数理方程第四章
- 格式:pdf
- 大小:439.73 KB
- 文档页数:50
第四章 调和方程§1.调和方程的定解问题 1.方程的几个例子例1. 稳定的温度分布温度分布满足),(2t x f u a u t =∆-稳定热源:),,,)((321x x x x x f f ==与t 无关 边界绝热(即边界条件也与t 无关)则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u =此时有)(1x f u =∆, (21a ff -=)称为Poission 方程 当01=f 时,0=∆u ,称为Laplace 方程或调和方程.例2.弹性膜的平衡状态:u 为膜在垂直方向的位移,外力),(21x x f f =,则有f x ux u =∂∂+∂∂222212例3.静电场的电势uMaxwell 方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂-=∂∂+=ρdivD divB t B rotE t D J rotH 0E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度物质方程⎪⎩⎪⎨⎧===E J H B E D σμε:μ导磁率, σ:导电率, ε: 介质的介电常数 divE divD ερ==∵静电场是有势场:u grad E -=ερ-=⇒u grad div , 即ερ-=u ∆若静电场是无源的,即0=ρ,则0=∆u 例4.解析函数)(),,(),()(iy x z y x iv y x u z f +=+=则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止,⎪⎩⎪⎨⎧===∆0,10`),,(),,(211C C u u u C z y x z y x u 概率,则上的为起点,终止在:以易知,0,0=∆=∆v u2.定解问题(1)内问题:nR ⊂Ω,有界,Γ=Ω∂,u 在Ω内满足f u =∆ 边界条件:第一类(Dirichlet):g u =Γ|第二类(Neumann):g n u=∂∂Γ| 第三类(Robin):)0(|)(>=+∂∂Γσσg u nun 为Γ的单位外法线方向.(2) 外问题:u 在Ω外部满足f u =∆同样有三类边界条件(此时n 为Ω的内法线方向).但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子:例1.2=n ⎪⎩⎪⎨⎧=>+=∆=+0|)1(,012222y x u y x u221ln 1ln ,0yx r u u +===均为解, 例 2. 3=n ⎪⎩⎪⎨⎧=++=>==1),1(01222r u zy x r r u ∆ru u 1,1==均为解.因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常,:2=n 解在无穷远处有界:),(lim y x u r ∞→有界:3≥n 解在无穷远处趋于0:0),,(lim =∞→z y x u r(3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=∆u边界条件:⎪⎩⎪⎨⎧=∂∂=⎰ΓΓ)()(|已知待定A dS n uC u 这个问题可约化为 Dirichlet 问题:设⎩⎨⎧==∆Γ1|0U U 的解为)(x U U =,选取常数C ,s.t.:A dS n UC=∂∂⎰Γ 则CU u =§2.分离变量法1. 圆的Dirichlet 内问题与外问题内问题⎪⎩⎪⎨⎧=<+=∆=+)(|)(0222222θf u a y x u a y x引入极坐标θθsin ,cos r y r x ==222222221)(111θθ∂∂+∂∂∂∂=∂∂+∂∂+∂∂≡urr u r r r ur r u r ru u ∆ 则原问题化为:⎪⎩⎪⎨⎧≤≤=≤≤<=++=)20()(|)20,(0112πθθπθθθf u a r u r u r u a r r rr 将)()(θΘr R 代入方程并分离变量得⇒-='+''-=''λ21r R R r RΘΘ0,02=-'+''=+''R R r R r λλΘΘ求解特征值问题:⎩⎨⎧==+'')2()0(0πλΘΘΘΘθλθλθλθθλθλθλθλsin cos )(:0)(:0)(:0212121C C C C e C e C +=Θ>+=Θ=+=Θ<---∴0<λ时不是解. 1)(:0C =Θ=θλ.