. 设f 为R 上的单调函数,定义)0()(+=x f x g .证明g 在R 上每一点都右连续.证明:假定f 为R 上的单调函数.对任意的R x ∈0,因)0(0+x f 存在,即)0()(lim 00+=+→x f x f x x ,所以对任意的0>ε,存在0>δ,当δ+<<00x x x 时,有ε<+-)0()(0x f x f .取x '使δ+<'<<00x x x x ,有ε<+-')0()(0x f x f .又由f 在R 上的单调增加性有εε++≤'≤+≤≤+≤-+)0()()0()()0()0(000x f x f x f x f x f x f ,即有εεεε+=++≤=+≤-+=-)()0()()0()0()(0000x g x f x g x f x f x g .由此可知,对一切),(00δ+∈x x x 有ε<-)()(0x g x g .因此点0x 是g 的右连续点,再由0x 在R 上的任意性,推得g 为R 上的右连续函数.9. 举出定义在]1,0[上分别符合下述要求的函数:(1) 只在31,21和41三点不连续的函数; (2) 只在31,21和41三点连续的函数;(3) 只在),3,2,1(1=n n上间断的函数;(4) 只在0=x 右连续,而在其它点都不连续的函数.解(1) .121,42131,33141,2410,1)(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<≤<≤<≤=x x x x x f (2) .,0),41)(31)(21()(⎪⎩⎪⎨⎧---=为无理数为有理数x x x x x x f (3) .sin1)(xx f π=(4) .,0,)(⎩⎨⎧=为无理数为有理数x x x x f2连续函数的性质1. 讨论复合函数g f 与f g 的连续性,设 (1) 21)(,sgn )(x x g x x f +==; (2) .)1()(,sgn )(2x x x g x x f -==解(1)由于01)(2>+=x x g ,故1)1sgn())(())((2≡+==x x g f x g f ,所以g f 在所有点上都连续.又,0,20,1)(sgn 1))(())((2⎩⎨⎧≠==+==x x x x f g x f g 且)0)((2)(lim 0f g f g x ≠=→,所以0=x 为f g 的可去间断点,其余点均为f g 的连续点.(2)由于()⎪⎩⎪⎨⎧<<<---=<<-<=-=101,11,1,0,0101,1)1(sgn ))((2x x x x x x x x g f 或或 ,且,1)(lim 1=-→g f x ,1)(lim 1-=→g f x ,1)(lim 0-=-→g f x ,1)(lim 0=+→g f x ,1)(lim 1=-→g f x ,1)(lim 1-=+→g f x 所以))((x g f 在1,0,1-=x 处有跳跃间断点,在其它点连续.又0sgn ])(sgn 1[))((2≡-=x x x f g ,所以f g 处处连续. 2. 设g f ,在点0x 连续,证明:(1) 若)()(00x g x f >,则存在);(0δx U ,使在其内有)()(x g x f >; (2) 若在某)(00x U 内有)()(x g x f >,则)()(00x g x f ≥. 证明(1)令)()()(x g x f x F -=,则0)()()(000>-=x g x f x F ,又因为g f ,在点0x 连续,由定理4.4知F 在点0x 连续.由连续函数的局部保号性,对任何正数)(0x F r <,存在某)(0x U ,使得对一切)(0x U x ∈,有0)(>>r x F ,即存在)(0x U ,使得对一切)(0x U x ∈,有0)()()(>-=x g x f x F ,即)()(x g x f >.(3) 由)(),(x g x f 在点0x 连续可知,有)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→,又因为在)(00x U 内有)()(x g x f >,则有极限保号不等式性有)()(lim )(lim )(000x g x g x f x f x x x x =≥=→→.3. 设g f ,在区间I 上连续.记{}{})(),(m in )(,)(),(m ax )(x g x f x G x g x f x F ==. 证明F 和G 也都在I 上连续.证明:法一利用第一章总练习题1的结论. 因)(),(x g x f 在I 上连续,而])]()([)()([21])()()()([21)(2x G x f x g x f x G x f x g x f x F -++=-++=,是由)(),(x g x f 经过加,减,乘运算及其幂函数的复合运算所得,故)(x F 也在I 上连续.法二 利用max 和min 的性质,由g f ,的连续性推出F 和G 的连续性. 对区间I 上任意一点0x ,g f ,在点0x 连续,则对任给0>ε,存在正数21,δδ,使得当10δ<-x x 时,有εε+<<-)()()(00x f x f x f ,当20δ<-x x 时,有εε+<<-)()()(00x g x g x g .取},m in{21δδδ=,则有εε+<<-)()()(00x f x f x f ,εε+<<-)()()(00x g x g x g 同时成立. 从而有{}ε+<)()(),(m ax 0x f x g x f 且{}ε+<)()(),(m ax 0x g x g x f .即{}{}ε+<)(),(m ax )(),(m ax 00x g x f x g x f .