爱立信交换优化交流
- 格式:ppt
- 大小:1.19 MB
- 文档页数:45
中国移动通信集团广东有限公司**分公司无线网络平滑过渡实施体系华为设备替换经验总结中国移动通信集团广东有限公司二OO九年三月目录1、无线网络频率规划 (1)1.1频率规划分析 (1)1.2频率规划问题 (3)2、设计方案比较 (3)3、施工技术规范 (7)3.1割接施工技术规范 (7)3.1.1 施工前准备 (7)3.1.2 施工实施细则 (8)3.3基站调测 (11)3.3.1 基站调测步骤 (11)3.3.2 基站调测注意事项 (12)3.4基站倒回实施细则 (13)4、主设备功耗对比测试 (13)5、无线设备安装示范站 (15)5.1开箱验货流程 (15)5.2安装机柜 (16)5.3电源线和保护地线的安装及布放 (19)5.4防雷告警线的安装 (21)5.5传输线和告警线缆的安装及布放 (22)5.6机柜内射频电缆、信号线、电源线的安装 (24)5.7安装完成 (24)1、无线网络频率规划1.1 频率规划分析对清溪镇的频率规划是在对现有网络结构的详细调查和分析之后进行的,一方面保证了现有网络频率规划的延续性,另一方面可以根据频率规划原则进行进一步的优化和调整。
1)GSM900频率规划分析移动GSM900M的频率带宽共24MHz,频率间隔为200KHz,可用频点为1~94,还包括E频段的1000~1023,为避免与联通频点产生干扰,95号频点暂不使用。
BCCH采用32~57共26个频点,8×3的复用模式;TCH采用1~31、58~94、1000~1023的频点,共91个,分为12组,采用4×3复用模式;整网测试发现频率干扰问题较小,无明显的同邻频干扰存在,现网频率规划良好。
详细频率规划原则如下表:表1.1-1 900M频率规划模型现网900M小区基本采用空腔合路器,进行基带跳频,每个小区的频点分为两组group0和group1,group0包含BCCH频点和TCH频点,均参与基带跳频;group1包含用于PDCH规划的频点,PDCH频点在频模给出的TCH频点中选择,不参与跳频。
GSM高级网络优化工程师面试总结英语自我介绍每个人准备一段自己的英文工作简历,并把它背下来。
Full Sub 天线半功率角拥塞解决办法,功控参数,基站载频功率增益移动基站天线半功率角是什么意思天线中心方向信号辐射最强,往两边信号逐渐减小,所谓半功率角就是主瓣上,功率下降到最强方向(主瓣方向)一半(3dB)的夹角,比方说90度,就是说从主方向往左右各45度,功率就下降一半反映了天线能量的集中程度有水平半功率角和垂直半功率角之分,常见的90/65都是水平半功率角天线半功率角也叫天线波瓣3dB宽度,在功率方向图的主瓣中,把相对最大值辐射方向功率下降到一半处或小于最大值3dB的两点之间的波束宽度夹角称为半功率波瓣宽度。
水平波瓣宽度是指在水平面的半功率波瓣宽度。
垂直波瓣宽度是指在垂直面的半功率波瓣宽度。
天线水平波瓣宽度决定了水平方向覆盖范围;天线垂直波瓣宽度决定了高度方向及纵向覆盖。
什么叫天线增益,它是怎样定义的?天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。
一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。
天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。
增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。
任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。
另外,表征天线增益的参数有dBd和dBi。
DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBd=dBi+2.15。
相同的条件下,增益越高,电波传播的距离越远。
一般地,GSM定向基站的天线增益为18dBi,全向的为11dBi。
解释Full值Sub值无论是否采用不连续发射DTX时,测量报告都有两个值,一个是全局测量(FULL),一个是局部测量(SUB)。
局部测量是对12个突发脉冲进行平均的(4个SACCH突发脉冲,8个特定位置的TCH突发脉冲),全局测量是对100个TCH的突发脉冲进行平均的(即4个26复帧中的4个空闲帧除外)。
VoLTE的一些优化经验总结1优化经验总结1.1日常优化总结日常优化工作主要从无线覆盖优化、参数优化、系统内外邻区优化,功能优化四个方面着手,与ATU路网、工程建设紧密配合,提升整体网络质量。
1.2RLC优先级优化现象:呼叫建立与切换过程冲突,专载被MME释放。
呼叫建立过程中专载建立与切换几乎同时发生,MME未收到NAS专载完成消息导致释放专载,终端回复invite580(也有上发CANCLE 的情况),专载丢失形成未接通事件。
原因分析:QCI5设置的RLC优先级为2,高于SRB=2(传送NAS层消息)配置为3.导致NAS 的层3消息已经比MR要早,但是因为优先级比MR和SIP低,未及时发送。
优化措施:降低QCI5优先级,确保SIP消息及时上传,修改后此类问题改善明显。
1.3QCI5PDCP DiscardTimer时长优化现象:终端业务建立过程中,出现SIP信息传递丢失的问题,导致收到网络下发的INVITE500或者580等原因值释放。
原因分析:UE在无线信道较差的情况下,SIP信令发送或接收不完整或者无法及时传递,导致IMS相关定时器超时而发起会话cancel。
经过分析,由于QCI5的pdcp丢弃时长过小,在无线覆盖较差的地方,上行时延会变大,容易导致QCI5信令丢包。
优化措施:QCI5PDCP DiscardTimer由300ms修改为无穷大优化效果:VoLTE无线接通率提升明显1.4SBC传输协议TCP重传次数优化背景:被叫从2G返回4G后,主叫起呼,被叫首先bye消息,紧接着接连收到多条上一次呼叫的invite,被叫回复bye481invite486invite580,呼叫失败。
优化措施:爱立信SBC对TCP配置进行了修改:最大重传次数从15次改为5次,最大重传隔间从十几分钟改为15s,此类问题已解决。
1.5系统间邻区优化LTE网络的GSM邻区关系根据工程参数、共站2G邻区同向小区继承进行规划,同时根据4G、2G道路测试数据匹配进行邻区补充:4G弱信号路段与2G拉网服务小区匹配:利用第三方拉网测试数据,将4G和2G拉网信号强度、经纬度、服务小区等信息导出。