θθθλλk C k C k s i n c o s )(,:0212+==>Θ∴,....)2,1,0(2==k k k λ,...)2,1(sin cos )(,)(00=+==k k B k A A k k k θθθθΘΘ求解)(022方程Euler R k R r R r =-'+'':一般Euler 方程的求解:()()t B t A t t y i t B t A t y BtAt t y a a a t y a t y t a t y t a ln sin ln cos )(ln )()(0)1(0)()()(212121212102120121βββαμμμμμμμμμμμαμμμ+=±∙+=∙+=∙=++-=+'+'':为一对共轭虚数,为相等的实数:,为不相等的实数:,,其解为特征值相应的特征方程为00)1(222=-⇒=-+-k k μμμμk ±=⇒μ,...)2,1()(=+=⇒-k r D r C r R k k k k kr D C r R ln )(000+=),2,1,0(0)0( ==⇒k D R k k 有界 ,...)2,1()(==⇒k r C r R k k k 00)(C r R = ∑∞=++=∴10)sin cos (2),(k kk k r k k r u θβθααθ∑∞=++==1)sin cos (2)(:k kk k a k k f a r θβθααθ⇒⎰⎰====πππβπα2020,...2,1,sin )(1,...2,1,0,cos )(1k ktdt t f a k ktdt t f a k k k k代入级数表达式得,注:将k k βα, ()()()()⎰⎰⎰∑∑⎰∑⎰∑⎥⎦⎤⎢⎣⎡++--=⎥⎦⎤⎢⎣⎡-+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=--------∞=--∞=-∞=∞=πθθπθθθπθθπππππθπθθπθ202)()(220)()()(201)(0)(20120111)(21111)(21)(21)(cos 21)(21sin sin cos cos 21)(21),(dt a r e e a r a r t f dt e a r e a r e a r t f dt e a r e a r t f dtt k a r t f dt kt kt a r t f r u t i t i t i t i t i k t ik k k t ik k k k k k()a r dt rt ar a r a t f r u <+---=⇒⎰πθπθ202222)cos(2)(21),( (Poisson 公式)外问题⎪⎪⎩⎪⎪⎨⎧=>=∞→=有界u f u a r u r a r lim )()(0θ∆∑∞=-++=1)sin cos (2),(k k k k r k k r u θβθααθ∑∞=-++==1)sin cos (2)(:k k k k a k k f a r θβθααθ⇒⎰⎰====πππβπα2020,...2,1,sin )(,...2,1,0,cos )(k ktdt t f ak ktdt t f a kk kk同样有Poisson 公式)()cos(2)(21),(202222a r dt rt ar a a r t f r u >+---=⎰πθπθ 2.扇形域()⎪⎪⎩⎪⎪⎨⎧==<<<=++==θαθαθθθf u u a r u r u r u a r r rr 0),0(011,02 分离变量得:()()⎩⎨⎧===+''000αλΘΘΘΘ 与()⎪⎩⎪⎨⎧+∞<=-'+''002R R R r R r λ 2⎪⎭⎫⎝⎛=⇒απλk k(),.......2,1sin ==Θk k B k k θαπθ()απαπk k k k k rD rC r R -+=()00=⇒+∞<k D R ()∑∞==∴1sin,k k k k r a r u θαπθαπ()∑∞===1sin:k k k k a a f a r θαπθαπ()θθαπθαααπd k f aa k k sin2⎰=∴3.环形域()()⎪⎪⎩⎪⎪⎨⎧==<<===θθ212121,0f u f u rr r u r r r r ∆ ()......2,1,0,sin cos ......2,1,0,2=+=Θ==k k B k A k k k k k k θθθλ()⎩⎨⎧≠+=+=-0,0,ln 00k r D r C k r D C R kk k k k θ ()()∑∞=-⎥⎥⎦⎤⎢⎢⎣⎡+++++=∴100sin cos sin cos ln ),(k kk k k k k r k d k c r k b k a r b a r u θθθθθ ()()())2,1(sin cos sin cos ln :100=⎥⎥⎦⎤⎢⎢⎣⎡+++++==∑∞=-i r k d k c r k b k a r b a f r r k ki k k k i k k i i i θθθθθ ()θθππd f r b a i i ⎰=+⇒200021ln ()θθθππd k f r c r a i ki k k i k ⎰=+-20cos 1()θθθππd k f r d r b i k i k k i k ⎰=+-20sin 1.....2,1,2,1==k i解联立方程即得().....2,1,0,,,,0,0=k d c b a b a k k k k例如()()θθθθθ2cos 212122cos 1cos ,0221+=+===f f ⎪⎩⎪⎨⎧=≠=+=+=+--2,212,0,0,0ln 2211100k k r c r a r c r a r b a kk k k k k kk k r d r b r d r b r b a k k k k k k k k ∀=+=+=+--,0,0,21ln 2211200()()()())2(0),(02,2ln ln 21,ln ln 2ln 42412224241224121201210≠==∀==--=-=-=--=⇒k c a k d b rr r c rr r r a r r b r r r a k k k k4.