又有{}ε->)()(),(m ax 0x f x g x f 且{}ε->)()(),(m ax 0x g x g x f ,即{}{}ε->)(),(m ax )(),(m ax 00x g x f x g x f .综合以上得{}{}{}εε+<<-)(),(m ax )(),(m ax )(),(m ax 0000x g x f x g x f x g x f .由ε的任意性得{}{})(),(max )(),(max lim 000x g x f x g x f x x =→.即).()(lim 00x F x F x x =→同理可证).()(lim 00x G x G x x =→4. 设f 为R 上连续函数,常数0>c .记⎪⎩⎪⎨⎧>≤-<-=.)(,,)(),(,)(,)(c x f c c x f x f c x f c x F 若若若证明F 在R 上连续.证明:令{})}(,m in{,m ax )(x f c c x F -=,因常数c ,)(x f 都在R 上连续,所以由3题结论知)}(,min{x f c 在R 上连续,又因c -也在R 上连续,再由3题结论知{})}(,m in{,m ax x f c c -在R 上连续,即F 在R 上连续.5. 设⎩⎨⎧>+≤-==.0,0,)(,sin )(x x x x x g x x f ππ证明复合函数g f 在0=x 连续,但g 在0=x 不连续.证明:因⎩⎨⎧>+≤-=,0),sin(0),sin())((x x x x x g f ππ 所以0)sin(lim ))((lim 00=-=--→→πx x g f x x ,0)sin(lim ))((lim 00=+=++→→πx x g f x x .又0)0)((=g f ,故g f 在0=x 连续,但是ππ-=-=→→-)(lim )(lim 00x x g x x ,ππ=+=++→→)(lim )(lim 0x x g x x ,因)(lim )(lim 0x g x g x x +-→→≠,故)(x g 在0=x 不连续.6.设f 在),[+∞a 上连续,且)(lim x f x +∞→存在.证明: f 在),[+∞a 上有界,又问f 在),[+∞a 上必有最大值或最小值吗?证明(1)由于)(lim x f x +∞→存在,设A x f x =+∞→)(lim ,则根据极限定义,对1=ε,存在a M >,使得当M x >时,有1)(<-A x f ,从而A A A x f A A x f x f +<+-≤+-=1)()()(。
一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明 |22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
第四章函数的连续性1 连续性概念(练习)1、按定义证明下列函数在其定义域内连续(1)f(x)=;(2)f(x)=|x|.证:(1)f(x)=的定义域D=(-∞,0)∪(0,+∞)当x,x0∈D时,有=由三角不等式可得:|x|≥|x0|-|x-x0|,∴≤对任给的正数ε,有δ>0,当|x-x0|<δ时,有<δδ∴要使<ε,只要使δδ=ε,即当δ=εε>0时,就有|f(x)-f(x0)|<ε∴f(x)在x0连续. 由x0的任意性知f(x)在其定义域内连续.(2)f(x)=|x|在R上都有定义。
任取x, x0∈R,有||x|-|x0||≤|x-x0|.对任给的正数ε,有δ>0,当|x-x0|<δ时,有||x|-|x0||<δ∴只要取δ=ε,就有|f(x)-f(x0)|<ε∴f(x)在x0连续. 由x0的任意性知f(x)在R连续.2、指出下列函数的间断点并说明其类型(1)f(x)=;(2)f(x)=;(3)f(x)=[|cos x|];(4)f(x)=sgn |x|;(5)f(x)=sgn(cosx);(6)f(x)=为有理数为无理数;(7)f(x)=.解:(1)f(x)在x=0间断.∵f(x)在x=0的左右极限都不存在,∴x=0是f(x)的第二类间断点.(2)f(x)在x=0间断.∵==1,== -1,∴x=0是f(x)的跳跃间断点.(3)f(x)在x=nπ间断,(n=0,±1,±2,…)∵=0,=0,∴x=nπ是f(x)的可去间断点. (4)f(x)在x=0间断,∵=1,=1,∴x=0是f(x)的可去间断点.(5)f(x)在x=2kπ±间断,(k=0,±1,±2,…)∵=-1,= 1;= 1,= -1,∴x=2kπ±是f(x)的跳跃间断点.(6)f(x)在x≠0的点间断,且当x0≠0时,f(x)的左右极限都不存在,∴所有x≠0的点都是f(x)的第二类间断点.(7)f(x)在x=-7和x=1间断,∵=-7,不存在,∴x= -7是f(x)的第二类间断点.又=0,=1,∴x=1是f(x)的跳跃间断点.3、延拓下列函数,使其在R上连续(1)f(x)=;(2)f(x)=;(3)f(x)=xcos.解:(1)∵f(x)=在x=2没有定义,且==12;∴延拓函数得F(x)=在R上连续.(2)∵f(x)=在x=0没有定义,且===;∴延拓函数得F(x)=在R上连续.(3)∵f(x)=xcos在x=0没有定义,且=0;∴延拓函数得F(x)=在R上连续.4、证明:若f在x0连续,则|f|与|f2|也在点x0连续. 又问:|f|或f2也在点I连续,那么f在I是否必连续?证:∵f在x0连续,∴∀ε>0,有δ>0,使当|x-x0|<δ时,都有|f(x)-f(x0)|<ε. 又|f(x)-f(x0)|≥||f(x)|-|f(x0)||,∴当|x-x0|<δ时,都有||f(x)|-|f(x0)||<ε.∴|f|在点x0连续.又∵f在x0连续,由局部有界性知,存在M>0及δ1>0,使|x-x0|<δ1时,有|f(x)|<,∀ε>0,有δ2>0,使当|x-x0|<δ2时,都有|f(x)-f(x0)|<ε.