爱立信切换算法简介切换是蜂窝移动网络的特点之一,因此也是移动网络优化的重点,是保证服务质量的重要环节。
切换可以被认为是蜂窝通信中最复杂和最重要的过程,移动台的运动或附近环境的变化,导致了由衰落、障碍物和干扰引起的信号变化,这就是启动切换的主要原因。
切换无疑是呼叫期间处理的最关键性的过程,它用于保证无线资源在相同小区内变化(小区内切换),或在两个小区间变换(小区间切换),或者在同一MSC内或者不同MSC之间变换时的连续性。
切换过程必须快和准确,目标小区的选择必须是最佳。
而BSC进行切换决此的前提即为LOCATING定位算法,移动台在激活状态下,每480ms向BSS 发一次下行信号强度测量报告,同时BTS也对上行信号进行测量,BSS综合这些测量信息,经过滤波、计算、基本排队等得出切换决此使用的邻小区列表,这一过程就是定位(LOCATING)。
而在基本排队中包括两个算法,即ERICSSON 1和ERICSSON 3算法。
ERICSSON 1算法来源于GSM规范,可以选择路径损耗、信号强度或者两者的结合来作为切换准则。
ERICSSON 3算法并不是GSM规范算法,而是爱立信公司在R7开始自发研究的一套定位算法,仅仅以信号强度作为切换的准则。
ERICSSON 1算法主要包括4个参数:KHYST、KOFFSET和LHYST、LOFFSET。
1.1 参数说明KHYST:在进行K小区的评估时的信号强度迟滞值。
该参数是按信号强度标准定义的小区边界的迟滞值,它是在先定义了小区相邻关系的情况下定义的小区到小区的信号强度迟滞参数,也即是在每个小区的切换方向上可以独立的定义。
同时该参数为一个对称性参数,即在定义一个切换方向上的时候,在反方向也同样被自动定义。
KOFFSET:评估K小区时的信号强度偏置值。
通过该参数的设置可以以信号强度为偏置,使小区的切换边界靠近或远离服务小区,该偏置值以dB为单位LHYST:在进行L小区的评估时的路经损耗迟滞值。
爱立信性能处理流程1.1接入问题处理流程1.1.1 指标定义◆TD-LTE低接入小区:每日(考核15时段8:00-23:00)内累计无线接通率<95%,且E-RAB建立请求次数>50的小区◆RRC SSR(%)=100 *([pmRrcConnEstabSucc]/[pmRrcConnEstabAtt]) //RRC建立成功率◆E-RAB SSR(%)=[pmErabEstabSuccInit]+[pmErabEstabSuccAdded])/([pmErabEstabAttInit]+[pmErabEstabAttAdded] //E-RAB 建立成功率◆Radio SSR(%)=100 * ([pmRrcConnEstabSucc]/[pmRrcConnEstabAtt])*([pmErabEstabSuccInit]+[pmErabEstabSuccAdded])/([pmErabEstabAttInit]+[pmErabEstabAttAdded]) //无线掉线率Counter解释:pmErabEstabAttInit //Erab初始建立尝试次数pmErabEstabAttAdded //Erab建立增加次数pmErabEstabSuccInit //Erab初始建立成功次数pmRrcConnEstabSucc //RRC建立成功次数pmRrcConnEstabAtt //RRC建立尝试次数1.1.2 RRC连接成功率优化方法1.硬件问题:查看告警列表,如果出现硬件类告警,根据交维/未交维站点提交给相应的人员处理2.高干扰问题:查看干扰counter,显示干扰水平较高的话(一般来说,大于-105dbm),建议查看站点告警,是否有GPS失步告警,时钟失步告警等,如GPSNetwork Missing等。
如果有GPS失步告警,需要紧急提交给相关人员进行处理,因为TD系统机制的原因会使该站成为严重的干扰源,对周边同频站点产生很高的干扰。
爱立信设备讲解爱立信设备的核心部件包括基站、传输设备、终端设备等。
基站是通讯网络的重要组成部分,它负责接收和发送无线信号,并将其转换为有线信号传输到核心网。
传输设备用于将信号传输到目标地点,通常采用光纤或微波等技术。
终端设备包括手机、无线网卡、路由器等,它们用于接收和发送信号。
爱立信设备在通信网络中具有重要的作用,它们可以实现高速传输和稳定连接,为用户提供优质的通信服务。
同时,爱立信设备采用先进的技术和设计,具有较低的功耗和较高的可靠性,可以满足各种复杂环境下的通讯需求。
总的来说,爱立信设备是一种先进的通讯设备,具有高性能和可靠性。
它们广泛应用于各种通信网络中,为用户提供高速传输、低功耗和稳定连接的通讯服务。
随着通讯技术的不断发展,爱立信设备将继续发挥重要作用,推动通讯网络的进一步发展和升级。
很高兴能为你介绍更多关于爱立信设备的信息。
爱立信作为一家领先的通讯技术公司,其设备在通信领域扮演着至关重要的角色。
爱立信设备的应用范围非常广泛,包括移动通信网络、固定通信网络、物联网、5G网络等。
首先,让我们来看看在移动通信领域中,爱立信设备的应用。
在移动通信网络中,爱立信的基站设备扮演着至关重要的角色。
这些基站设备通过无线信号的接收和发送,实现了用户手机和核心网之间的连接。
基站设备的关键组成部分包括天线系统、收发信机、传输系统等。
这些设备通过高效的信号处理和传输技术,为用户提供稳定快速的通信服务。
另外,爱立信设备在固定通信网络中也有着重要的应用。
固定通信网络包括有线电话、宽带接入等,而爱立信的设备可以实现这些网络中的信号传输、接收和处理等功能。
在固定通信领域,爱立信设备可以提供高速、稳定的信号传输,为用户提供优质的通信服务。
除了移动和固定通信网络,爱立信设备也在物联网中发挥着重要作用。
物联网是指各种设备和物品之间能够相互连接、通信并实现智能化控制的网络。
在物联网中,爱立信的设备可以实现对各种智能设备的连接和控制,使得这些设备能够相互通信,实现智能化的功能,并在各种场景中提升效率。
