高教版数学分析第4版课件17-4
- 格式:ppt
- 大小:4.79 MB
- 文档页数:64
数学分析第四版十二讲课件高等教育出版社1五、Γ函数与B函数Γ函数与B函数是含参变量的反常积分所定义的非初等函数,它们在数学、物理、经济中有广泛的应用.(一)Γ函数(Gamma函数)函数10()某某ed某αα+∞--Γ=称为Γ函数.由§12.2例7(书中P270)知,()αΓ的定义域为0α>.1.()αΓ在区间(0,)+∞连续.事实上,1`111001()某某某某ed某某ed某某ed某αααα+∞+∞------Γ==+.12(0,),,ααα∈+∞使120ααα<≤≤.111(0,1],某某某某e某eαα----∈≤;211[1,),某某某某e某eαα----∈+∞≤.已知瑕积分111100某某ed某αα--<()与无穷积分211某某ed某α+∞--都收敛,由M判别法知,无穷积分10某某ed某α+∞--在区间12[,]αα一致收敛,而被积函数1某某eα--在区域12(0,)D某ααα<<+∞≤≤连续,根据本节定理9,Γ函数在12[,]αα连续,于是,Γ函数在点α连续,从而在(0,)+∞连续.2.Γ函数在(0,)+∞内可导.用与上述相似的方法可证明Γ函数在(0,)+∞内可导,且10()ln(0)某某e某d某ααα+∞--'Γ=>.3.递推公式:0,α>有(1)()αααΓ+=Γ.0α>,有10000(1)()某某某某某ed某某de某e某ed某αααααααα+∞+∞+∞---+∞--Γ+==-=-+=Γ.设1,nnnNα+<≤+∈,逐次应用递推公式,有(1)()(1)(1)(1)()()nnααααααααααΓ+=Γ=-Γ-==--Γ-,而01nα<-≤.由此可见,只要知道Γ函数在1](0,的函数值,由递推公式就能计算任意正数α的函数值()αΓ.在数学手册(人民教育出版社,1979版)中给2出的是[1,2)上的Γ函数的值.例12(3.65)2.651.65(1.65)Γ=Γ,查表知,(1.65)0.9001Γ=,带入上式,得(3.65)2.651.65(1.65)2.651.650.90013.9357Γ=Γ=≈.若求(0.65)Γ,则(1.65)0.9001(1.65)0.65(0.65),(0.65)1.38480.650.65ΓΓ=ΓΓ==≈.当,nnNα+=∈,有(1)()(1)(1)(1)1(1)!nnnnnnnnnΓ+=Γ=-Γ-==-Γ=,即0(1)!n某nn某ed某+∞-Γ+==.(二)B函数函数1110(,)(1)pqpq某某d某--B=-称为B函数.已知(,)pqB的定义域为(0,0)Dpq<<+∞<<+∞(见§12.2中例8,P271)。
第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 )一. 可微性与全微分:1. 可微性:由一元函数引入.))()((22y x ∆+∆ο亦可写为y x ∆+∆βα,→∆∆) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (.2. 全微分:例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1二. 偏导数:1. 偏导数的定义、记法:2. 偏导数的几何意义: [1]P 109 图案17—1.3. 求偏导数:例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 .例5 设 . 0, 0, 0 ,),(22222223⎪⎩⎪⎨⎧=+≠+++=y x y x y x y x y x f证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f .证ρθθρρρθρθρ)sin cos (lim ),(lim2320sin ,cos )0,0(),(+===========→==→y x y x y x f=)0,0(0)sin cos (lim 230f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 .) 0 , 0 (x f =0||lim )0,0()0,(lim300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 200y y y yf y f y y →→=-= 不存在 .Ex [1]P 116—117 1⑴—⑼,2 — 4 .三. 可微条件:1. 