6-位错源
- 格式:ppt
- 大小:3.24 MB
- 文档页数:23
第六章目录6.1 要点扫描 (1)6.1.1 金属的弹性变形 (1)6.1.2 单晶体的塑性变形 (2)6.1.3 多晶体的塑性变形与细晶强化 (8)6.1.4 纯金属的塑性变形与形变强化 (10)6.1.5 合金的塑性变形与固溶强化和第二相强化 (14)6.1.6 冷变形金属的纤维强化和变形织构 (16)6.1.7 冷变形金属的回复与再结晶 (17)6.1.8 热变形、蠕变和超塑性 (20)6.1.9 断裂 (22)6.2 难点释疑 (25)6.2.1 从原子间结合力的角度了解弹性变形。
(25)6.2.2 从分子链结构的角度分析粘弹性。
(25)6.2.3 FCC、BCC和HCP晶体中滑移线的区别。
(25)6.2.4 Schmid定律与取向规则的应用。
(26)6.2.5 孪生时原子的运动特点。
(27)6.2.6 Zn单晶任意的晶向[uvtw]方向在孪生后长度的变化情况 (29)6.3 解题示范 (30)3.4 习题训练 (33)参考答案 (38)第六章 金属与合金的形变6.1 要点扫描6.1.1 金属的弹性变形1. 弹性和粘弹性所谓弹性变形就是指外力去除后能够完全恢复的那部分变形。
从对材料的力学分析中可以知道,材料受力后要发生变形,外力较小时发生弹性变形,外力较大时产生塑性变形,外力过大就会使材料发生断裂。
对于非晶体,甚至某些多晶体,在较小的应力时,可能会出现粘弹性现象。
粘弹性变形即与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面的特性。
2. 应力状态金属的弹性变形服从虎克定律,应力与应变呈线性关系:γτεσG E == 其中: yx G E εενν-==+,)1(2 E 、G 分别为杨氏模量和剪切模量,v 为泊松比。
工程上,弹性模量是材料刚度的度量。
在外力相同的情况下,E 越大,材料的刚度越大,发生弹性形变的形变量就越小。
3. 弹性滞后由于应变落后于应力,使得εσ-曲线上的加载线和卸载线不重合而形成一个闭合回路,这种现象称为弹性滞后。
位错维基百科,自由的百科全书▼位错(英语:dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。
从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。
“位错”这一概念最早由意大利数学家和物理学家维托·伏尔特拉(Vito Volterra)于1905年提出[1]。
理想位错主要有两种形式:刃位错(edge dislocations)和螺旋位错(screw dislocations)。
混合位错(mixed dislocations)兼有前面两者的特征。
图1:一个刃位错(b = 伯格斯矢量)数学上,位错属于一种拓扑缺陷,有时称为“孤立子”或“孤子”。
这一理论可以解释实际晶体中位错的行为:可以在晶体中移动位置,但自身的种类和特征在移动中保持不变;方向(伯格斯矢量)相反的两个位错移动到同一点,则会双双消失,或称“湮灭”,若没有与其他位错发生作用或移到晶体表面,那么任何单个位错都不会自行“消失”(即伯格斯矢量始终保持守恒)。
目录[隐藏]∙ 1 位错的几何概念o 1.1 刃位错o 1.2 螺旋位错o 1.3 混合位错∙ 2 位错的观测o 2.1 间接观测o 2.2 直接观测∙ 3 位错源∙ 4 位错的滑移与晶体塑性∙ 5 刃位错的攀移∙ 6 参考文献∙7 外部链接[编辑] 位错的几何概念图2:简单立方(simple cubic)晶体原子排列和{100}晶面示意图刃位错和螺位错是主要的两种位错类型。
然而实际晶体中存在的位错往往是混合型位错,即兼具刃型和螺型位错的特征。
晶体材料由规则排列的原子构成,一般把这些原子抽象成一个个体积可忽略的点,把它们排列成的有序微观结构称为空间点阵。