1.爱立信基站基本原理及维护优化课程目标学习完此课程,您将会:①②③④了解RBS2202/RBS2206产品特性掌握RBS2202/RBS2206硬件结构及工作原理了解基站常见告警及处理方法了解基站在日常网络优化中常见的硬件故障目录1. 2. 3. 4. 5.RBS2000系列基站简介RBS2202硬件结构及工作原理RBS2206硬件结构及工作原理基站常见告警及处理方法常见的几类硬件故障问题RBS2000系列基站设备介绍*21系列室外型用于正常小区,单架时–RBS2101 1-2TRU 配臵成全向或单向小区–RBS2102 1-6TRU 配臵成全向或1-3个扇形小区–RBS2103 1-6TRU 配臵成全向或1-3个扇形小区*22系列室外型用于正常小区– RBS2202 – RBS2206 *23系列室内型用于微蜂窝– RBS2301/2302 1-2TRU – RBS2308 4TRU – RBS2309 2TRU *24系列室内型用于微蜂窝– RBS2401 2TRURBS2000系列基站设备介绍微蜂窝宏蜂窝RBS 2206RBS 2x06**容量RBS 2202/2102 RBS 2308 RBS 2302 RBS RBS 2309 2302 Maxite RBS 2x07* RBS 2112*覆盖范围RBS2000系列常用基站硬件设备载波是否支持EDGE 备注BTSGSMBANDDXUGSM900DXU_11 DXU_21TRU STRU DTRUNO YES NO DTRU第一版RBS2202GSM900/1800 GSM900/1800 RBS2206 DXU_21GSM900/1800RBS2302 RBS2308 RBS2309 GSM900 GSM900 GSM900DTRUeYESNO YES YESDTRU第二版4载波2载波RBS2202/2206简介我省采用爱立信宏蜂窝设备的型号主要为RBS2000系列的2202和2206. 2202常用CDU为C+和D;2206常用CDU为G和F. 2202主要功能模块均为DXU,TRU,CDU,ECU等,2206主要功能模块为DXU,DTRU,CDU,CXU. 下面就其模块结构原理及功能进行介绍.2202和2206机架正面图2202宽:0.6米深:0.4米高:1.9米重:226kg22060.6米0.4米1.85米230kg目录1. 2. 3. 4. 5.RBS2000系列基站简介RBS2202硬件结构及工作原理RBS2206硬件结构及工作原理基站常见告警及处理方法常见的几类硬件故障问题RBS2202-C+RBS2202-DRBS2202基站总线结构图各单元缩写全拼和功能简介The Distribution Switch Unit (DXU) 分配交换单元provides a system interface to the A-bis interface and is used to cross connect individual time slots to transceivers. The DXU also provides the RBS synchronization timing reference for RBS operation. The Transceiver Unit (TRU) 收发信单元contains the receiver and transmitter circuitry needed for handling 8 time slots of information on the air interface. The TRU contains RF measurement circuits used for testing transmitter and receiver properties. The Combining and Distribution Unit (CDU) 合成与分路单元is responsible for combining transmitted signals from various transceivers and distributing received signals to all transceivers. The Energy Control Unit (ECU) 能源环境控制单元supervises and controls the power equipment (PSUs), and regulates the environment conditions inside the cabinet. The Power Supply Units (PSUs) 电源供电单元are fed by AC or DC mains supply voltage and provide the DC system voltage.RBS2202总线功能介绍本地总线– Local bus提供DXU,TRU和ECU单元的内部通信连接.时间总路线–时间总路线从DXU单元至TRU单元间传送无线空间的时钟信息.X总线– X总线在各个TRU单元间以一个时隙为基础传送话音/数据信息.它用于基带跳频. CDU总线–CDU总线连接CDU单元至各个TRU单元,帮助实现接口和O&M功能.该总线在CDU单元和TRU单元之间传送告警和RU单元的特殊信息.电源通信环路–源通信环路在ECU单元,各个PSU单元和各个BFU单元之间传送控制和管理信息. DXU (Distribution switch Unit,分配交换单元)DXU是RBS2000的中央控制单元,它具有下面的几个功能:1. 传输时隙分配交换,SWITCH的功能 2. 面向BSC的接口; 3. 定时单元,与外部时钟同步并提供内部参考同步信号; 4. 外部告警的连接,所有机架外的告警信号接口; 5. 本地总线控; 6. 制物理接口G.703,处理物理层与链路层; 7. OMT接口,提供用于外接终端的RS232串口;8. 处理A-BIS链路资源,如安装软件先存贮于刷新存贮器后, DRAM下载; 9. 信令链的解压与压缩(CONCENTRA TES),及依TEI来分配DXU信令与TRU信令; 10. 保存一份机架设备的数据库.第一:机架安装的硬件单元即所有RU单元识别,物理位置,配置参数.第二,硬件单元的产品编号,版本号,序列号等.DXU:Distribution Switch Unit (分配交换单元)DXU的面板图及各个指示灯的意义红——存在故障,用OMT检查黄——警告!没有进入操作状态, 还不能离开基站绿——正常工作闪——等待,表示转换过程**FAULT 灭——DXU无故障. 亮——DXU有故障. 