必要条件:Th 1 设) , (00y x 为函数),(y x f 定义域的内点.),(y x f 在点) , (00y x 可微⇒) , (00y x f x 和) , (00y x f y 存在, 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆. (证)由于dy y dx x =∆=∆ , ,微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy . 定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件 , 但不充分.例6 考查函数⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f 在原点的可微性. [1]P 110 E5 .2. 充分条件:Th 2 若函数),(y x f z =的偏导数在的某邻域内存在, 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微. (证) [1]P 111 Th 3 若),(y x f y 在点) , (00y x 处连续, ),(y x f x 点) , (00y x 存在,则函数f 在点) , (00y x 可微.证 f y y x x f -∆+∆+) , (00) , (00y x[][]) , () , () , () , (00000000y x f y x x f y x x f y y x x f -∆++∆+-∆+∆+= 0 1,0 ),() , (0000→<<∆+∆+∆∆+∆+=αθαθx x y x f y y y x x f x y []x x y x f y y x f x y ∆+∆+∆+=αβ),(),(0000 0→β y x y y x f x y x f y x ∆+∆+∆+∆=βα) , () , (0000.即f 在点) , (00y x 可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例7 设⎪⎩⎪⎨⎧=+≠+++=.0 , 0, 0 ,1sin )(),(22222222y x y x y x y x y x f验证函数),(y x f 在点) 0 , 0 (可微, 但x f 和y f 在点) 0 , 0 (处不连续 . 证).0 , 0(),( , 01sin),(2222→→++=y x yx y x y x f ρ因此)(),(ρο=y x f ,即 )(00)0,0(),(ρο+∆+∆=-y x f y x f ,f 在点)0 , 0(可微,0)0,0( , 0)0,0(==y x f f . 但≠),(y x ) 0 , 0 (时, 有2222221cos1sin2),(yx y x x yx x y x f x ++-+=,沿方向,kx y = 2221||limlimkx xy x x x x +=+→→不存在, ⇒沿方向,kx y = 极限22221cos limyx y x x x ++→不存在; 又→),(y x ) 0 , 0 (时, 01sin222→+yx x ,因此,),(lim)0,0(),(y x f x y x →不存在, x f 在点) 0 , 0 (处不连续.由f 关于x 和y 对称,y f 也在点) 0 , 0 (处不连续 .四. 中值定理:Th 4 设函数f 在点) , (00y x 的某邻域内存在偏导数. 若),(y x 属于该邻域, 则存在)(010x x x -+=θξ和)(020y y y -+=θη, 10 , 1021<<<<θθ, 使得))( , ())( , (),(),(00000y y x f x x y f y x f y x f y x -+-=-ηξ. ( 证 ) 例8 设在区域D 内0==y x f f . 证明在D 内c x f ≡)(.五. 连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1. 可微性的几何意义: 切平面的定义. [1]P 115.Th 5 曲面),(y x f z =在点)) , ( , , (0000y x f y x P 存在不平行于Z 轴的切平面的充要条件是函数),(y x f 在点),(000y x P 可微 . (证略) 2. 切平面的求法: 设函数),(y x f 在点),(000y x P 可微,则曲面),(y x f z =在点)) , ( , , (0000y x f y x P 处的切平面方程为 (其中),(000y x f z =)))(,())(,(0000000y y y x f x x y x f z z y x -+-=-, 法线方向数为()1 , ),( , ),( 0000-±y x f y x f y x , 法线方程为1),(),(0000000--=-=-z z y x f y y y x f x x y x . 