晶体缺陷7实际晶体中的位错汇总.
- 格式:ppt
- 大小:6.24 MB
- 文档页数:82
晶体中的位错晶体是由大量的原子或离子按照一定的规律排列形成的,具有高度的有序性和周期性。
然而,在晶体中,由于制备、加工等原因,有时候不同的晶体原子并不完全对齐,形成了一些错位,这些错位就称作位错。
位错是晶格缺陷的一种,是晶体中最常见的缺陷之一。
本文将重点介绍晶体中的位错。
一、位错的定义和分类位错是晶体中的缺陷,是一种原子排列顺序的失误或对晶体构造发生的不规则的紊乱。
从形式上来看,位错其实是一条线,称为位错线。
位错线是一个平面的分界线,分别将位错的正侧和负侧分开,两侧的原子堆积方式互不相同。
按照线向和方向,位错可分为长位错和短位错;按照线型,位错可分为直线位错和环状位错;按照纵向位置,位错可分为面内位错和面间位错;按照能量点的数量,位错可分为单位错、双位错、三位错等等。
二、位错的形成原因晶体中的位错是由于应力和温度的变化等原因,导致原子在晶体内部的位置和晶格结构发生变化而形成的。
晶体中的一些应力和原子偏移最终会形成位错,进而影响构造和性能。
常见的位错形成原因有以下几种:1.加工过程中导致的位错:金属加工可能会引起位错的发生,因为加工会施加一定的应力,从而导致晶格变形。
例如,扭曲或拉伸材料时,原子可能会脱离原来的顺序,最终形成位错。
2.晶体生长过程中导致的位错:晶体在生长过程中,由于固态、液相界面的移动推进,产生压力分布变化,从而造成位错的形成。
在原子或离子加入了其他元素或化合物的情况下,位错也会在晶体中发生。
3.晶体性能的变化导致的位错:晶体的性质随着应力和温度的变化而变化。
温度和离子浓度等的变化可能会改变晶体的构造,导致位错。
三、位错的作用位错是晶体中的缺陷,但它并不总是会对晶体的性质产生不良影响。
实际上,位错可以对晶体的某些性质产生正向、负向改变,主要包括以下几种:1.塑性变形:位错的存在使晶体产生了柔韧性,容易受到力的作用产生塑性变形。
2.材料的硬度:如果位错数量越大,晶体的硬度就会变差,同时晶体的脆性就会增加。
第3章晶体缺陷前言前面章节都是就理想状态的完整晶体而言,即晶体中所有的原子都在各自的平衡位置,处于能量最低状态。
然而在实际晶体中原子的排列不可能这样规则和完整,而是或多或少地存在离开理想的区域,出现不完整性。
正如我们日常生活中见到玉米棒上玉米粒的分布。
通常把这种偏离完整性的区域称为晶体缺陷(crystal defect; crystalline imperfection)。
缺陷的产生是与晶体的生成条件、晶体中原子的热运动、对晶体进行的加工过程以及其它因素的作用等有关。
但必须指出,缺陷的存在只是晶体中局部的破坏。
它只是一个很小的量(这指的是通常的情况)。
例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后铁中的位错密度为1012m-2(空位、位错都是以后要介绍的缺陷形态)。
所以从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
但是,晶体缺陷仍可以用相当确切的几何图像来描述。
在晶体中缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的。
它们可以产生、发展、运动和交互作用,而且能合并消失。
晶体缺陷对晶体的许多性能有很大的影响,如电阻上升、磁矫顽力增大、扩散速率加快、抗腐蚀性能下降,特别对塑性、强度、扩散等有着决定性的作用。
20世纪初,X射线衍射方法的应用为金属研究开辟了新天地,使我们的认识深入到原子的水平;到30年代中期,泰勒与伯格斯等奠定了晶体位错理论的基础;50年代以后,电子显微镜的使用将显微组织和晶体结构之间的空白区域填补了起来,成为研究晶体缺陷和探明金属实际结构的主要手段,位错得到有力的实验观测证实;随即开展了大量的研究工作,澄清了金属塑性形变的微观机制和强化效应的物理本质。
按照晶体缺陷的几何形态以及相对于晶体的尺寸,或其影响范围的大小,可将其分为以下几类:1.点缺陷(point defects) 其特征是三个方向的尺寸都很小,不超过几个原子间距。
如:空位(vacancy)、间隙原子(interstitial atom)和置换原子(substitutional atom)。