取δ’=min{δ1,δ2},则当|x-x0|<δ’时,有|f2(x)-f2(x0)|= |f(x)-f(x0)||f(x)+f(x0)|≤|f(x)-f(x0)|(|f(x)|+|f(x0)|)<ε·M=ε.∴f2在点x0连续.其逆命题不成立,例如设f(x) =为有理数为无理数;则|f|,f2均为常数函数,∴|f|,f2均为连续函数,但f(x)在R上的任一点都不连续.5、设当x≠0时,f(x)≡g(x),而f(0)≠g(0). 证明:f与g两者中至多一个在x=0连续.证:若f与g在x=0都连续,则=f(0);=g(0).又当x≠0时,f(x)≡g(x),∴=,∴f(0)=g(0),这与f(0)≠g(0)矛盾,∴f与g两者中至多一个在x=0连续.6、设f为区间I上的单调函数. 证明:若x0∈I为f的间断点,则x0必是f的第一类间断点证:由函数极限的单调有界定理可知,不管f在区间I上单调增还是单调减,f在点x0∈I都有左右极限,∴当f在x0不连续时,x0必是f的第一类间断点。
数学分析—极限练习题及详细答案一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.1 1.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.02.【答案】 B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.1223331233200311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim 1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
练习题11. 0lim ()x x f x A →= 等价于以下 ( ).(A )00,0,0<|x-x |εδδ∀>∃><当时,有|()|f x A ε-≥; (B )00,0,0<|x-x |εδδ∃>∀><当时,有|()|f x A ε-<; (C )00,0,0<|x-x |εδδ∃>∀><当时,有|()|f x A ε-≥; (D )00,0,0<|x-x |εδδ∀>∃><当时,有|()|f x A ε-<; 2.下列等式成立的是( ).(A )11sinlim =∞→x x x ; (B )11sin lim 0=→x x x ;(C )1sin lim =∞→x x x ; (D )11sin 1lim 0=→xx x .3. a a n n =∞→lim ,它等价于( ).A.,0,0>∃>∀εN 当ε<->||,a a N n n 时;B.,0>∀ε在{}n a 中除有限个项以外,其余所有项都落在邻域);(εa U 之内;C. {}{}k k a a 212,-都收敛;D. {}n a 中有无穷多个子列都收敛于a .4. 设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有( ). A. j n j n n a a ∞→∞→=lim lim ; B. {}n a 不一定收敛; C. {}n a 不一定有界;D. 当且仅当预先假设了{}n a 为有界数列时,才有A成立. 5.设)(x f 在0x 可导,则=∆∆--∆+→∆xx x f x x f x )()(lim000( ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-6. 下列结论中正确的是( ).A.若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.7.若0x 是函数()y f x =的间断点,则( ) A. 0x 是跳跃间断点,或者是可去间断点.B .当0x 是()f x 的跳跃间断点时,0lim ()x x f x +→和0lim ()x x f x -→都不存在. C .极限0lim ()x x f x →必不存在.D .当0lim ()x x f x +→和0lim ()x x f x -→都存在时,0x 是第一类间断点. 8. =)(x f ⎪⎪⎩⎪⎪⎨⎧>+=<,0 ,2 ,0 ,0,,sin x x x k x x kx(k 为常数),函数)(x f 在点00=x 必( ) A.左连续; B. 右连续 C. 连续 D. 不连续 9. )(lim )(lim 0x f x f x x x x +-→→=是)(x f 在0x x =处连续的( ).A. 充分条件;B. 必要条件;C. 充要条件;D. 无关条件.10. 函数|sin |y x =在点0x =处的导数是( )A. 不存在;B. 1;C. 0;D. 1-.11. 函数53()35f x x x =-在R 有( ).A. 四个极值点B. 三个极值点C. 二个极值点D. 一个极值点 12. 若()2sin 2xf x dx C =+⎰,则()f x =( ). A. cos 2x C + B. cos 2x C. 2cos 2x C + D. 2sin 2x13. 设()f x 的一个原函数为()F x ,则(21)f x +的一个原函数为( ). A. (21)F x + B.1(21)2F x + C. 2(21)F x + D. 2()1F x + 14. 若()f x 的一个原函数为()F x ,则(ln )F x 为( )的一个原函数. A.1(ln )f x xB. (ln )f xC. 1()f x x D. ()f x15. 对[,]a b 一个分法T ,增加某些新分点构成[,]a b 一个新分法T ',则有( ).A. ()()()()s T s T S T S T ''≤≤≤B. ()(), ()()s T s T S T S T ''≤≤C. ()()()()s T s T S T S T ''≤≤≤D. ()(), ()()s T s T S T S T ''≤≤ 16. 