例9试求抛物面 22by ax z +=在点),,(000z y x M 处的切平面方程和法线方程 .[1] P 115 E63.作近似计算和误差估计: 与一元函数对照, 原理.例10 求96.308.1的近似值. [1] P 115 E7例11 应用公式C ab S sin 21=计算某三角形面积.现测得50.12=a , 30 , 30.8==C b . 若测量b a , 的误差为C , 01.0±的误差为1.0± . 求用此公式计算该三角形面积时的绝对误差限与相对误差限. [1] P 116 E8 Ex [1]P 116—117 5—14 ;§ 2复合函数微分法 ( 5 时 )简介二元复合函数 : ),( , ),( , ),(t s y t s x y x f z ψφ===. 以下列三种情况介绍复合线路图: 参阅[4] P 327—328 . ),( , ),( , ),(t s y t s x y x f z ψφ===;, ),,(z y x f u =),( , ),( t s y t s x ψφ==, ),(t s z η=;, ),,(z y x f u = ),,( , ),,( z t s y z t s x ψφ==.一. 链导法则: 以“外二内二”型复合函数为例.Th 设函数),( , ),( t s y t s x ψφ==在点∈),(t s D 可微, 函数),(y x f z =在点=),(y x ()),( , ),(t s t s ψφ可微 , 则复合函数f z =()),( , ),(t s t s ψφ在点),(t s 可微, 且),(),(),(),(),(t s y x t s y x t s s y y z s x x z s z ∂∂∂∂+∂∂∂∂=∂∂,),(),(),(),(),(t s y x t s y x t s ty yz tx xz tz ∂∂∂∂+∂∂∂∂=∂∂. ( 证 ) [1] P 155称这一公式为链导公式. 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”(或“并联加,串联乘”)来概括.对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数. 但对外函数的可微性假设不能减弱. 如[1] P 156的例.对外m 元),,,(21m u u u f , 内n 元),,,(21n i k x x x u φ= ) , , 2 , 1(m k =, 有∑=∂∂∂∂=∂∂mk ikk i x u u f x f 1 , n i , , 2 , 1 =. 外n 元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数. 例1 y x v e u v u z y x +==+=+22 , , )ln(2. 求x z ∂∂和y z∂∂. [1] P 157 E1 例2 22uv v u z -=, y x v y x u sin , cos ==. 求x z ∂∂和yz ∂∂. 例3 ())3(222y x yx z ++=, 求x z ∂∂和yz ∂∂. 例4 设函数),,(w v u f 可微 . ),,(),,(xyz xy x f z y x F =. 求x F 、y F 和z F . 例5 用链导公式计算下列一元函数的导数 :ⅰ> xx y = ; ⅱ> xx xx y cos sin ln )1(2++= . [1] P 158 E4例6 设函数),(y x u u =可微. 在极坐标变换θθsin , cos r y r x ==下 , 证明222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂y u x u u r r u θ. [1] P 157 E2 例7 设函数)(u f 可微 , )(22y x yf z -=. 求证xz yzxy x z y=∂∂+∂∂2. 二. 复合函数的全微分: 全微分和全微分形式不变性 .例8 )sin(y x e z xy+=. 利用全微分形式不变性求dz , 并由此导出x z ∂∂和yz∂∂. [1] P 160 E5Ex [1]P 160—161 1—5.三. 高阶偏导数:1. 高阶偏导数的定义、记法: 例9 ,2yx ez += 求二阶偏导数和23xy z∂∂∂. [1]P 167 E1 例10 xyarctgz =. 求二阶偏导数. [1]P 167 E2 2. 关于混合偏导数: [1]P 167—170.3. 求含有抽象函数的二元函数的高阶偏导数: 公式 , [1]P 171例11 ) , (y xx f z =. 