闪——1)DXU或RU数据库丢失或正在升级数据库. ——2)软件丢失——3)RU检测到与上级RU失去联系DXU的面板图及各个指示灯的意义全部指示灯亮表示自检过程, 全部灯熄,表示已执行RXESI:MO=RXOCF-X. OPERA TION: –闪(或与FAULT灯交替闪)——表示软件的更新过程,与BSC版本不同时出现,若版本相同时,只做比较,时间不长,上述指示灯不闪. –亮——表示已RXBLE:MO=RXOCF-X;解闭成功LOCAL: –亮为本地状态,灭为BSC远端控制的状态,闪为正状态变换BS FAULT: –亮——表示:DXU管理的所有设备中出现故障,此信息由设备管理总线提供.IDB的安装与机架不符也会出现此情况.具体内容可用命令查出FAULT CODE,或在OMT中查出. –闪——表示设有INSTALL IDB,(当然安装后要RESET CPU,因安装只是大致配臵,详细的内容在RESET后才由DXU通过设备管理总线去获取相应硬件的信息:如TRU的具体序列号.一个有益的提示:通过查序号可知各个TRU是否同类产品,因不同产品时,有可能影响跳频)DXU结构原理图DXU结构原理DXU的配臵数据通过LAPD链由BSC进行,不必一个独立的时隙及专门的硬件设备,DXU共分成下面的四个功能块: 1. 脉冲编码调制PCM,即DIP(以后定义为MO DIP),PCM功能块它的作用是:将PCM的时隙提取并通过LOCAL BUS送TRU单元.2. 中央处理器单元CPU(以后定义为MO CF),CPU功能块的作用是: RUs的软件安装;支持OMT接口与提取时隙信息;操作与维护;内外部告警.3. 中央定时单元CTU(以后定义为MO TF),CTU功能块的作用是:为TRU单元提供稳定的参考信号,它可以与PCM同步.4. 高级数据链路处理HDLC(以后定义为MO CON),HDLC处理器功能块用于:读出控制信息并分配至DXU,TRU等单元. 另外还有一个完全由BSC配臵的纯软件模块(即MO IS).DXU内部传输连接示意图DXU1 PCM A Pract Acfa (DP 0) 312 Mb/s or 1,5 Mb/s 2 Mb/s EPIC (IS) 33 PCM B Pract Acfa (DP 1) 63128 145 146 159 2 Mb/s 160 177 178 191 87 88 95 LB B LB ATRU 0-11 ECU 0-1图示中有虚线的DCP为基站专用所以不能做为与BSC与基站的通信用. TS0,TS32用于时钟,且有进入IS之前已被提取,所以没有0,32 这两个DCP点.64 2 Mb/sMUNICH (CON)CPU (CF)TRU(TRansceiver Unit,收发信单元)发信机板执行下行链路的信号的调制和放大,附加的发信模块执行VSWR 的监视功能.VSWR直接在载波内部计算,并在LAPD链上传送信息,同时也在OMT中可以监视.另一方面可以在TRU内部直接进行无线环路测试检查误码率. 接收机板执行上行链路的信号的解调, 并把解调后的信号送至TRUD部分. TRU的特点:将TRUD,RRX,RTX 三位一体化.连接的有LOCAL ,X, TIMING,CDU等BUS.并执行信号的各种处理过程.TRU:Transceiver Unit (收发信单元)TRU的面板图及各个指示灯的意义左图是TRU的面板结构示意图FAULT灯,OPERA TION灯交替闪烁表示软件更新DXU灯正常,TRU FAULT灯闪表示: 1)DXU与TRU失去联系(2A41) 2)软件丢失(2A25) 3)扩展架地址跳错4)IDB错等TRU结构原理图TRU各模块的功能和特点TRUD功能可看作是TRU的控制器,它经由本地总线,CDU总线,定时总线和X总线与其它的RBS单元相连接,TRUD执行例如信道编码, 插入,加密,突发脉冲串格式和Viterbi 均衡等上行和下行链路的数字信令的处理作用. 发信机板执行下行链路的信号的调制和放大,附加的发信模块执行VSWR的监视功能. 接收机板执行上行链路的信号的解调,并把解调后的信号送至TRUD 部分. 无线环路是在TX和RX之间形成环路来测试整个TRU的,它是通过产生一个测试信号并将它环回来测试其误码率(BER)的.TRU背板连线图合成器介绍COMB是在基站上的使几部发信机能连接到同一天线的功率合成设备, 它能使每部发信机的RF能量送至天线而不会对其它的连接到同一天线的发信机产生串扰,有两种类型的功率合成器: *混合型宽带功率合成器(H-COMB) *滤波型窄带功率合成器(F-COMB)CDU-C+工作原理合成器功能混合型功率合成器(H-COMB)混合型功率合成器是一种宽带设备,它允许在发射带宽内所有前向的频率信号通过,每个H-COMB能把两部发信机的信号合成到同一天线.但每个H-COMB都有3dB 的插入损耗,如果有四部发信机分两级全成将有6dB的插入损耗.滤波型功率合成器(F-COMB)滤波型功率合成器是一种窄带设备,它只允许选择在发射带宽内一个频率信号通过,这种合成器不管系统有多少部发信机它都有4dB的插入损耗,多用于多发信机的系统中. 这种合成器中有一个步进马达用于它的调谐,调谐时间大约需要5--7秒.CDU( Combing and Distribution Unit,合成与分路单元)CDU-C+CDU-DCDU的功能介绍CDU是TRU和天线系统的接口,它允许几个TRU连接到同一天线.它合成几部发信机来的发射信号和分配接收信号到所有的收信机,在发射前和接收后所有的信号都必须经过滤波器的滤波,它还包括一对测量单元,为了电压驻波比( VSWR)的计算,它必须保证能对前向和反向的功率进行测量. CDU的硬件功能包括:发信机的功率合成; 收信信号的前臵放大和分配; 天线系统的管理支持; RF的滤波; 天线低噪声放大器的功率供给和监视; 内设的RF内部环行器用于防止RF的反射功率损坏CDU.CDU结构原理Pr PfTX T R U TXBP 双工器Meas. CouperPrTX/RX 至天线Pf Test1 Pr Test1PfTXBPCDU Bus双工器Meas. CouperTDUPr PfMS Test Pf Test2 Pr Test212C RXAO&MTX/RX 至天线RXDA T R UPr PfRXA RXBDirect CouperRXBPRX TestARXDARXBDirect CouperRXBPRX TestACDU类型目前使用的CDU有三种型号,CDU-A,CDU-C,CDU-C+,CDU-D.