逐层堆垛的原子构成一系列点阵平面的,称为晶面(可以将晶体中原子的排列情况想像成把橙子规则地装进箱子里的样子)。
第六章金属及合金的塑性变形和断裂2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响;答:1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用;当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算;2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小;cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向;当外力与滑移面平行φ=90°或垂直λ=90°时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向;6-2 画出铜晶体的一个晶胞,在晶胞上指出:1发生滑移的一个滑移面2在这一晶面上发生滑移的一个方向3滑移面上的原子密度与{001}等其他晶面相比有何差别4沿滑移方向的原子间距与其他方向有何差别;答:解答此题首先要知道铜在室温时的晶体结构是面心立方;1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面;在面心立方晶格中的密排面是{111}晶面;2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向;3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a24)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a;6-3 假定有一铜单晶体,其表面恰好平行于晶体的001晶面,若在001晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌;答:对受力后的晶体表面进行抛光,在金相显微镜下可以观察到在抛光的表面上出现许多相互平行的滑移带;在电子显微镜下,每条滑移带是由一组相互平行的滑移线组成,这些滑移线实际上是晶体中位错滑移至晶体表面产生的一个个小台阶,其高度约为1000个原子间距;相临近的一组小台阶在宏观上反映的就是一个大台阶,即滑移带;所以晶体表面上的滑移线形貌是台阶高度约为1000个原子间距的一个个小台阶; 6-4 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因答:多晶体的塑性变形过程:1、多晶体中由于各晶粒的位向不同,则各滑移系的取向也不同,因此在外加拉伸力的作用下,各滑移系上的分切应力也不相同;由此可见,多晶体中各个晶粒并不是同时发生塑性变形,只有那些取向最有利的晶粒随着外力的增加最先发生塑性变形;2、晶粒发生塑性变形就意味着滑移面上的位错源已开启,位错将会源源不断地沿着滑移面上的滑移方向运动;但是,由于相邻晶粒的位向不同,滑移系的取向也不同,因此运动着的位错不能够越过晶界,滑移不能发展到相邻晶粒中,于是位错在晶界处受阻,形成位错的平面塞积群;3、位错平面塞积群在其前沿附近造成很大的应力集中,这一集中应力与不断增加的外加载荷相叠加,使相邻晶粒某些滑移系上的分切应力达到临界值,于是位错源开动,开始塑性变形;4、为了协调已发生变形的晶粒形状的改变,要求相邻晶粒必须进行多系滑移,这样就会使越来越多的晶粒参与塑性变形;5、在多晶体的塑性变形中,由外加载荷直接引起塑性变形的晶粒只占少数,不产生明显的宏观效果,多数晶粒的塑性变形是由已塑性变形的晶粒中位错平面塞积群所造成的应力集中所引起,并造成一定的宏观塑性变形效果;6、多晶体