求22xz ∂∂和y x z ∂∂∂2. [1]P 171 E34. 验证或化简偏微分方程:例12 22ln y x z +=. 证明22x z ∂∂ + 22y z∂∂0=. ( Laplace 方程 )例13 将方程0=∂∂-∂∂xu y y u x变为极坐标形式. 解 xyarctgy x r r y r x =+=⇒==θθθ , .sin , cos 22.r xy x x xr =+=∂∂22, r y y r =∂∂ , 2ry x -=∂∂θ ,2r x y =∂∂θ. θθθ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂ur y r u r x x u x r r u x u 2, θθθ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u r x r u r y y u y r r u y u 2; 因此, θθθθ∂∂=∂∂+=∂∂+∂∂-∂∂+∂∂=∂∂-∂∂uu ry x u r y r u r xy u r x r u r xy x u y y u x 2222222 . 方程化简为0=∂∂θu. 例14 试确定a 和b , 利用线性变换 by x t ay x s +=+= , 将方程03422222=∂∂+∂∂∂+∂∂yu y x u x u 化为02=∂∂∂ts u. 解tus u x t t u x s s u x u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ , t u b s u a y t t u y s s u y u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂. 22x u ∂∂=x∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂t u s u 22s u ∂∂x s ∂∂+t s u ∂∂∂2x t ∂∂+s t u ∂∂∂2x s ∂∂+22t u ∂∂xt∂∂= =22s u∂∂+2t s u ∂∂∂2+22t u ∂∂.y x u ∂∂∂2=y∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂t u s u 22s u ∂∂y s ∂∂+t s u ∂∂∂2y t ∂∂+s t u ∂∂∂2y s ∂∂+22t u ∂∂yt∂∂= =22s ua ∂∂+)(b a +t s u ∂∂∂2+b 22tu ∂∂.22y u ∂∂=y ∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂ t u b s u a 222s u a ∂∂+ab 2t s u ∂∂∂2+2b 22t u ∂∂. 因此 , =∂∂+∂∂∂+∂∂2222234yuy x u x u)341(2a a ++=22s u ∂∂ + ()6442ab b a +++t s u ∂∂∂2 + )341(2b b ++22t u ∂∂. 令 03412=++a a , 1 , 31 , 03412-=-=⇒=++b a b b 或31 , 1-=-=b a 或 ……, 此时方程03422222=∂∂+∂∂∂+∂∂yuy x u x u 化简为02=∂∂∂t s u .Ex [1]P 183 1,2 .§3 方向导数和梯度 ( 3 时 )一. 方向导数:1. 方向导数的定义:定义 设三元函数f 在点),,(0000z y x P 的某邻域)(0P ⊂3R 内有定义.l 为从点0P 出发的射线.),,(z y x P 为l 上且含于)(0P 内的任一点,以ρ表示P 与0P 两点间的距离.若极限 ρρρρfP f P f l ∆=-++→→000lim )()(lim存在,则称此极限为函数f 在点0P 沿方向l 的方向导数,记为P lf ∂∂或)(0P f l 、),,(000z y x f l .对二元函数),(y x f z =在点),(000y x P , 可仿此定义方向导数. 易见,x f ∂∂、y f ∂∂ 和 zf ∂∂是三元函数f 在点0P 分别沿X 轴正向、Y 轴正向和Z 轴正向的方向导数 .例1 ),,(z y x f =32z y x ++. 求f 在点0P ) 1 , 1 , 1 (处沿l 方向的方向导数,其中ⅰ> l 为方向) 1 , 2 , 2 (-; ⅱ> l 为从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向.解 ⅰ> l 为方向的射线为令===-=--=-112121z y x )0 ( >t . 