第一种不采用合成技术,第二,三两种采用HCOMB,后一种采用FCOMB.HCOMB的特点是只能进行两路信号的合成,损耗大约为3dB.这种合成器的造价低.但只能进行2路信号的合成,如果要将4路信号合成,则需要经过两级所以损耗加大至6dB,在第四期工程中,大部分采用CDU-D型合成器,它的特点是可以进行多至12路信号的合成,加上采用双极性天线,只用到两条馈线,施工特别简单.H-COMB&F-CONB示意图发信机HCOMB-3dBHCOMBHCOMB天馈线-3dB发信机. . .FCOMB天馈线-4dBCDU配臵CDU配置要把握好CDU与TRU之间的控制关系CDU配置要把握好CDU与天馈线系的关联情况(能实现发射与分集接收功能).采用A型CDU的配臵A型CDU结构简单,安装容易,没有合成器,是2000系列初期的产品,一个所带的TRU 数不能超过两个,多用于规模小的偏远基站配臵.CDU-A型原理图ANT-A ANT-BDUPLEXER RXDACDU-ADUPLEXER RXDATXARXA TRU1RXBTXBRXA TRU2RXBCDU-A FOR GSM900 由于CDU由TRU控制,通过CDU-BUS来执行,一个整体的CDU 起码必须有一个TRU来执行控制,所以CDU-A最少可以安装1台TRU. Duplexer双工器示意图至天线发信带通滤波器收信带通滤波器发信机RF输出收信机RF输入CDU-A型(用于DCS1800或PCS1900 )ANT ANTALNAALNACDU-A RXDA RXDATXARXA TRU1RXBTXBRXA TRU2RXB采用C型CDU的配臵C型CDU采用混合型的合成器(Hybrid),一般要两个CDU成对使用,信号的损耗不少于3DB,配臵TRU的数目基本不受限制,所需要的天线数较多,增加载波一般要增加天线,扩容较麻烦.CDU-C型原理图CDU-C型ANT-A ANT-BDUPLEXERCDU-CDUPLEXERCDU-CCOMBINERRXDACOMBINERRXDATXATXBTXATXBCDU-C FOR GSM900MHZ 一个CDU只连接一条收发天线,为分集接收的需要,至少要安装两台CDU-C,而CDU受TRU控制,所以至少要有2台TRU,且每个CDU各安装1个.即1,3或2,4,而且当开通3个TRU时, 还要先开通1,3,后再开通2.CDU-C型CDU-C型两个C型CDU交叉连接方式CDU-C型连接6个TRU示意图CDU-C型连接6个TRU实物图采用C+型CDU的配臵C+型CDU是C型的后续产品,也是采用混合型的合成器,机构与C型CDU差不多. CDU-C+型C+型CDU是在C型CDU的基础上的改良型CDU,它比C型CDU多了HLOUT B和Rx Ant B两个接口,除了可以连接成C型CDU的使用,也可以连接成类似A型CDU的使用(通常用于一个小区只有两个TRU以下的情况). CDU-C+型原理图CDU-C+型C+型CDU连接成A型使用A型接法原理图C型接法原理图C型接法实物图不管是C或C+型的CDU作交叉连接或自环连接时HL Out端口一定要连接3DB的衰耗器,以保证接收信号的平衡.CDU-C+跨架连接如果涉及到主柜与扩展柜之间的CDU连接,跨架连接线通常用3米的跳线(它的衰耗值约为1dB).采用D型CDU进行配臵与A,C,C+型CDU不同,D 型CDU由DU,FU或FUd, CU等三个部件组成.采用滤波型的合成器,DU是分配单元,FU/Fud是滤波单元(其中d指双工),CU为合成单元. D 型CDU使用灵活,不受TRU 数的限制,若采用双工的话, 无论载波数多少,都只使用两付天线,增加载波不用象C型要增加天线,对基站的扩容带来很大的方便.常用于用户密集基站规模较大的区域.FU与CU连接图CDU-D型原理图CDU-D 1x6 without TMACDU-D 1x6 with TMACDU-D 1*12 WITHOUT TMAFCOMBTRUTRUTRUFCOMBTX/RX(M架上) TX/RX(E架上)TRU TRUFCOMBFCOMBTRUFCOMBTRUTRUTXFCOMBTXBPDUPLMCURXRXDRXDRXBP+ RXDARXAnt-A RXAnt-BRXBP+ RXDA,AS ABOVETRU7-12HL OutA1 HL Out A2 HL OutB1 HL Out B 2CDU-D 1*12 WITH TMATRU TRU TRU FCOMB FCOMB DUPLTRUTX/RXTX/RXDUPL LNATMATRU TRUFCOMB FCOMBLNATMATRU TRUFCOMBTXFCOMBTXBPMCURXRXD RXDRXBP+ RXDA RXBP+ RXDAAS ABOVE,TRU7-12ECU (Energy Control Unit,能源环境控制单元)ECU控制和管理电源和与之相关的环境设备(PSU 单元,风扇),并调节机箱内的气候情况以保证设备的工作系统能够正常运作.对于宏蜂窝RBS2202机架, 一般只执行对FAN的控制, 依据是各个RU(替换单元)内的温感器,并通过FCU来执行.目录1. 2. 3. 4. 5.RBS2000系列基站简介RBS2202硬件结构及工作原理RBS2206硬件结构及工作原理基站常见告警及处理方法常见的几类硬件故障问题RBS2206机架结构天线跳线直接连接到CDU上, 可以降低RF功率损耗机架上所有连接域模块化, 更容易更换专用的电缆通道使其容易连接更容易够及或更换电源接口和内部连线机架门可以左,右两边安装RU内部温度控制冷却硬件支持GSM 1900RBS2206&RBS2202比较相同尺寸-双倍容量0.24 m22x22022206RBS2206单机架支持12个收发信机的室内宏蜂窝基站RBS 2206的主要特性12个TRX 容量改善相同配臵的射频(RF)性能与RBS 200, RBS 2202和RBS 3202 (WCDMA)的覆盖区相同含底座的总高度:1820 mm 满配臵机架重量:230 kg 支持双频双工塔顶放大器(TMA) 使用标准的非平衡75 Ohm BNC传输接口可以与RBS 200和RBS 2000共站HW硬件支持: - 为运行EDGE技术提供高达12个收发信机- 提供4路分集接收- 支持IP-BSS技术- 支持WCDMA外挂收发信机单元(wTRU) 新定义的硬件单元CDU-F 高容量基站的滤波型合成器CDU-G 兼顾容量和覆盖的合成器CXU SW软件控制RX配臵转换dTRU 内含两个TRX的可替换单元DXU21 