的塑性变形具有不均匀性;由于各晶粒间以及晶粒内和晶界位向不同的影响,各个晶粒间及晶粒内的变形都是不均匀的;晶粒越细强度越高、塑性越好的原因:强度:由多晶体的塑性变形过程可知,多数晶粒的塑性变形是由先塑性变形晶粒中的位错平面塞积群引起的应力集中于外加载荷相叠加而引起的;由位错运动理论可以得知,位错塞积群在障碍处产生的应力集中与位错数目有关,位错数目越多,造成的应力集中越大,而位错数目与位错源到障碍物的距离成正比;所以晶粒越小,位错源到障碍物晶界的距离越短,位错数目越少,造成的应力集中越小,此时如果要是相邻晶粒发生塑性变形,则需要较大的外加载荷,也就是抵抗塑性变形的能力月强,强度越高;塑性:由多晶体的塑性变形过程可知,多晶体的塑性变形具有不均匀性;晶粒越细,各晶粒间或晶粒内部与晶界处的应变相差越小,变形较均匀,相对来说因不均匀变形产生应力集中引起开裂的机率较小,这就有可能在断裂前承受较大的塑性变形量,可以得到较高的伸长率和断面收缩率;韧性:由于细晶粒的变形较均匀,不易产生应力集中裂纹,而且晶粒越细晶界面积越大,对裂纹扩展的阻力越大,因此在断裂过程中可以吸收更多的能量,表现出较高的韧性;6-5 口杯采用低碳钢板冷冲而成,如果钢板的晶粒大小很不均匀,那么冲压后常常发现口杯底部出现裂纹,这是为什么答:裂纹原因:1、低碳钢板冷冲时,各部分的塑性变形是不均匀的,在口杯局内在宏观内应力;2、由于多晶体晶粒变形的不均匀性,加上原始晶粒大小不一,则更加促进了变形的不均匀性,由此产生较大的第二类内应力;3、所以,冲压后口杯底部出现裂纹的原因是由钢板不均匀变形产生的宏观内应力和晶粒变形不均匀造成的内应力相叠加,超过了钢板的断裂强度,出现裂纹;6-6 滑移与孪生有何区别,试比较它们在塑性变形过程中的作用;答:滑移定义:晶体在切应力作用下,晶体的一部分相对于另一部分沿某些晶面滑移面和晶向滑移方向发生滑动的现象;本质:滑移并不是晶体的一部分相对于另一部分作整体的刚性移动,而是位错在切应力的作用下沿着滑移面上的滑移方向逐步移动的结果;孪生定义:晶体在切应力作用下,晶体的一部分沿一定的晶面孪生面和一定的晶向孪生方向相对于另一部分晶体做均匀地切变;在切变区域内,与孪生面平行的的每层原子的切变量与它距离孪生面的距离成正比,而且不是原子间距的整数倍,这种切变不会改变晶体的点阵类型,但可使变形部分晶体的位向发生变化,并与未变形部分的晶体以孪晶界为分界面构成镜面对称的位向关系;通常把对称的两部分晶体称为孪晶,而将形成孪晶的过程称为孪生;滑移在塑性变形过程中的作用:在常温和低温下金属的塑性变形主要通过滑移方式进行;1、晶体中滑移系越多,则可供滑移采用的空间位向越多,塑性变形越容易进行;当沿滑移面上滑移方向的分切应力达到临界分切应力时,滑移就可进行,而且位错只需一个很小的切应力就可以实现运动;2、在晶体发生滑移的同时,滑移面和滑移方向会发生转动,造成滑移系取向的变化,有可能使其他滑移系的分切应力达到临界值,产生多滑移现象,促进晶体的塑性变形;孪生在塑性变形过程中的作用:孪生对塑性变形的贡献比滑移要小;1、孪生的临界分切应力要比滑移的临界分切应力大得多,只有在滑移很难进行的条件下,晶体才进行孪生变形;2、但是,由于孪生后变形部分的晶体位向发生改变,可能会使原来处于不利取向的滑移系转变为新的有利取向,这样可以激发晶体的进一步塑性变形;所以当金属中存在大量孪晶时,可以促进塑性变形;6-7 