函数()f x 在区间[,]a b 上的不定积分()f x dx ⎰和定积分()baf x dx ⎰分别是( ).A. 一族函数和一个函数B. 一个函数和一个定数C. 一个原函数和一个定数D. 一族函数和一个定数 17.设)(x f 在],[b a 上可导,则)(x f 在],[b a 上必定为( ).A.既存在最大值,又存在最小值; B.不能同时存在最大值和最小值; C.在0)(='x f 的点处必取极值; D.以上A、B、C都不一定成立.18. .下列反常积分中发散的是( ). A.211d x x +∞⎰B. 10x ⎰C. 10x ⎰D. 101d 1x x -⎰ 19. 若函数()f x 在R 连续,则()d f x dx dx ⎰, ()d f x dx dx ⎰, 10()d f t dt dx⎰, 0()xd f t dt dx ⎰ 依次为( ). A. ()f x C +, )(x f , 0, )(x f B. )(x f , ()f x C +, 0, )(x f C. )(x f , ()f x C +, )(x f , 0 D. )(x f , )(x f , 0, ()f x C + 20. 下列叙述正确的是( ).A .若)(x f 在闭区间[, ]a b 上有界,则()baf x dx ⎰一定存在.B .若)(x f 在闭区间[, ]a b 上只有有限个间断点,则()baf x dx ⎰一定存在.C .若)(x f 在闭区间[, ]a b 上有界且有无限个间断点,则()baf x dx ⎰一定存在.D .若)(x f 在闭区间[, ]a b 上单调,则()baf x dx ⎰一定存在.21.若函数)(x f y =在) , ( b a 满足0)(>'x f 且0)(<''x f ,则)(x f 在) , ( b a 上是( ) . A. 严格增加且是上凸的 B. 严格减少且是上凸的 C. 严格增加且是下凸的 D. 严格减少且是下凸的 22.对于瑕积分⎰-1032)1(x x dx 下列叙述正确的是( ).A. 0和1都是瑕点,积分发散;B. 只有0是瑕点,积分收敛;C. 只有1是瑕点,积分发散;D. 0和1都是瑕点,积分收敛.23. 关于22222(,)()x y f x y x y x y =+-在点(0,0)的重极限及累次极限,说法正确的是( )A .重极限存在,但累次极限都不存在; B. 重极限不存在,但累次极限都存在; C. 重极限和累次极限都存在; D. 重极限和累次极限都不存在. 24. 下列说法正确的是( )A .0000(,),(,)x y f x y f x y 都存在则(,)f x y 在00(,)x y 处必定可微;B .(,)f x y 在点00(,)x y 可微的充要条件是偏导函数,x y f f 在00(,)x y 连续;C .(,)f x y 在点00(,)x y 可微的充分条件是偏导函数,x y f f 在00(,)x y 连续;D .(,)f x y 在点00(,)x y 可微的必要条件是偏导函数,x y f f 在00(,)x y 连续. 25. 下列说法正确的是( )A .点P 是集合E 的内点,则存在P 的一个邻域完全的包含在E 中;B .点P 是集合E 的内点,则P 可能是E 的聚点也可能不是E 的聚点;C .点P 如果不是集合E 的内点,则P 必定是E 的外点;D .集合E 的孤立点不一定是E 的边界点. 26. 下列说法错误的是( ) A .对于积分(,)d (,)d LI P x y x Q x y y =+⎰Ñ,只要P Qx y∂∂=∂∂,则0I =; B .如果在单连通闭区域D 中处处有P Q y x ∂∂=∂∂,则D 中任意的曲线积分d d LP x Q y +⎰与路径无关,只与起点和终点有关;C .如果D 中任意光滑闭曲线L ,有0LPdx Qdy +=⎰Ñ,则若在D 中有(,)u x y 使d d d u P x Q y =+;D .如果D 中任意光滑闭曲线L ,有0LPdx Qdy +=⎰Ñ,则D 中曲线积分与路径无关.27. 关于级数1nn u∞=∑的收敛性下列说法正确的是( )A .级数要么条件收敛,要么绝对收敛; B.绝对收敛则必定条件收敛 C .收敛而不绝对收敛, 则必定条件收敛;D.有可能nnu∑收敛,但nnu∑发散.28. 关于幂级数nn n a x∞=∑下列说法正确的是( )A .如果收敛半径为r ,则级数的收敛域为(,)r r -;B. 如果在1x =处级数收敛,则在区间(1,1)-内每个点都收敛;C .如果0n =,则收敛半径0r =;D .以上说法都是错的. 二、填空题 1. 设e xk xx =+∞→2)1(lim ,则=k __________. 2.=-+→114sin limx x x _________.3.arctan limx xx→∞=_________.4. =-+→114sin limx x x _______.5.函数3234()2x f x x x+=-的渐近线是:_______________________.6.设⎩⎨⎧≥+<=0)(x xa x e x f x,若要使f (x )在x = 0处连续,则a = . 7. 函数x y sgn = 的间断点是________属于第_____类间断点.8.函数x x y cos sin +=,则22d d yx=___________________.9.函数)(x f 在点a 的泰勒公式中,佩亚诺型余项为()n R x = ;拉格朗日型余项为()n R x = . 10.24413x dx x x +=-+⎰ .11. 函数2()2ln f x x x =-的单调增加区间是 ;凸区间是.12.=⎰dx x d sin ;⎰=10 sin dx x d .13.