即)0 ( , 1 , 12 , 12≥+=+-=+=t t z t y t x .3) 1, 1 , 1 ()(0==f P f ,37) 1 () 12 () 12 ( ) 1 , 12 , 12 ()(2332+++=+++-++=++-+=t t t t t t t t t f P ft t t t z y x 3)2()2()1()1()1(222222=+-+=-+-+-=ρ.因此 ,.3137lim )()(lim 23000=++=-=∂∂++→→t t t t P f P f lft P ρρ ⅱ> 从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向l 的方向数为), 0 , 3 , 1 (-l 方向的 射线为 ) 0 ( , 1 , 13 , 1≥=+-=+=t z t y t x .359) 1 , 13 , 1()(2+-=+-+=t t t t f P f , 3) 1, 1 , 1 ()(0==f P f ;t t t z y x 10)3()1()1()1(22222=-+=-+-+-=ρ.因此 ,.1051059lim )()(lim 2000-=-=-=∂∂++→→tt t P f P f lft P ρρ2. 方向导数的计算:Th 若函数f 在点),,(0000z y x P 可微, 则f 在点0P 处沿任一方向l 的方向导数都存在, 且 =)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos ,其中αcos 、βcos 和γcos 为l 的方向余弦. ( 证 ) [1]P 163对二元函数),(y x f , =)(0P f l )(0P f x αcos +)(0P f y βcos , 其中α和β是l 的方向角.注:由=)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos=()(0P f x , )(0P f y , )(0P f z )(⋅αcos , βcos , γcos ),可见, )(0P f l 为向量()(0P f x , )(0P f y , )(0P f z )在方向l 上的投影.例2 ( 上述例1 )解 ⅰ> l 的方向余弦为αcos =321)2(22222=+-+, βcos =32-, γcos =31.)(0P f x =1 , )(0P f y =221==y y , )(0P f z =3312==z z .因此 ,l f ∂∂=)(0P f x αcos +)(0P f y βcos +)(0P f z γcos =31313) 32(232=⋅+-⋅+. ⅱ> l 的方向余弦为αcos =101)11()12()12(12222=-+--+--, βcos =103-, γcos =0 .因此 ,l f∂∂=10510321011-=⋅-⋅.可微是方向导数存在的充分条件 , 但不必要 .例3 [1]P 164 E2 .二. 梯度 ( 陡度 ):1. 梯度的定义: =gradf ()(0P f x , )(0P f y , )(0P f z ) .||gradf =()()()202020)()()(P f P f P f z y x ++.易见, 对可微函数f , 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数 , 梯度方向是函数变化最快的方向 . 这是因为=)(0P f l =⋅l gradf ||)(0P gradf θcos .其中θ是l 与)(0P gradf 夹角. 可见0=θ时)(0P f l 取最大值 , 在l 的反方向取最小值 . 3. 梯度的运算:ⅰ> grad =+)(c u grad u .ⅱ> grad (αu +βv ) = αgrad u +βgrad v .ⅲ> grad (u v ) = u grad v +v grad u .ⅳ> grad 2uvgradu ugradv u v -=. ⅴ> grad f (u ) = gradu u f )('.证ⅳ> 2u v u uv u v x x x -=⎪⎭⎫ ⎝⎛ , 2u v u uv u v y y y-=⎪⎭⎫ ⎝⎛. grad =--=) , (12v u uv v u uv uu v y y x x []=-=) , ( ) , (12v u v u v u uv uy x y x []=-=) , () , (12y x y x u u v v v u u 2u vgradu ugradv -.Ex [1]P 165 1,2 ,3 ,6 .§4 Taylor 公式和极值问题 ( 4 时 )一. 