试述金属经塑性变形后组织结构与性能之间的关系,阐明加工硬化在机械零构件生产和服役过程中的重要意义;答:金属塑性变形后组织结构与性能之间的关系:1、金属塑性变形后,晶粒形状发生变化,沿变形方向伸长,当变形量很大时出现纤维组织,使金属的力学性能呈方向性;2、金属塑性变形后,晶体中的亚结构得到细化,形成大量的胞状亚结构;位错密度增加,位错相互交割出现位错割阶和位错缠结现象,产生加工硬化,硬度、强度增加,塑性、韧性降低;3、金属塑性变形后,当变形量很大时,多晶体中原为任意取向的各个晶粒逐渐调整其取向而趋于彼此一致,产生形变织构;金属性能表现为各向异性;4、金属塑性变形后,晶体缺陷增加,产生大量的空位;空位增加,电阻率增大,导电性能和导热性能略为下降;内能增加,化学性提高,耐腐蚀性能降低;加工硬化在机械零件生产和服役过程中的重要意义:加工硬化:金属在塑性变形过程中,随着变形程度的增加,金属的硬度、强度增加,而塑性、韧性下降的现象;又称形变强化;原因:随着塑性变形的进行,位错密度不断增大,位错在运动时的相互交割加剧,产生位错割阶和位错缠结等障碍,使位错运动的阻力增大,造成晶体的塑性变形抗力增大;在零件生产中的意义:1、对于用热处理方法不能强化的材料来说,可以用加工硬化方法提高其强度;如塑性很好而强度较低的铝、铜及某些不锈钢,在生产中往往制成冷拔棒材或冷轧板材使用;2、加工硬化也是某些工件或半成品能够加工成型的重要因素;例如钢丝冷拔过程中产生加工硬化保证其不被拉断;在零件使用过程中的意义:提高零件在使用过程中的安全性;零件在使用过程中各个部位的受力是不均匀的,往往会在某些部位产生应力集中和过载现象,使该处产生塑性变形;如果没有加工硬化,则该处变形会越来越大直至断裂;正是由于加工硬化的原因,这种偶尔过载部位的变形会因为强度的增加而自行停止,从而提高零件的安全性;需要指出的是:加工硬化现象也会给零件生产和使用带来一些不利因素1、金属随着塑性变形程度的增加,塑性变形抗力不断增大,进一步的变形就必须增大设备功率,增加能源动力的消耗;2、金属经加工硬化后,塑性大为降低,在使用过程中,如果继续变形容易导致开裂; 6-8 金属材料经塑性变形后为什么会保留残留内应力,研究这部分内应力有什么意义答:残留内应力的形成原因:金属材料经塑性变形后,外力所做的功大部分转化为热能消耗掉,但尚有一小部分约占总变形功的10%保留在金属内部,形成残留内应力;主要分为以下三类:1、宏观内应力第一类内应力:它是由于金属材料各部分的不均匀变形引起的,是整个物体范围内处于平衡的力;2、微观内应力第二类内应力:它是由于晶粒或亚晶粒不均匀变形而引起的,是在晶粒或亚晶粒范围内处于平衡的力;3、点阵畸变第三类内应力:它是由于塑性变形使金属内部产生大量的位错和空位,使点阵中的一部分原子偏离其平衡位置,造成点阵畸变;它是只在晶界、滑移面等附近不多的原子群范围内保持平衡的力;研究这部分内应力的意义:1、通常情况下,残留内应力的存在对金属材料的力学性能是有害的,它会导致材料的变形、开裂和产生应力腐蚀,降低材料的力学性能;2、但是当工件表面残留一薄层压应力时,可以在服役时抵消一部分外加载荷,反而对使用寿命有利;因此,研究这部分内应力可以降低其对金属材料的损害,甚至可以利用内应力来提高工件的使用寿命;6-9 何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程的影响;答:塑性断裂:又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度;脆性断裂:又称为低应力断裂,断裂前极少有或没有宏观塑性变形,但在局部区域仍存在一定的微观塑性变形,断裂时承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力;裂纹对材料断裂的影响:当存在裂纹的材料受到外力作用时,会在裂纹尖端附近产生复杂的应力状态,并引起应力集中;对于塑性材料,在外力作用下裂纹尖端区域的应力集中很快会超过材料的屈服极限,形成塑性变形区,微孔很容易在此变形区形成、扩大,并与裂纹连接,使裂纹失稳扩展,导致材料发生断裂;对于脆性材料,其塑性较差,在裂纹尖端区域出现析出质点的几率很大,因此,一旦在裂纹尖端附近形成一个不大的塑性变形区后,此区的析出相质点附近就可能形成微孔并导致裂纹失稳扩展,直至断裂;此时整个裂纹界面的平均应力σc仍低于σ0.2,也就是说含裂纹的脆性材料往往表现出低应力断裂,但断裂源于微孔聚集方式,微观断口形貌仍具有韧窝特征;6-10 