=⎰;arctan xdx =⎰ .14. 2()cos f x x =的麦克劳林公式是(到6x 项)__________________________________.15.25613x dx x x +=-+⎰ .16. a 是函数)(x f 的瑕点⇔.17.设()f x 有连续导数()f x ',且满足20[()cos ()sin ]3f x x f x x dx π'+=⎰,则()2f π=___.18. 曲线2y x =在区间[0, 1]绕x 轴旋转一周所得旋转体的体积V = .19.⎰+∞+1d )1ln(1cos sin x x x x 是 .(填“收敛”或“发散”) 20.设S 为柱面222x y R +=被平面0,z z h ==所截取的部分,则22d SSx y +⎰⎰=__________;21.设(,)xz f xy y=,则2z x y ∂∂∂=__________________________________;22.方程组2200x u yv y v xu ⎧--=⎨--=⎩所确定的隐函数组的偏导数ux ∂=∂_____________________; 23.求曲面222327x y z +-=在点(3,1,1)的切平面方程:_________________________; 24.23(,,)f x y z xy yz =+,则f 在点0(2,1,1)P --的梯度=____________________; 25.函数(,,)f x y z xyz =在约束条件2221x y z ++=下的条件极值点是方程组______________________________的解;26.有界闭区域D 面积D S 可求,按段光滑闭曲线L 为区域D 的边界线,则D S 可分别用二重积分和第二型曲线积分表示为_________________和__________________________; 27.根据莱布尼茨判别法,交错级数1(1)nn n u∞=-∑收敛的条件是____________________;一、判断题 (对的记“√”,否则记“×”)( )1. 若0()f x 为函数)(x f 的极值,则0()0f x '=.( )2. 若()f x 在点0x 的邻域存在连续的二阶导数,且0x 是()f x 的拐点,则0x 是()f x '的稳定点.( )3. 若()()F x f x '=,则(sin )cos (sin )f x xdx F x C =+⎰.( )4.21111()(ln 1ln 1)12112dx dx x x C x x x =+=++-+-+-⎰⎰. ( )5.如果)(x f 在区间] , [b a 上无界,那么)(x f 在] , [b a 上不是黎曼可积的. ( )6.若0()0f x '=, 则0()f x 一定是函数)(x f 的极值.( )7. 函数()f x 在区间[,]a b 上可积是函数()f x 在区间[,]a b 上可积的必要条件. ( )8. 如果)(x f 在区间] , [b a 上不连续,那么)(x f 在] , [b a 上不是黎曼可积的. ( )9. 若()f x 在[, ]a b 可积, 则存在一点[,]c a b ∈,使()()()baf x dx f c b a =-⎰.( )10. 反常积分pdxx +∞⎰当1p >时收敛,当01p <≤时发散。
小学数学分析练习题及答案题目一:某商店中,小明买了一些铅笔,用了80元。
如果每只铅笔的价格是6元,那么小明买了多少只铅笔?题目二:一根木棍长4米,现要将其等分为6段,每段长度相等,每段长度是多少?题目三:小明每天早上都跑步,第一周跑了3公里,比上一天增加了1公里。
之后每天都比上一天多跑1公里。
请问第五天小明跑了多少公里?题目四:有5个相邻的整数,它们的和是85,那么这5个整数中最大的数是多少?题目五:小明去年考试的平均成绩是85分,今年他又参加了一个考试,最终平均成绩提高到了87分。
如果今年考试的成绩是90分,那么去年他的成绩是多少分?答案一:由于每只铅笔的价格是6元,在用80元购买的情况下,我们可以用80除以6来计算购买的铅笔数量。
80 ÷ 6 = 13余2即小明买了13只铅笔。
答案二:将木棍等分为6段,即长度相等的6段。
4 ÷ 6 = 2/3(米)所以每段长度是2/3米。
答案三:根据题目条件,我们可以得知小明每天增加1公里跑步。
第五天的跑步距离比第一天的跑步距离增加了(5 - 1)= 4公里。
所以第五天小明跑步的距离为3 + 4 = 7公里。
答案四:由于这5个相邻的整数的和是85,可以设最小的整数为x,那么其他4个整数分别为x + 1, x + 2, x + 3, x + 4。
将这5个整数相加,得到:x + (x + 1) + (x + 2) + (x + 3) + (x + 4) = 855x + 10 = 855x = 75x = 15所以这5个整数为15, 16, 17, 18, 19,其中最大的数为19。
答案五:设去年小明的成绩为x分。
根据题目条件,我们可以得到下列等式:(去年的成绩 ×去年的考试科目数 + 今年的成绩) ÷(去年的考试科目数 + 1)= 87(x × n + 90) ÷(n + 1)= 87通过解方程,可以得到n = 5。
小学一年级数学分析练习题本文将为小学一年级的学生提供一些数学分析的练习题,旨在帮助他们加深对数学知识的理解和运用能力。
以下是一些针对小学一年级学生的数学题目,每道题后面都有详细的解答。
1. 题目:小明有3个苹果,小红有5个苹果,他们一共有几个苹果?解答:小明和小红一共有3 + 5 = 8个苹果。
2. 题目:班级有10个男生和12个女生,一共有几个学生?解答:班级一共有10 + 12 = 22个学生。
3. 题目:小华有4本书,他借给小明2本书,还剩几本书?解答:小华借出2本书后还剩4 - 2 = 2本书。