中值定理: 凸区域 . Th 1 设二元函数f 在凸区域D 2R ⊂上连续, 在D 的所有内点处可微. 则对D 内任意两点int ) , ( , ),(∈++k b h a Q b a P D , 存在) 10 ( <<θθ, 使k k b h a f h k b h a f b a f k b h a f x ) , () , (),() , (θθθθ+++++=-++. 证 令 , ) , ()(tk b th a f t ++=Φ.在闭凸区域上的情况: [1]P 173—174.推论 若函数f 在区域D 上存在偏导数 , 且x f ≡y f ≡0, 则f 是D 上的常值函数.二. Taylor 公式:Th 2 (Taylor 公式) 若函数f 在点),(000y x P 的某邻域)(0P 内有直到1+n 阶连续偏导数, 则对)(0P 内任一点) , (00k y h x ++,存在相应的) 1 , 0(∈θ, 使∑=+++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=++ni n i k y h x f y k x h n y x f y k x h i k y h x f 00010000). , ()!1(1),(!1 ) , (θθ 证 [1]P 175 例1 求函数y x y x f =),(在点) 4 , 1 (的Taylor 公式 ( 到二阶为止 ) . 并用它计算.) 08.1 (96.3 [1]P 175—176 E4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 [1]P 176 E5Ex [1]P 183 5,6,7⑴⑷.2. 极值的必要条件:与一元函数比较 .Th 3 设0P 为函数)(P f 的极值点. 则当)(0P f x 和存在时,有)(0P f x =)(0P f y 0=. (证)函数的驻点、不可导点 , 函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实 )二次型 222),(cy bxy ax y x g ++=. 其矩阵为 ⎪⎪⎭⎫ ⎝⎛c b b a . ⅰ> ),(y x g 是正定的,⇔ 顺序主子式全0 >,),(y x g 是半正定的,⇔ 顺序主子式全 0 ≥;ⅱ> ),(y x g 是负定的,⇔ 0||) 1(1>-k ij k a , 其中k ij a 1||为k 阶顺序主子式. ),(y x g 是半负定的, ⇔ 0||) 1(1≥-k ij k a .ⅲ> ⎪⎪⎭⎫ ⎝⎛c b b a < 0时, ),(y x g 是不定的. 充分条件的讨论: 设函数),(y x f 在点),(000y x P 某邻域有二阶连续偏导数.由Taylor公式, 有)()(!21)(),() , (20200000ρ +⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=-++P f y k x h P f y k x h y x f k y h x f =)(0P f x h +)(0P f y k + [])()()(2)(!21220020ρ +++k P f hk P f h P f yy xy xx . 令 )(0P f A xx = , )(0P f B xy =, )(0P f C yy =, 则当0P 为驻点时, 有[])(221),() , (2220000ρ +++=-++Ck Bhk Ah y x f k y h x f . 其中22k h +=ρ. 可见式),() , (0000y x f k y h x f -++的符号由二次型222Ck Bhk Ah ++完全决定.称该二次型的矩阵为函数),(y x f 的Hesse 矩阵. 于是由上述代数准备, 有ⅰ> 0 , 02>->B AC A , 0 P ⇒为 ( 严格 ) 极小值点 ;ⅱ> 0 , 02>-<B AC A , 0 P ⇒为 ( 严格 ) 极大值点 ;ⅲ> 0 2<-B AC 时, 0P 不是极值点;ⅳ> 0 2=-B AC 时, 0P 可能是极值点 , 也可能不是极值点 . 综上, 有以下定理.Th 4 设函数)(P f 在点0P 的某邻域内有连续的二阶偏导数, 0P 是驻点. 则ⅰ> ()0)( , 0)(020>->P f f f P f xy yy xx xx 时 , 0P 为极小值点; ⅱ> ()0)( , 0)(020>-<P f f f P f xy yy xx xx 时 , 0P 为极大值点;ⅲ> ()0)( 02<-P f f f xy yy xx 时 , 0P 不是极值点;ⅳ> ()0)( 02=-P f f f xy yy xx 时 , 0P 可能是极值点 , 也可能不是极值点 .