何谓断裂韧度,它在机械设计中有何功用答:应力强度因子:材料中不可避免的存在裂纹,当含有裂纹的材料受外加应力σ作用时,裂纹尖端应力场的各应力分量中均有一个共同因子K I K I=σ√πa,a为裂纹长度的一半,用K I表示裂纹尖端应力场的强弱,简称应力强度因子;断裂韧度:当外加应力达到临界值σc时,裂纹开始失稳扩展,引起断裂,相应地K I 值增加到临界值K c,这个临界应力场强度因子K c称为材料的断裂韧度,可以通过实验测得;平面应变断裂韧度:对同一材料来说,K c取决于材料的厚度:随着厚度的增加,K c 单调减小至一常数K Ic,这时裂纹尖端区域处于平面应变状态,K Ic称为平面应变断裂韧度;在机械设计中的功用:1、确定构件的安全性;根据探伤测定构件中的缺陷尺寸,在确定构件工作应力后,即可算出裂纹尖端应力强度因子K I;与构件材料的K Ic相比,如果K I<K Ic,则构件安全,否则有脆断危险;2、确定构件承载能力;根据探伤测出构件中最大裂纹尺寸,通过实验测得材料的K Ic,就可由σc= K Ic /√πa计算出断裂应力,从而确定构件的安全承载能力;3、确定临界裂纹尺寸;若已知材料K Ic的和构件的实际工作应力,则可根据a c=K Ic2/πσc2求出临界裂纹尺寸;如果探伤测定构件实际裂纹尺寸a<2a c,则构件安全,否则有脆断危险;。
第六章 空位与位错一、 名词解释空位平衡浓度,位错,柏氏回路,P-N 力,扩展位错,堆垛层错,弗兰克-瑞德位错源, 奥罗万机制,科垂耳气团,面角位错,铃木气团,多边形化二、 问答1 fcc 晶体中,层错能的高低对层错的形成、扩展位错的宽度和扩展位错运动有何影响?层错能对金属材料冷、热加工行为的影响如何?2. 在铝单晶体中(fcc 结构),1) 位错反应]101[2a →]112[6a ]+]121[6a 能否进行?写出反应后扩展位错宽度的表达式和式中各符号的含义;若反应前的]101[2a 是刃位错,则反应后的扩展位错能进行何种运动?能在哪个晶面上进行运动?若反应前的]101[2a 是螺位错,则反应后的扩展位错能进行何种运动?2) 若(1,1,1)面上有一位错]110[2a b =,与)(111面上的位错]011[2a b =发生反应,如图6-1。
写出位错反应方程式,说明新位错的性质,是否可动。
3) 写出(111)与(111)两个滑移面上两全位错所分解为肖克莱不全位错的两个反应式。
4) 如果两扩展位错运动,当它们在两个滑移面交线AB 相遇时,两领先不全位错为[]1126a 和]121[6a ,两领先位错能否发生反应,若能,求新位错柏氏矢量;分析新形成位错为何种类型位错,能否自由滑移,对加工硬化有何作用。
图6-13 螺旋位错的能量公式为02ln 4r R Gb E S π=。
若金属材料亚晶尺寸为R=10-3~10-4cm ,r 0约为10-8cm ,铜的G =4×106N/cm 2,b =2.5×10-8cm 。
(1)试估算Es(2)估算Cu 中长度为1个柏氏矢量的螺型位错割阶的能量。
4 平衡空位浓度与温度有何关系?高温淬火对低温扩散速度有何影响?5 已知Al 的空位形成能为0.76eV ,问从27ε 升温到627ε 时空位浓度增加多少倍(取系数A=1)6 在一个刃型位错附近放置另一个与之平行同号的另一个刃型位错,其位置如图6-2所示1,2,3,问它们在滑移面上受力方向如何?7、位错对金属材料有何影响?第六章空位与位错一、名词解释空位平衡浓度:金属晶体中,空位是热力学稳定的晶体缺陷,在一定的空位下对应一定的空位浓度,通常用金属晶体中空位总数与结点总数的比值来表示。
蓝宝石晶体中的位错来源主要在以下方面:
1.从籽晶继承下来的位错,在籽晶中纯在位错,可以延伸到生长的晶体中,即为位错的继承作用。