4. 题目:小明有8个糖果,他给了小红3个糖果,还剩几个?解答:小明给了小红3个糖果后还剩8 - 3 = 5个糖果。
5. 题目:一个篮子里有6个橘子,小华拿走了2个,还剩几个?解答:小华拿走2个橘子后还剩6 - 2 = 4个橘子。
6. 题目:妈妈有9个饼干,她给小明和小红各分了3个饼干,还剩几个?解答:妈妈给了小明和小红各分了3个饼干后还剩9 - 3 - 3 = 3个饼干。
7. 题目:有一条绳子长12米,小华剪下6米,还剩几米?解答:小华剪下6米后绳子还剩12 - 6 = 6米。
8. 题目:篮球队有7个男生和5个女生,一共有几个队员?解答:篮球队一共有7 + 5 = 12个队员。
9. 题目:班级有15个学生,其中有8个学生是女生,男生有几个?解答:班级中男生的数量为15 - 8 = 7个。
10. 题目:小华有10本漫画书,他借给小明5本,还剩几本?解答:小华借出5本书后还剩10 - 5 = 5本。
通过这些简单的数学练习题,小学一年级的学生可以巩固他们对基本数学概念的理解,并提高他们的计算能力。
希望以上练习题和解答能够对小学一年级的学生有所帮助。
持续学习和练习将有助于他们在数学方面取得更好的成绩。
第二章 数列极限一、填空题1.∑=∞→=++++Nn n n1 (3211)lim_________;2.-+∞→3(lim n n n3.=++++++++∞→n nn 31913112141211lim; 4.已知 2235lim2=-++∞→n bn an n ,则 =a , =b ;5.=-+∞→nnn nn 3535lim;6.已知2003)1(lim=--∞→bban n n n,则 =a , =b ;7.=+++++++++∞→)12111(lim 222nn n n n n n n ;8. =-∙∙--∞→)11()311)(211(lim 222nn ;二、选择填空1. “对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时恒有ε2||≤-a a n ”是数列}{n a 收敛于a 的A 充分条件但非必要条件。
B 必要条件但非充分条件C 充分必要条件D 既非充分条件又非必要条件。
2.数列}{n a 不收敛于a 的充要条件是A 对于任给 0>ε,满足ε<-||a a n 的项只有有限项。
B 对于任给 0>ε,总有相应的项n a ,ε≥-||a a n 。
C 存在某个正数0ε,除有限项外,都有0||ε≥-a a nD 存在某个正数0ε,有无穷多项满足0||ε≥-a a n3. 设数列n x 与n y 满足0lim =∞→n n n y x ,则下列断言正确的是A 若n x 发散,则n y 必发散。
B 若n x 无界,则n y 必有界。
C 若n x 有界,则n y 必为无穷小。
D 若nx 1为无穷小,则n y 必为无穷小。
4. 设}{n a 收敛,}{n b 发散,则A }{n n b a 必收敛。
B }{n n b a 必发散。
C }{n n b a +必收敛。
D }{n n b a +必发散。
5. 设数列}{n a 无上界且 ,2,1,0=≠n a n ,则A }{1-n a 必有上界B 对于任给定的M>0,必有无穷多项M a n >。
数学分析第四版下册课后练习题含答案前言《数学分析(第四版)》是由中国地质大学出版社出版的一套教材,该教材适用于大学数学分析课程的教学。
作为研究数学的基础学科,数学分析的学习是深入理解数学各领域的前置条件。
为了帮助各位学生更好地完成课程学习,本文将给出《数学分析(第四版)下册》的课后练习题答案。
第一章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{a}{2}$, $\\frac{b}{2}$,$\\sqrt{\\frac{a^2}{4}+\\frac{b^2}{4}}$.2.$\\frac{1}{2}(x^2+y^2+z^2-xy-yz-xz)$.论述题1.略第二章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\ln a - \\ln b$.2.$\\frac{a}{\\sqrt{2}}$, $-\\frac{a}{\\sqrt{2}}$. 论述题1.略第三章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.a n=n3−n2.2.不成立.论述题1.略第四章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{1}{2}x^2+\\frac{1}{2}(y-2x)^2+1$, $\\sqrt{2}$.2.$\\frac{1}{2}\\sqrt{2}$.论述题1.略结语本文提供了《数学分析(第四版)下册》课后习题的解答,希望对各位学生完成课程学习有所帮助。
如有不懂之处,请咨询相应的教师或学长学姐。
数学分析第四版上册答案第一章环境建立1.1 算术基础在数学分析中,我们需要对数学中的基本运算进行复习和巩固。
这包括四则运算、乘方和开方等。
在本节中,我们将回顾这些基本算术技巧,并解答一些相关问题。
1.1.1 四则运算四则运算是我们进行数学计算的基本方法。
它包括加法、减法、乘法和除法。
在本节中,我们将通过一些例题来练习四则运算,并解答相应的问题。