例3—7 [1]P 179—182 E6—10 .四. 函数的最值:例8 求函数),(y x f y x y xy x 4102422+--+=在域D = } 4 , 0 , 0 |),( {≤+≥≥y x y x y x 上的最值 .解 令 ⎩⎨⎧=+-==-+=.04 44),(,01042),(y x y x f y x y x f yx 解得驻点为) 2 , 1 (. 1) 2 , 1 (-=f . 在边界) 40 ( 0≤≤=y x 上 , y y y f 42),0(2+-=, 驻点为1=y , 2)1,0(=f ; 在边界) 40 ( 0≤≤=x y 上 , x x x f 10)0,(2-=, 没有驻点;在边界) 40 ( 4≤≤-=x x y 上 , 16185)4 , (2-+-=-x x x x f ,驻点为8.1=x , 2.0)8.14 , 8.1(=-f .又24)0,4( , 16)4,0( , 0)0,0(-=-==f f f .于是 , )}0,4( , )4,0( , )0,0( , )2.2 , 8.1( , )1,0( , )2,1(max{),(max f f f f f f y x f D = 2.0} 24 , 16 , 0 , 2.0 , 2 , 1 max{=---=.),(min y x f D24} 24 , 16 , 0 , 2.0 , 2 , 1 min{-=---=.Ex [1]P 184 8⑴⑵,9⑴⑵,10,11 .。
一、有界集二、确界三、确界的存在性定理四、非正常确界*点击以上标题可直接前往对应内容记号与术语(;){|||}:U a x x a a δδδ=-<点的邻域;(;){|0||}:U a x x a a δδδ=<-<o点的空心邻域;(;){|0}:U a x x a a δδδ+=≤-<点的右邻域;(;){|0}:U a x a x a δδδ-=≤-<点的左邻域;(;){|||}:U M x x M M ∞=>∞的邻域;(;){|}:U M x x M M +∞=>+∞的邻域;(;){|}:U M x x M M -∞=<-∞的邻域;.;max :S S 数集的最大值min :S S 数集的最小值后退前进目录退出定义1有界集R,.S S 设⊂≠∅(1)R,,,M x S x M M 若使得则称为∃∈∀∈≤,.S S 的一个上界称为有上界的数集(2)R,,,L x S x L L 若使得则称为∃∈∀∈≥,.S S 的一个下界称为有下界的数集.S 则称为有界集(3),S 若既有上界又有下界:0,,||.M x S x M ∃>∀∈≤其充要条件为使有(1),,S S '若不是有上界的数集则称无上界00R,,.M x S x M ∀∈∃∈>使得(2),,S S '若不是有下界的数集则称无下界00R,,.L x S x L ∀∈∃∈<使得(3),,S S '若不是有界的数集则称无界集000,,||.M x S x M ∀>∃∈>使得即即即[]102[]1,M x M M +=>+>取证取L = 1,{2|N },.nS n +=∈证明数集无上界有下界例1例22+31N .2n S n n ⎧⎫-=∈⎨⎬⎩⎭证明数集有界证2+31N ,2n n n -∀∈.S 因此有界,,2L x S x n ≥∈=∀则故S 有下界.因此S 无上界.,1,<∈∀M R M 若;210M x >=取,若1≥M 233122n n n ≤+111,22≤+=定义2确界:R . R,满足若设∈≠⊂η∅S S .sup ,S S =ηη记为的上确界是则称;,)i (η≤∈∀x S x ,,(ii)0S x ∈∃<∀ηα0,x α>使得若数集S 有上界, 则必有无穷多个上界, 而其中最小的一个具有重要的作用. 确界. 确界.最小的上界称为上同样,若S 有下界,则最大的下界称为下定义3R,.R :S S ξ设若满足⊂≠∅∈(i),;x S x ξ∀∈≥00(ii),,;x S x βξβ∀>∃∈<.inf ,S S =ξξ记为的下确界是则称00,.x S x εξε∀>∃∈<+0,(ii)下确界定义中的亦可换成注2注1由定义,下确界是最大的下界.注4(ii)显然,条件亦可换成:00,.x S x εηε∀>∃∈>-0,注3 条件(i) 说明是的一个上界, S η比小的数都不是的上界,从而是最小的上界S ηη界,条件(ii )说明即上确界是最小的上界.证先证sup S =1.;111,i)(≤-=∈∀n x S x .,211000αα>∈-=≤x S x ,则取若(ii) 1.