籽晶中的位错和在引晶过程中由于应力作用而产生的位错和在引晶过程中受到热冲击而产生的位错。
2.热弹性应力场中的位错成核与增值,生长大尺寸雷纳堡市晶体主要是通过控制系统内热量输运来控制整个晶体的生长过程,为了保证晶体能够稳定的生长,热场设计必须要具有适当的轴向和径向温度梯度。
即保证适当的相变过冷度和热量输运条件,温度梯度的存在必然会使得晶体内部产生热应力,如果热应力值超过晶体材料的临界应力,错位将成核、增殖和延伸。
3.渗透力作用下的位错成核与增殖:在高温下蓝宝石晶体的空位浓度很高,随着温度的下降,点缺陷的平衡浓度呈现出指数率迅速下降,如果晶体没有足够的点缺陷尾闾,或是降温速度太快,就在晶体内形成过饱和的空位。
过饱和的点空位有聚集成片降低系统吉布斯自由能的趋势。
当晶体中的空位片足够大的时候,两边的晶体塌陷下来,在周围形成位错环。
4.在生长大尺寸蓝宝石晶体过程中,固液界面浸没与熔体之中,各晶面受到的约束比较松弛,外界的轻微热波动或机械波动都会引起结晶过程中原子的错误排列,造成晶格畸变,形成位错源。
第一章测试1【判断题】(2分)fcc可以看成是原子在密排面(111)面在空间的堆垛。
A.对B.错2【单选题】(2分)已知Al为正三价,阿伏加德诺常数为6.02×1023,铝摩尔量为26.98,质量1g的Al中的价电子数量为()。
A.6.69×10∧23B.6.69×10∧21C.6.69×10∧22D.6.02×10∧223【单选题】(2分)聚乙烯高分子材料中,C-H化学键结合属于()。
A.氢键B.金属键C.共价键D.离子键4【单选题】(2分)化学键中,没有方向性也没有饱和性的为()。
A.金属键B.共价键C.离子键D.氢键5【单选题】(2分)晶体的对称轴不存在()对称轴。
A.六次B.四次C.三次D.五次6【判断题】(2分)晶面族是指一系列平面的晶面。
A.错B.对7【多选题】(2分)一个晶胞内原子个数、配位数对于fcc是(),bcc是()。
A.4,8B.2,12C.4,12D.2,88【多选题】(2分)bcc晶胞的密排面是(),密排方向分别是()。
A.{111}B.<111>C. {110}D.<110>9【单选题】(2分)A.8.58B.7.78C.8.98D.8.2810【单选题】(2分)晶带是与过某个晶向或与其平行的所有晶面,这个晶向称为晶带轴。
若晶带轴指数为[u vw],则[uvw]与晶带中的一个晶面(hkl)这两个指数之间点积,[uvw]·(hkl)等于()。
A.1B.0.5C.-1D.11【单选题】(2分)一个fcc晶胞的原子中的原子个数为()个。
A.2B.6C.8D.412【单选题】(2分)一个bcc晶胞中的原子个数为()个。
A.2B.4C.6D.813【判断题】(2分)铜和镍属于异质同构。
A.对B.错14【判断题】(2分)间隙固溶体中间隙原子可以无限固溶得到固溶度为100%的无限固溶体。
A.错B.对15【判断题】(2分)一个金属元素与一个非金属元素容易形成固溶体。
现象:晶体通过位错的滑移产生塑性变形,但塑性变形以后,位错的数量不但没有减少,反而增加了。
这些都与位错的增殖、塞积、交割有关。
§3-6位错的增殖、塞积与交割位错增殖的方式有多种;增殖位错的地方称为位错源。
在塑性较好的晶体中以滑移方式进行。
常见的滑移增殖机制:弗兰克-瑞德(Frank-Read )位错源增殖机制和双交滑移增殖机制一. 位错的增殖弗兰克-瑞德(Frank-Read)位错源增殖机制使位错源进行增殖的临界切应力为:式中:L为A、B间的距离,等于2R。
Si 单晶中的F-R 源,位错线以Cu 沉淀缀饰后,以红外显微镜观察。
甲苯胺中的位错双交滑移增殖机制交滑移的含义:螺位错从一个滑移面转到与其滑移面相交的另一个滑移面上滑移。
(螺位错在某一滑移面上运动受到阻碍时,可能离开原滑移面转向与其相交的另一个滑移面上继续滑移的过程。