例题1.1.1计算下列算式的结果:a) 2 + 3 * 4b) (5 - 2) * 7c) 10 / 5 + 3d) 8 - 6 / 2解答:a) 2 + 3 * 4 = 2 + 12 = 14b) (5 - 2) * 7 = 3 * 7 = 21c) 10 / 5 + 3 = 2 + 3 = 5d) 8 - 6 / 2 = 8 - 3 = 5计算下列算式的结果:a) 5 + 6 * 2 - 3b) 8 / 2 * (4 + 3)c) 7 - 4 / 2 + 5 * 3解答:a) 5 + 6 * 2 - 3 = 5 + 12 - 3 = 14 - 3 = 11b) 8 / 2 * (4 + 3) = 4 * 7 = 28c) 7 - 4 / 2 + 5 * 3 = 7 - 2 + 15 = 201.1.2 乘方与开方乘方和开方是我们在数学中经常用到的运算符。
乘方表示多次相乘,开方则相反,表示求一个数的平方根。
在本节中,我们将练习一些乘方和开方的计算,并解答相关问题。
例题1.1.3计算下列算式的结果: a) 2^3b) 4^0.5c) (23)2d) (32)3解答:a) 2^3 = 2 * 2 * 2 = 8 b) 4^0.5 = √4 = 2 c) (23)2 = 8^2 = 64 d) (32)3 = 9^3 = 729计算下列算式的结果:a) √9b) √(4^2)c) √(3^2 + 4^2)d) (√2 + 1)^2解答:a) √9 = 3 b) √(4^2) = √16 = 4 c) √(3^2 + 4^2) = √(9 + 16) = √25 = 5 d) (√2 + 1)^2 = (1.414 + 1)^2 = 2.414^2 = 5.8291.2 方程与不等式在数学分析中,方程和不等式是我们经常遇到和解决的问题。
数学分析习题精选徐森林pdf在数学学习中,练习是非常重要的一环。
而对于数学分析这门学科来说,习题更是不可或缺的。
习题能够帮助学生深化对知识点的理解,提高解题能力,并且是检验掌握程度的重要手段。
因此,选择一本优秀的数学分析习题集也是非常必要的。
徐森林的《数学分析习题精选》(下称《习题精选》)便是一本不错的选择。
徐森林作为北京大学数学系教授,对于数学分析这门学科有着深厚的研究和教学经验。
在《习题精选》中,他从自己多年的教学经验出发,将大量的数学分析习题进行了分类和整理,不论是难度还是涉及知识点,都非常全面并且细致。
《习题精选》一共包括了26章,涵盖了微积分、重积分、级数等多个方面的内容。
每一章的题目分为基础题和拓展题两部分,基础题用来帮助学生巩固基本知识并熟练掌握基本解题方法,而拓展题则涉及一些更深入的理论和技巧,帮助学生拓展视野和提高思维能力。
在解题过程中,每个步骤都有详细的解答。
对于某些题目,有多种不同的解法,这样可以让学生更好地掌握多种解题思路。
此外,这本书的编排也很合理,题目难度逐渐递增,让学生可以循序渐进地提高自己的解题能力。
同时,徐森林的《习题精选》也不是单纯的题目集,而是将题目和理论相结合,把知识点和题目紧密联系在一起。
在书的前半部分,徐教授对于每一章节的基本概念和定理都有很详细的讲解,这样可以让学生更好地把握课本中的重点和难点。
尽管《习题精选》的优点很多,但也不可避免地会有一些不足之处。
例如,因为徐森林对于数学分析的要求较高,部分习题对于普通学生来说可能会稍显困难。
因此,如果学生选择《习题精选》作为自己的练习材料,最好能够结合自己的程度适当选择题目,并且有一些相关的基础知识。
总之,徐森林的《数学分析习题精选》是一本值得学生借鉴的优秀的习题集。
相较于市面上其他的习题集,它的优点在于难度适中、涉及面广、编排合理,更加符合大多数学生的学习需要。
对于那些想要提高自己数学分析解题能力的同学来说,这本书是个不错的选择。
4 数学分析练习题1.函数f^y) = x2y-xe y在(1 ,0)处方向导数的最大值等于什2兀+ XLk心------------------------- 3 设/“)是连续函数,J=L/(x) = x + 2p(r)Jr,M/(x) =5.函数项级数u n(x)在£)上一致收敛于函数S(Q的(w,N)定义是n=l6.7.由曲线y = J{x) , x = a , x = b和尤轴围成的llll边梯形绕尤轴旋转的旋转体体积V v=严dx8已知反常积分Jo 甬尹收敛于1,则比=0 19.求级数2 + 4 + - + 100 +工莎的和S = _________/I=I 210设。
00,兄=1,2,….且{皿“}有界,则工盗的敛散性为_______ •11.函数/W = c A的幕级数展开式为___________________________ .12.设平面点集E G/?2,点A W R2,“ A为E的内点”的定义是: __________ _______ 见p86 __________________________________________________________.1 . 1 ° xsin —+ ysin-, xyH 0 “、13 若 f(x,y)= y - x - ,(X,),)H(0,0)则二重极限r hm f(x9y) =0, 巧=014函数z =兀v,则全微分dz = ____________________ .15 设/(x,y,?)=A>2+yF,则y 在点Po(2,_l,l)的梯度为16.改变累次积分/=pA^7(x,.y)6/y的次序,则".17以曲面z = Ax j)(其屮几叨)20)为顶,gy平面上的区域D为底的町顶柱体的体积18函数z是由方^.e x -xyz = 0所确定的二元函数,贝ij全微分dz\{}}= _____ ・s 119若级数y ---------- 发散,则a的取值范围是。
数学分析(四)练习一
一、基础练习
1. 0),(00≠y x F y 是确保方程0),(=y x F 确定唯一隐函数)(),(00x f y x f y ==的必要条件. ( )
2.. 第一型曲线积分与曲线的方向无关 ( )
3. 第一型曲面积分与曲面的侧无关 ( )
4. 若),(),,(y x g y x f 在D 上不可积,则),(),(y x g y x f +在D 上也不可积 ( )
5. 所有的曲面都是双侧曲面 ( )