基于核心RBS平台的新型DXU PSU 增强容量的新型PSURBS2206机架逻辑结构Y-LINK支持EDGE 支持高速数据链路(最高13Mb/s) 取代Timing Bus, Local Bus and X Bus DXU和TRU之间采用新的点对点接口支持低电压脱离DXU 21的背板接口兼容2102/2202 机架每块dTRU有两条Y links (每个收发信机配臵一条) 每条Y link分成两个界面: – Y1: 发信机控制信令– Y2: 上下行话务数据EPC Bus(环境及功率控制)采用光纤接口,可有效避免电磁干扰替换电源通信链路在完整的2206系统中连接DXU,PSU, BFU和FCU在完整的2106系统中连接DXU,PSU, BFU,FCU ,A/C和ACCU 速率为40 Kb/s CDU-BUSCDU Bus包含两个部分: CDU-TX Control Bus and IOM Bus1. CDU-TX Control Bus 标准RS-485接口连接CDU和dTRU 传送VSWR测量结果2. IOM Bus 包含3个I2C(信息与控制)接口背板连接DXU, CDU, CXU, OXU传送CDU中的RX监测信息,还包括温度,指示灯,线缆连接等负责传送合路器控制信息传送CXU的线缆交叉连接指示和(CDU F) 监测信息原理RBS2206环境控制系统架顶安装有4个风扇一个FCU (Fan Control Unit风扇控制单元)DXU, TRU, CDU & PSU中安装有温度传感器DXU执行环境监测和管理4个风扇一起工作但有所分工: –风扇1 & 4主要冷却DXU-PSU 机框–风扇2 & 3主要冷却CDUs和dTRUsRBS2206机架支持Dua Band(双频带)Transceiver Group Synchronization(TG同步)通过同步使2个RBS在同一cell工作需要两个同频机架最大支持128 trx 最多支持64 TGsDXU 21 (Distribution Switch Unit,分配交换单元)传输接口: - 可支持四个2 Mbit E1/T1接口- 总容量高达8 Mbit/s Abis传输速率可移动的闪存卡,使其更易装载BTS软件支持外部同步总线(ESB) 内建架内环境控制EC-泛函性(RBS 2206无需ECU) 硬件支持: - 在高达12个收发信机时可支持EDGE 调制方式- 为定位业务(GPS)提供一个接口- IP-BSS 实时路由器的应用- 配臵了分组控制单元(PCU) - 提供BTS间的同步DXU 21实物图DXU21内部框图dTRU(Double Transceiver Unit,双收发信单元)在一个普通TRU相同尺寸的设备中集成了两套收发信机有两个版本, 一个支持GMSK话音,一个支持8-PSK(EDGE)和GMSK话音有4个频带版本:GSM 800, E-GSM 900, GSM 1800, or GSM 1900 内部集成宽频带混合型合路器(配合CDU-G) 支持软件加电自动选择A5/1或A5/2计算法则硬件支持: - 超远覆盖距离(2时隙,121 km) - 4分极接收dTRU内部框图dTRU实物图CDU-F&CDU-GCDU-FCDU-GCDU-F(高容量滤波型合成器)灵活的滤波型合成器–一个机架支持1, 2 或 3 个小区使用一个机架时,每小区可高达12个收发信机,仅用两条天线仅支持基带跳频CDU-F实物图CDU F滤波型合成器与CDU-G, CDU-C+ 和CDU-A的大小一样支持E-GSM 900 或GSM 1800 使用E-GSM900时,需600 kHz的信道间隔;使用GSM1800时,侧需800 kHz 一副逻辑发射天线支持高达6个合成载波(或使用一副正交极化天线可达12个载波) 始终支持TX/RX共用天线支持1, 2 或 3 个小区和双频配臵硬件为支持EDGE技术提供准备CDU-G(宽带合成器)灵活的合成器–宽带模式–支持4个收发信机–支持合成器跳频和基带跳频CDU G使用了混合型合成或无合成器配臵(混合型合成器位于dTRU上) 与CDU-F, CDU-C+ 和CDU-A大小一样支持E-GSM 900 或GSM 1800两副逻辑发射天线支持4路合成或2路无合成载波(或一副正交极化天线)始终支持TX/RX共用天线支持1, 2 或 3 小区和双频配臵硬件为支持EDGE技术提供准备CXU( Connection Switch Unit,配臵转换单元)不受频率限制把来自CDU的RX型号分配至dTRU 通过软件控制内部线路连接使RBS 2x06扩容或重新配臵不需要更改RX线缆的连接一套RX连线可满足所有配臵的需求一款CXU可以满足所有CDU-F, CDU-G的配臵CXU实物图CXU连接图使用混合型合成器的CDU-G到CXU 和dTRU 上连线图CXU连接图使用无混合型合成器的CDU-G 到CXU 和dTRU上连线图CDU F3x2 or 3x4配臵3x2 or 3x4 带塔放配臵CXU每扇区4 TRX配置单机架最多3个扇区(2+2+2 or 4+4+4)CDU F1x8 配臵1x8 带塔放配臵CXU每扇区8 TRX配臵单机架最多两个扇区(8+4+0 or 4+8+0)CDU F4+8+0 配臵8+4+0 配臵CDU F1x12 配臵1x12 带塔放配臵CXU每扇区12 TRX配臵单机架一个扇区(12+0+0)CDU F2x6 配臵2x6 带塔放配臵CXU单扇区 6 TRX配臵单机架最多两个扇区(6+6+0)CDU G3x2 or 3x4 配臵3x2 or 3x4 带塔放配臵CXU扇区4 TRX配臵单机架最多3个扇区(2+2+2 or 4+4+4)CDU G1x8配臵1x8 带塔放配臵CXU扇区8 TRX配臵单机架最多2个扇区(8+4+0 or 4+8+0)CDU G1x12 配臵1x12 带塔放配臵CXU扇区12 TRX配臵一个扇区一个机架(12+0+0)CDU G2x6 配臵2x6 带塔放配臵CXU扇区6 TRX配臵单机架最多2个扇区(6+6+0)目录1. 2. 3. 4. 5.RBS2000系列基站简介RBS2202硬件结构及工作原理RBS2206硬件结构及工作原理基站常见告警及处理方法常见的几类硬件故障问题RBS2000故障代码的描述BTS的故障是按故障的起因和重要性进行分类的: 1A级:MO内的故障,它会影响MO 的功能特性. 1B级:MO外的故障,它也会影响MO的功能特性. 