)双交滑移:螺位错滑移时因局域切应力变化而改变滑移面,又因局域切应力减弱而回到原滑移面继续滑移的过程。
注:局域切应力的作用仅使一段位错发生双交滑移,因而在双交滑移发生由次滑移面至主滑移面转化时,出现相对固定的两点,它就以F-R 源开始增殖。
m m n nmm /B AC D位错滑移时,在滑移面上遇到障碍物(晶界、第二相等),位错将在障碍物处塞积,形成塞积群。
越靠近障碍物,位错排列越密集,随距障碍物的距离增大,位错间距增。
塞积群中,位错数N 为:Gb L k N 0πτ=螺位错:k=1刃位错:k=1-ν障碍物受到的切应力为,塞积群在障碍物处产生应力集中,有可能在障碍物处产生微裂纹,而导致晶体断裂。
0ττN =其中,为作用在滑移面上的外加分切应力;L 为位错源到障碍物的距离;G 为切变弹性模量K 为系数:0τ不锈钢中晶界前塞积的位错三. 位错的交割定义:不同滑移面上运动的位错相遇发生相互截割的过程。
位错交割的结果:在原来直的位错线上形成一段一个或几个原子间距大小的折线,即割阶与扭折。
第六章位错的起源、增殖和塞积1. 位错的起源位错的起源的三种途径:⑴在凝固过程中形成①树枝状晶体生长相遇后发生碰撞;②液体流动对晶体冲击,使晶体表面发生错排形成大台阶;③浓度起伏造成的点阵常数偏差;④结晶前沿的障碍物造成的不同部分间的位向差⑵由晶体在冷却时形成的局部内应力所造成从高温冷却下来,基体和夹杂的收缩量不同而引起很大的应力。
⑶由空位聚集而形成在高温时,晶体中空位浓度很高,形成空位片,当空位片发展到足够大尺寸时,两边晶体塌陷下来,在周围形成位错环。
2. 位错的增殖⑴位错的增殖,是指晶体在应力作用下进行滑移造成塑性变形而同时又不断地产生新位错的现象。
①晶体中存在一两端固定的位错CD ,在外加切应力作用下逐渐弯曲形成圆弧形。
当弯曲成半圆形时,外加切应力达最大值;②超过此临界值后,位错线以C 、D 为中心发生卷曲;随着卷曲扩展,两端点的位错线相遇,(由于其柏氏矢量大小相等、方向相反,)在相互抵消后,形成了一个环形位错和直线位错CD 。
③重复上述过程则位错CD 可源源不断的形成位错环,使位错不断增殖。
⑵单边F-R 源增殖见右图⑶位错源的开动的临界切应力:⑷双交滑移增殖机制L/Gb =τ3. 位错的塞积晶体中的F-R位错源在应力的作用下开动以后,在同一滑移面内放出一组柏氏矢量完全相同的位错环,如果这些位错被晶界或大的第二相粒子等障碍所阻,位错将在障碍物前堆积而形成塞积群。
⑴τ=nτ0,前端有很大应力集中,应力集中导致:①使塞积群中的螺型位错通过交滑移而越过障碍物②使领先位错前端的相邻晶粒内的位错源开动⑵塞积群中各位错的位置位错在塞积群中的排列不是均匀的,位错的位置与(i-1)2成正比,越靠近领先位错,排列越紧密。
⑶位错塞积的后果①使位错源开动的应力大大增加,故使晶体强化②若塞积位错是刃型的,则n足够大时会出现微裂纹。
()六滑移的位错机制()A 位错的运动与晶体的滑移临界切应力:1. 晶体没有任何缺陷时的临界切应力约为1500MPa2. 实际存在位错晶体的临界切应力约为0.98 MPa关于实际滑移的K τ比理论计算的K τ低的多的解释晶体没有任何缺陷时的滑移:在切应力的作用下,晶体上下两部分沿滑移面作整体刚性滑移晶体中存在位错时的滑移:1. 晶体的滑移不是晶体的一部分相对于另一部分作整体刚性滑移2. 晶体的滑移是位错在切应力的作用下沿滑移面逐步移动如图6.143. 当一条滑移线移动到晶体表面时,在晶体表面留下一个滑移台阶,大小等于柏氏矢量的大小4. 当大量位错重复按此方式划过晶体,在晶体表面形成滑移痕迹,在显微镜下能观察到的滑移痕迹5. 晶体的滑移不是滑移面上的全部原子一齐移动6. 晶体的滑移就像接力赛跑一样,位错中心的原子逐一递进,由一个平衡位置转移到另一个平衡位置如图6.15所示7. 