6. 如果有界闭区域V 上的有界函数),,(z y x f 的间断点集中在有限多个零体积的曲面上,则),,(z y x f 在V 上必定可积 ( )
7. 若),(y x f 与),(y x g 在D 上可积,且D y x y x g y x f ∈≤),(),,(),(,则
⎰⎰⎰⎰≤D
D
dxdy y x g dxdy y x f ),(),(. ( )
8 平面点集}),()(|),{(21d y c y x x y x y x D ≤≤≤≤=称为y 型区域 ( ) 9.任一方程0),(=y x F 都能确定隐函数 ( ) 10. 第二型曲线积分与曲线的方向有关 ( )
11. 第二型曲面积分与曲面的侧有关 ( ) 12. 若),(y x f 在有界闭区域D 上可积,则一定存在D ∈),(ηξ,使得
D
D
S
f dxdy y x f ),(),(ηξ=⎰⎰ ( )
13. 有界闭区域V 上的连续函数),,(z y x f 必定可积 ( ) 14. 若),(y x f 在D 上可积,则函数),(y x f 在D 上也可积,且
σσd y x f d y x f D
D
⎰⎰⎰⎰≤),(|),(| ( )
15. 含参量反常积分⎰
+∞
c
dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于∞
+的递增数列}{n A (其中c A =1),函数项级数∑∑⎰
∞
=∞
==+1
1
)(),(1
n n n A A x u dy y x f n n
在I 上
一致收敛. ( )
16.平面点集}),()(|),{(21b x a x y y x y y x D ≤≤≤≤=称为x 型区域 ( )
17.由方程220x y c ++=能确定连续可微的隐函数()y f x =. ( ) 18.平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为零. ( )
19. 在2R 内,曲线积分
⎰-+L
dy dx y x ))((与路径无关. ( )
20. 的非负连续函数,上的不恒为为有界闭区域设0),(D y x f 则⎰⎰>D
d y x f 0),(σ.
( ) 21. 含参量反常积分dx x
xy
3
1sin +⎰
+∞
在),(+∞-∞上一致收敛. ( ) 22.
⎰⎰
⎰
⎰
+∞
+∞
=
b
a
c
c
b
a
dx y x f dy dy y x f dx ),(),( ( )
23. 方程xy
e y x =+sin cos 能在原点的某邻域内确定隐函数)(x
f y =.
( )
24. 上的有界函数,为有界闭区域设D y x f ),(则必有
⎰⎰D
dxdy y x f ),(存在 ( )
25. 设平面上一闭曲线,为xy L ⎰
=+L xdy ydx 0则有: ( )
26. 含参量反常积分
dx x yx
2
1arctan +⎰
+∞
在),(+∞-∞上一致收敛. ( )
27. 平面曲线0),(=y x F 在点),(000y x P 的法线方程为 28. 空间曲线)(),(),(:t z z t y y t x x L ===在),,(0000z y x P 处的法平面方程为 29 曲面0).,(=z y x F 在),,(0000z y x P 的法线方程为 30.Γ函数与Β函数的关系为
31. 若L 是以原点为中心,R 为半径的右半圆周,则=+⎰L
ds y x 2
12
2
)(
32. 对于球坐标变换:,cos ,sin sin ,cos sin ϕθϕθϕr z r y r x ====),,(θϕr J 33. 如果V 内任一封闭曲线皆可以不经过V 以外的点而连续收缩于属于V 的点, 则称V 是 区域.
34. 平面曲线0),(=y x F 在点),(000y x P 的切线方程为 35. 空间曲线)(),(),(:t z z t y y t x x L ===在),,(0000z y x P 处的切线方程为 36. 曲面0).,(=z y x F 在),,(0000z y x P 的切平面方程为
37.Γ函数的递推公式为 38.=+Γ)1(n 39. 对于柱面坐标变换:z z r y r x ===,sin ,cos θθ,=),,(z r J θ
40.设0522
3
2
=-+y x y x 确定隐函数)(x f y =,则=dx
dy
41. 设}9|),{(2
2
≤+=y x y x D ,则=⎰⎰D
dxdy
42. 设函数0,)(10
>=Γ--+∞⎰
s dx e x s x s ,则'()s Γ=
43. 设连续),(y x f ,交换累次积分的顺序则有=⎰⎰
x
dy y x f dx 0
1
),(
44. 设曲线,10,3,:≤≤=
=t t y t x L 则曲线积分⎰=L
xds
45. 设空间物体V 的密度为),,(z y x ρ,则物体的质量用积分表示为: 46.设曲线1:2
2
=+y x L ,则曲线积分=⎰
ds L
47. 设V 是由曲面1,22=+=
z y x z 围成的空间区域,则=⎰⎰⎰V
dxdydz
48. =++⎰
+→2
210
01lim
y x dx
y
y
49. 设连续,),(y x f 交换累次积分的顺序则有
=⎰⎰
d
c
b
a
dy y x f dx ),(
50. 设曲线,,:t y t x AB ==则)1,1()0,0(B A 到从的曲线积分
⎰
=AB
xdy
51.. 设dy e
x F x
x
xy
⎰-=22
)(,则=)('x F 52.已知121
:
312
x y z L --+==
从点(1,2,1)-到点(4,3,1)的一段,则积分L
ydx zdy ydz ++=⎰
53.53
1
ln x x dx x
-=⎰ 54.写出各种积分的符号,具物理意义及几何意义的表达式。