α<设例3 11,1,2,,S x x n n ⎧⎫==-=⎨⎬⎩⎭设证明L .0inf 1sup ==S S ,.1sup =S 因此,00,10,,,n αεα若令由阿基米德性>=->∃01.n ε使得<00011,1.x S x n εα取则=-∈>-=.0inf =S 因此.0inf =S 再证00(ii)0,0,.x S x αα∀>∃=∈<;011,)i (≥-=∈∀nx S x 以下确界原理作为公理,不予证明.虽然我们定义了上确界, 但并没有证明上确界的存在性, 不一定有最小值, 例如(0, ∞) 无最小值.这是由于上界集是无限集, 而无限数集确界存在性定理定理1.1(确界原理)设若有上界则必有上确界⊂≠∅S S S SR,.,;若有下界则必有下确界,.S S.,,y x B y A x ≤∈∀∈∀有:.,满足为非空数集设B A 例4.inf sup B A ≤且证明:数集A 有上确界,数集B 有下确界,由定义, 上确界sup A 是最小的上界, 因此, 任意证由假设, B 中任一数y 都是A 的上界, A 中的任界, B 有下确界.y ∈B ; sup A ≤y . 而inf B 是最大的下界, 因此sup A ≤inf B.一数x 都是B 的下界. 因此由确界原理, A 有上确这样, sup A 又是B 的一个下界,例5,R 中非空有上界的数集是设S (i)R,{|},a S a x a x S ∈+=+∈若定义则sup {}sup ;S a S a +=+=∈(ii)>0,{|},b bS bx x S 若定义则sup {}sup .bS b S =⋅证,)i (a S a x +∈+∀,S x ∈其中必有,sup S x ≤于是.sup a S a x +≤+,,00S x ∈∃>∀ε对于使,sup 0ε->S x 从而,0a S a x +∈+且,)(sup 0ε-+>+a S a x 因此.sup )sup(a S a S +=+,)ii (bS bx ∈∀其中,S x ∈必有,sup S x ≤于是.sup S b bx ≤0,0,b εεε'∀>=>令则存在,0S x ∈使0sup ,x S ε'>-因此0sup sup .bx b S b b S εε'>-=-这就证明了.sup }sup{S b bS =非正常确界;R,)i (.1+∞<<∞-∈∀a a 规定supN ,inf{2|N }.nn +=+∞-∈=-∞2. 推广的确界原理: 非空数集必有上、下确界..sup ,)ii (+∞=S S 记无上界若.inf ,-∞=S S 记无下界若例2 设数集1R ,.A B x A x +⎧⎫⊂=∈⎨⎬⎩⎭求证:sup inf 0.A B 的充要条件是=+∞=例1,M ε1令=001,,.x B x M εε=∃∈<令于是0001,.y A y M x 且=∈>证设sup .A 若=+∞,0.x B x ∀∈>显然0,ε∀>于是0001,.y B y x ε=∈<且因此inf 0.B =sup .A 因此=+∞反之,若inf 0,B =则0,M ∀>求证:sup inf 0.A B 的充要条件是=+∞=sup ,A =+∞则由于00,.x A x M ∃∈>复习思考题2. 1212,,S S S S ⊂和都是数集且21sup sup S S 和比较.inf inf 21的大小和及S S .sup S a =其中形式一定为,),[∞+a 1. 数集S 有上界,则S 的所有上界组成的集合是否3. 在上确界的定义中,00(ii),,x S x αηα使∀<∃∈>能否改为00(ii ),,?x S x αηα'∀<∃∈≥使或改为00(ii ),,?x S x αηα使''∀≤∃∈≥。
第一章实数集于函数
§1 实数
数学分析研究的基本对象是定义在实数集上的函数。
为此,我们先简要叙述实数的有关概念。
一实数及其性质
在中学数学课程中,我们知道实数由有理数与无理数两部分组成。
有理数可用分数形式??
(p,q为整数,q≠0)表示,也可用有限十进制
??
小数或无限十进制循环小数来表示;而无限十进制不循环小数则称为
无理数。
有理数和无理数统称为实数。
为了一下讨论的需要,我们把有限小数(包括整数)也表示为无
限小数。
对此我们做了如下规定:对于正有限小数(包括正整数)x,当x=??0·??1??2…????时,其中0≤????≤9,i=1,2,…,n,????≠0,??0为非负整数,记
x=??0·??1??2···
(????-1)999 9…,
为正整数时,则记
而当x=??
x=(??0-1).999 9…,
例如 2.001记为 2.000999 9…;对于负有限小数(包括负整数)y,则先将-y表示为无限小数,再在所得无限小数之前加负号,例如-8记为-7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数表示。