2A级:MO内的故障,它不会影响MO的功能特性. BSC要接收以上的BTS故障报告,应采用下列措施: 1A 级:MO退出操作和测试. –如果测试结果表明MO没有故障,那么MO将返回操作状态,并且其故障以间歇性故障处理.故障计数器将对间歇性故障进行累加,当发生间歇性故障的次数太高时,MO将会永久地退出工作状态. –如果测试结果表明MO有故障,那么MO将永久地退出工作状态,直到故障停止或人工干涉才能恢复正常状态. 在BSC/OSS上将会产生一个A2告警. 1B级:MO将永久地退出工作状态,直到故障停止或人工干涉才能恢复正常状态. 在BSC/OSS上将会产生一个A2告警. 2A级:在BSC/OSS上将会产生一个A2或A3告示警. 但MO仍处于工作状态. 应注意的是:CF 或TRXC上的2A级故障在从属MO中却被认为是1级故障. 总是在CF/TRXC上读取RU的故障映象来进行故障定位.但有时应紧记要替换的被检测到的故障单元,以便更换.RBS2000故障代码的描述BTS的故障信息可以从BSC上或站上OMT接口用人机命令MML来获得. 从BSC 上获得: - 在MO中所有激活的告警: RX ASP:MO=RXO…; - 在TG中所有激活的故障(1级): RXMFP:MO=RXOTGx,FAULTY,SUBORD; - 在MO中所有激活的故障: RXMFP:MO=RXO…; - MO的故障记录: RXELP:MO=RXO…; 从OMT上获得: - 在TG中所有激活的故障: "System view(系统视图) / 选择RBS 2000 / Operations操作(或按右键) / Monitor(监视)/ Fault status(故障状态)" - 某个RU的故障记录: "Hardware view(硬件视图) /选择RU / Operations操作(或按右键) / Save log(保存记录)" (只有DXU, TRU和ECU才有记录区).RBS2000常见告警分析和处理设备故障往往表现在BS FAULT,BSC方可以直接进行监测,其中有A1,B1, A2和A3告警.在处理这类故障时最好是有RBS2000的FAULT CODE的资料,然后根据现场实际情况进行具体分析(用OMT查看BS FAULT),尽快查出故障的原因;下面就平时常见的BS FAULT进行分析和处理.一. CF类1.2. 3. 4. 5. 6. 7.CF.FC=2A/8 一般为天馈线的发射部分故障或CDU,CU故障;(此时TX 并没有闭塞,VSWR在1.8范围内,当天馈线的VSWR超过2.2时,TX闭塞, 表现为TX.FC=1B/4); CF.FC=2A/18,为市电停引起,一般系统电压(电池电压)降到22.5V或高于29.0V,这就应当即确定是什么原因引起的,立即采取相应措施进行处理; CF.FC=2A/19,一般在交流站出现,为光纤环路故障; CF.FC=2A/21,一般在交流站出现,为PSU230故障; CF.FC=2A/22,一般在交流站出现,为市电停或交流故障; CF.FC=2A/23,一般为FAN或FCU故障; CF.FC=2A/26,一般为温感器故障;RBS2000常见告警分析和处理8. CF.FC=2A/33,这类故障原因较多,有天馈线,TRU,CDU(CU) ,和RX射频线的连接,具体定位得进行分析; ①②先检查RX射频线的连接(包括CDU-C,CDU_C+的HL-OUT到HL-IN的连线)是否良好; 然后检测天馈线的VSWR是否正常(可以用OMT大概的看看VSWR是否正常),但由于现使用双极化天线,这给故障定位带来一定的难度, 此时可以对调室内跳线(机架顶或CDU处,只要便于操作方便即可); 然后对进行LOCAL和REMOTE的操作,如此时BS FAULT 消失,则为此TRU或此TRU 对应的CDU故障(利用此种方法定位TRU故障的准确性高且简单方便实用,同时有助于定位为CDU故障的情况);③9. 10.CF.FC=2A/41,一般为TRU 掉电或在拆走TRU后没有更改IDB数据所致; CF.FC=2A/42,一般为ECU故障;RBS2000常见告警分析和处理二. TRXC类TRXC.FC=1A/13,一般为载波坏,并有红灯告警; TRXC.FC=1B/0,一般为CU故障,更换OK;三. TX类TX .FC=1B/4,一般为天馈线故障,并载波的TX自动闭塞(此时的发射天线的VSWR 肯定高于2.2);四. TF类TF .FC=1B/1,一般为DXU故障,此时应考虑更换DXU了;目录1. 2. 3. 4. 5.RBS2000系列基站简介RBS2202硬件结构及工作原理RBS2206硬件结构及工作原理基站常见告警及处理方法常见的几类硬件故障问题常见的几类硬件故障问题1. 由于存在告警,引起基站覆盖变差当基站覆盖区域信号不好时,可以通过升降天线高度,检查天线俯仰角和方向角,检查驻波比等手段来增大覆盖范围.当相邻小区产生干扰时,也可以通过这些手段减小基站覆盖范围来减小干扰. 例如:有用户反映某基站附近手机信号不好,在基站周围路测时发现,距基站500米处手机信号电平为-85dBm左右通信正常,距基站3 公里处降到-98dBm左右,已无法正常通信,而其间地势平坦无任何阻挡,显然基站覆盖范围明显低于正常水平.经过检查,天线高度和天线俯仰角,方向角都属正常范围,但天线驻波比高达1.7,在对基站安装状况进一步检查时发现,天馈线接口松动是导致驻波比增高,覆盖范围减小的直接原因.常见的几类硬件故障问题2. 由于天馈线的错接,引起的话音质差测试中发现某公司院内信号时强时弱,在-70 dBm ~-95 dBm间波动(待机和通话状态都有此现象),声音时断时续. 经查基站载频板没有问题,此处应为某基站第2小区覆盖的区域,但是多数时间占用第3小区的信号,而且2,3小区切换较频繁.后检查天馈线部分,发现第2小区两根馈线分别错接到1小区和3小区的天线上,这样就造成2小区的覆盖范围与1,3小区的天线覆盖范围重叠,致使2,3小区切换频繁.在馈线重新连接后,小区信号覆盖正常.常见的几类硬件故障问题2. 硬件隐性故障,引起接通率低手机信号强度高,但通话时接通率低,在排除交换侧质量问题和外界干扰等情况外,虽然基站并没有出现告警,但很可能是由于硬件老化造成的.例如:某基站1小区内用户待机状态信号良好,但用户无论作被叫还是主叫都需要多次拨打,才能接通,而且接通时信号变弱,有时甚至被切换到相邻小区.随后采用对1小区所属的3个载频逐一锁死的方法进行测试,发现只有在TRU0被禁止工作时,才能实现正常通话, 由此判定该站1小区第一块载频板有问题,在更换TRU0后,重复测试,通话恢复正常.。