位错中心附近的少数原子只是作弹性偏移,远小于一个原子间距的弹性偏移8. 其他区域的原子仍然处于正常位置9. 显然这样的位错运动只需要一个很小的切应力就可实现,也可以解释实际滑移的K τ比理论计算的K τ低的多()B 位错的增殖现象及其解释位错的增殖引子1. 晶体中有如此多的位错吗:a) 形成一条位错线需要上千个位错b) 晶体在塑性变形时形成大量的滑移带需要极多的位错2. 位错扫过滑移面并移出晶体表面,随着塑性变形的进行,晶体中的位错数目应该越来越少才对,最终形成无位错的晶体才对3. 事实上变形后晶体中位错数目反而增加了:例如退火金属的位错密度为21010-m ,剧烈塑性变形后的位错密度为2161510~10-m4. 这些增加的位错是怎么来的呢,可以肯定的是,晶体中必然存在位错源,它在晶体进行塑性变形时能不断增殖位错弗兰克瑞德位错源机制的理论基础1. 晶体中的位错呈空间网络状分布2. 位错网络中的位错线段没有在同一个晶面上3. 所以相交于一个结点的几个位错线段不能一致运动,只有位于滑移面上的位错线段才能运动4. 所以该结点可能成为固定的结点环境设置1. 位错网络中两个固定的结点2. 线段位于平行于纸面的滑移面上3. 位错线的柏氏矢量为B弗兰克瑞德位错源机制:我们的研究对象就是这个位于滑移面上的线段1.滑移面上的分切应力足够大时,位错线发生运动2.又因为结点不动,位错线弯曲同时产生线张力:线张力的存在使弯曲位错有恢复直线状得倾向1.如果切应力减小或消除,位错线恢复为直线状而无增值2.如果切应力足够大,位错线弯曲成半圆,曲率半径达到最大3.如果切应力继续存在a)位错线继续扩大,曲率半径反而减小,位错线形成一个位错蜷线b)当位错蜷线相互靠近时nm,两处的异号螺型位错相遇进而消失c)位错环发展成为两部分:i.一部分是一个封闭的位错环线,在外力的作用下继续发展ii.另一部分为位错线段,在线张力的作用下还原为原来的位错线段D'D4.外力继续作用⇒⇒DD'开始弯曲并重复上述过程⇒⇒每重复一次便产生一个位错环,如此反复便在晶体中产生大量的位错环5.当一个位错环移出晶体时,晶体产生一个原子间距的位移6.大量位错环一个个移出晶体,晶体不断滑移,就在晶体表面形成滑移台阶,台阶高达近千个原子间距今年来一些直接的试验观察证实了弗兰克瑞德位错源的存在()C位错的交割与塞积晶体的滑移实际上是位错沿着滑移面的运动多滑移时产生位错交割1.滑移面相交,在相交的滑移面上运动的位错必然相遇2. 位错与穿过滑移面的位错必然相交刃型位错交割简易模型6.171. 位错线AB 和CD 的滑移面和柏氏矢量2. 位错线CD 固定不动,位错线AB 自右向左运动,位错扫过的区域晶体上下两部分产生相当于1b 的位移3. 当位错线AB 通过两滑移面的交线时则与位错线CD 发生交割4. 位错线CD 被分割成两段并发生相对位移mn5. 位错线CD 变成一条折线CmnD CD短位错线mn1. 短位错线mn 的柏氏矢量:仍然为2b 垂直于mn2. 短位错线mn 的性质:刃型位错2b3. 短位错线mn 的滑移面:不在原来的滑移面b P 上,故称之为割阶,由mn 和2b 所决定的平面即a P 面4. 短位错线mn 的滑移:仍可运动,但由于增加了位错线的长度,需消耗一定的能量刃型位错与螺型位错的交割螺型位错与螺型位错的交割位错交割的结果:也是多滑移加工硬化效果较大的主要原因1. 可能形成割阶mn :刃型位错与刃型位错螺型位错与螺型位错韧性位错与螺型位错2. 增加位错线的长度3. 带割阶的位错运动困难,成为后续位错运动的障碍位错塞积的形成和应力集中:位错源产生的大量位错沿滑移面运动,遇到障碍物如固定位错杂质粒子晶界等时,领先位错被阻止后续位错堵塞,形成位错平面塞积群,并在障碍物的前端形成应力集中位错塞积群的位错数:kL n =位错塞积群在障碍处产生的应力集中:0ττn =0τ为滑移方向的分切应力值距离越大塞积位错数目越多造成的应力集中越大。