灵活ABIS功能应用及开启方法功能介绍灵活ABIS功能的操作对象为TG,相比传统的ABIS资源配置情况,灵活ABIS 功能可以将有限的ABIS资源在语音、数据业务之间更灵活的分配,因此小区能开启更多EPDCH,在理想状态(没有语音业务)情况下可以将所有传输资源都配置给EPDCH,当有语音业务发起时系统将对PDCH或者用于PDCH的ABIS资源进行预清空。
尤其是在传输资源满配或者其他原因导致传输资源不能扩容的情况下能最大发挥现有传输资源在数据业务方面的效用,并且在相同TG不同小区中能动态分配传输资源。
开启步骤如下:一、检查BSC是否具备该功能DBTSP:TAB=AXEPARS,SETNAME=CME20BSCF,NAME=FLEXABIS;V ALUE值为1说明该BSC具备灵活ABIS功能二、修改基站MO数据1、TG参数修改,ABISALLOC默认为FIXED,需要修改为FLEXIBLE。
2、TRX DCP修改,DCP定义需要全部修改为长DCP,用于支持EDGE三、修改传输配置除载频信令需要外,其它传输时隙全部修改为64K,如下:四、小区参数修改1、RLGSP:如果要在CHGR 0开EDGE,PSKONBCCH这个参数一定要改为ENABLED2、RLBDP:CHGR 0的TN7BCCH和TNBCCH参数全部改为EGPRS3、以上全部修改完成,修改NUMREQEGPRSBPC ,处SDCCH、CCH外,剩余的业务信道全部开EDGE,激活小区4、开启后实时查看占用情况如下,具体效果还需进一步观察。
需要注意的问题:由于每个网元有EGPRSBPCLIMIT,该功能需要定义更多EPDCH,因此若大量使用该功能时需定期检查BSC关于EPDCH License的使用率,目前省公司规定上限为90%。
移动通信基站维护与优化在GSM移动网络系统中,数量最多的是移动基站BTS(爱立信系统中称之为RBS),在平时的网络维护工作中,处理故障最多的也是移动基站。
而移动基站工作性能的好坏,出现故障的频率直接影响到整个网络的整体质量。
移动基站的各种软硬件故障将直接影响多项网络指标,比如掉话率、接通率、信道完整率以及最坏小区数量等,同时还可导致话音质量降低,影响用户通话效果和运营商的网络质量。
网络优化是在整个网络相对稳定的情况下进行的,因此保证数目众多的移动基站工作稳定,消除隐患是网络优化的前提。
在日常的整个网络优化流程中,排除移动基站硬件故障是首先必须进行的,同时也是日常性工作之一。
在我国使用最多的基站设备是爱立信的RBS2000(Radio Base Station)系列,因此下面就介绍一下移动基站的维护和故障排除。
7.1基站系统结构在GSM系统中,基站系统负责所有和无线系统相关的功能。
基站系统可以分为两个功能实体:基站控制器(BSC)和无线基站(RBS)。
爱立信GSM基站分为RBS200和RBS2000系列,下面以RBS2202为例向大家介绍GSM 中的移动基站。
RBS2000是爱立信公司的第二代无线基站收发信系统,包括适用与GSM900、GSM1800、GSM1900的室内和室外机。
GSM基站分为全向站和定向站:全向站是指整个基站只有一个小区,进行360°范围内的覆盖。
而定向站是把整个基站分成几个小区,GSM系统中一般分为A、B、C3个小区,每个小区只覆盖其中的120°范围,3个小区一起完成360°范围内的覆盖。
图7-1 定向站的小区7.1.1 硬件结构爱立信RBS2202基站主要由不同的RU单元组成,下面几个部分是日常维护中最常接触到的:图7-2 RBS2000基站主要部件1.DXU(Distribution Switch Unit)——分配交换单元DXU是RBS2000的中央控制单元,它具有分配交换的功能;也是BTS面向BSC的接口,提供2/1.5Mbit/s链路接口,物理接口G.703,处理物理层与链路层,信令链的解压与压缩(CONCENTRA TES),根据TEI来分配DXU信令与TRU信令;处理A-BIS链路资源,如安装软件先存贮于刷新存贮器后向DRAM下载,其中保存一份机架设备的数据库,包括机架安装的硬件单元即所有RU单元的识别,物理位置,配置参数;硬件单元的产品编号、版本号、系列号等;负责与外部时钟同步或与内部参考信号同步,时钟的提取和产生;对本地总线进行控制,是外部告警、OMT的连接口,提供用于外接终端的RS232串口,通过OMT 提供基站上的操作与维护。
1CDD数据的下载和处理1.1CDD原始数据的获取可以将编写好的指令批处理文件,R8的界面如下,在OPS菜单中执行。
R9以上(含R9)界面和R8略有区别,OPS放在configuration菜单下面(下图),其他操作基本类似。
在编写批处理的指令集需注意大小写,对于存放路径的路径名字也需要区分大小写;BSC 取得的CDD原始数据文件中不能有乱码。
下面参考文件中BSC命令顺序可以改变。
可以参考以下文件:下载下来的 CDD原始文件时txt格式的,需要专门的工具进行转换。
以下文件是原始的 CDD文件:1.2CDD数据转换CDD原始数据转换所用工具由爱立信自主开发或爱立信工程师自行编写的宏,参考和帮助文件不是很全面,需要在平时工作中注意积累和收集。
常用的工具有1.2.1BSS Data Processing Utility 20010327工具软件的使用BSS Data Processing Utility 20010327也是爱立信工程师编写的优化分析处理软件,它能够对基站数据、CDD数据、MSC数据进行有效的分类、汇总、处理、分析,生成固定格式的文件。
该软件的简要使用说明如下:1、双击BSS Data Processing Utility 20010327软件图标,进入软件界面。
2、选中左上角的create command file一栏中的create command file toextract data from bsc or oss的选项,再点击create按钮。
然后会建立2个文本文档(可选择相应的存放路径),例如030512_cdd ,030512_mo,(030512为建立文件的当日日期,自动生成)。
其中030512_mo是用于提取BSC中同基站相关的配置数据、告警等的输入命令文件,030512_cdd 是用于提取BSC中一致性检查CDD的数据的输入命令文件。
在网络优化工作中,需要掌握的是MO、CDD的数据处理分析方法。