矩形域()()()()⎪⎪⎩⎪⎪⎨⎧=====+====x u x u y u y u u u b y y a x x yy xx 100100,,0ψψϕϕw v u +=分解()()⎪⎪⎩⎪⎪⎨⎧=====+====x v x v v v v v y x v b y y a x x yy xx 1000,0,00:),(ψψ()()⎪⎪⎩⎪⎪⎨⎧=====+====0,0,0:),(0100b y y a x x yy xx w w y w y w w w y x w ϕϕ:),(y x v 求解分离变量得特征值问题()()⎩⎨⎧=X =X =X +X ''000a λ0=-''Y Y λ及(),......2,1,sin ,2==⎪⎭⎫⎝⎛=⇒k a x k B x a k k k k ππλX()ak D y a k C y k k k ππsinh cosh +=Y()x a k y a k b y a k a y x v k k k πππsin sinh cosh ,1∑∞=⎪⎭⎫ ⎝⎛+=∴()x a k a x y k k πψsin :010∑∞===()xdx a k x a a a k πψsin 200⎰=∴()x a k b a k b b a k a x k k k πππψsin sinh cosh 11∑∞=⎪⎭⎫ ⎝⎛+=()xd ak x a b a k b b a k a a k k πψππsin 2sinh cosh 01⎰=+⇒()()xdx a k a b k x x ab k a b a k ππψψπsin cosh sinh2001⎰⎥⎦⎤⎢⎣⎡-=∴ 类似地,()y b k x b k d x b k c y x w k k k πππsin sinh cosh ,1∑∞=⎪⎭⎫ ⎝⎛+=()ydy bk x b c b k πϕsin 200⎰=()()ydy b k b a k y y ba kb d b k ππϕϕπsin cosh sinh2001⎰⎥⎦⎤⎢⎣⎡-= 5.非齐次问题 例()⎪⎩⎪⎨⎧=<-+==cu R r y x b a u R r )(222∆方法一:方程齐次化 令21w w u v --=()()()212211111144,2)1(:1:r ar w a A a r A r A Ar r w aw rw w r w w =∴==⇒=+-==+"=∆=-- 令 设21212),(ρρy A x A y x w +=)()1()1(:)(222222*********y x b y A x A y x b w -=-+--=∆--ρρρρρρ 12/,42121b A A =-===⇒ρρθ2cos 12)(12),(4442r by x b y x w =-=∴⎪⎩⎪⎨⎧--=<=--=∴=θθ2cos 124)(02cos 12442242R b R a c v R r v r b r a u v Rr ∆满足 ∑∞=++=1)sin cos (2),(n n n n r n n r v θβθααθ∑∞=++=--=142)sin cos (22cos 124:n nn n R n n R bR a c R r θβθααθ222012,42)(0),2,0(0R bR a c n n n n -=-=∀=≠=⇒ααβα θθ2cos 124),(222R r bR a c r v --=∴θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴方法二.特征函数法:⎪⎩⎪⎨⎧=<+=++=cuR r br a u r u r u R r r rr )(2cos 1122θθθ 令()∑∞=+=0sin )(cos )(),(n nnn r B n r A r v θθθ代入方程:θθθ2cos sin )()(1)(cos )()(1)(202222br a n r B r n r B r r B n r A r n r A r r A n n n n n n n +=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'+"+⎪⎪⎭⎫ ⎝⎛-'+''∑∞= )2,0(0)()(1)(22≠=-'+''⇒n r A r n r A r r A n n n, )(0)()(1)(22n r B r n r B r r B n n n ∀=-'+" (**))(4)(1)((*),)(1)(2222200br r A rr A r r A a r A rr A =-'+''='+'')0(,)0(==⇒+∞<+∞<n n n n d b B A)()(),2,0(,)(n r c r B n r a r A nn n n n n ∀=≠=∴边界条件()⇒+=∑∞=0sin )(cos )(n n n n R B n R A c θθ()0)(,)(;00)(,0)(00==≠==R B c R A n R B R A n n)(0)(),2,0(0)(n r B n r A n n ∀=≠=∴易求得(*)的一个特解为24r a,(**)的一个特解为412r b20004ln )(r a r b a r A ++= , 42222212)(r br b r a r A ++=-)0(,)0(2020==⇒+∞<+∞<b b A A)(4)(4)(220200R r ac r A R a c a c R A -+=⇒-=⇒=,)(12)(120)(2222222R r r br A R ba R A -=⇒-=⇒=θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴ §3调和函数的基本性质 3.1 Green 公式设nR ⊂Ω为有界区域, ΓΩ=∂分块光滑, ΓΩΩ =.Green 第一公式 设)()(),()(0112ΩΩ∈ΩΩ∈C C v C Cu ,则⎰⎰⎰∇⋅∇-∂∂=ΩΓΩ∆udx v dS n uv udx v 证明:⎰∑⎰=∂∂=ΩΩ∆ni idx x uv udx v 122⎰∑⎰∑==∂∂∂∂-∂∂∂∂=ΩΩni ii ni i i dx x ux v dx x u v x 11)(⎰⎰∇⋅∇-∂∂=ΩΓudx v dS n uv 同样地, 若)()(),()(0112ΩΩ∈ΩΩ∈C C u C Cv ,则 ⎰⎰⎰∇⋅∇-∂∂=ΩΓΩ∆vdx u dS n vu vdx u 因此有,Green 第二公式 设),()(,12ΩΩC Cv u ∈则 ⎰⎰∂∂-∂∂=-ΓΩ∆∆dS n uv n v u dx u v v u )()(Green 公式特例⎰⎰∂∂=ΓΩ∆dS n uudx 0,=∇⋅∇=∂∂⎰⎰v vdx u dS n vu∆ΩΓ 0,0)(===∂∂-∂∂⎰v u dS n u v n v u ∆∆Γ3.2 调和函数的基本性质1. Neumann 问题解的自由度及可解性条件 (1)解的自由度考虑问题 (PN) ⎪⎩⎪⎨⎧=∂∂=g nu f u Γ∆若它有两个解21,u u , 则21u u u -=满足问题(N) ⎪⎩⎪⎨⎧=∂∂=00Γ∆nu u⎰⎰⎰∇-∂∂==ΩΓΩ∆dxu dS n u u udxu 2⎰∇-=Ωdx u 2),,2,1(0n i u i x ==⇒.const u ≡⇒结论: 问题(PN)在相差一个常数的意义下有唯一解. (2)可解性条件 对问题(PN),⎰⎰∂∂=ΓΩ∆dS n uudx ⎰⎰=⇒ΓΩdS g dx f结论: 问题(PN)有解的必要条件为⎰⎰=ΓΩdS g dx f .2. 基本积分公式先考察3=n 的情形.设.,,),,(30000ΓΩΩΓΩΩ ==∂⊂∈R z y x M考虑函数,41),(00MM r M M v π=其中,),,(Ω∈z y x M202020)()()(0z z y y x x r MM -+-+-=.易知,),(0M M v 除0M M=外关于M 处处满足调和方程,称之为调和方程的基本解.取ε充分小,使得Ω⊂)(0M B ε. 记,\,εεεεB B ΩΩΓ==∂,,εεεεεΩΩΩΓΓΩ∂==∂ (见图)则)()(12εεΩΩC C v ∈,且在εΩ内处处满足调和方程.设)()(12ΩΩC Cu ∈,对u 与v 应用Green 第二公式, ⎰⎰⎰Ω∆-επdx M u r MM )(41⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=εππΓΓ dS n M u r r n M u MM MM )(41)41()(00⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100π⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-επΓdS n M u r r n M u MM MM )(1)1()(4100 ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100π ⎰⎰⎰⎰∂∂++εεπεπεΓΓdS r M u dS M u )(41)(412 ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100πε)()(21M ruM u ∂∂++其中εΓ∈21,M M令,0→ε则,,,021ΩΩ→→εM M M 从而,⎰⎰⎰-=Ω∆dx r M u M u MM 0)(41)(0π ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1)1()(4100π成为基本积分公式.调和函数的基本积分公式为:⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-=ΓdS n M u r r n M u M u MM MM )(1)1()(41)(000π注1. 基本解:1ln21:2MM r n π= ,1:32-≥n MM n r n ω其中n ω为n 维空间中单位球面的面积. 2=n 时的基本积分公式为:⎰⎰-=Ω∆dx M u r M u MM )(1ln 21)(00π⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1ln )1(ln )(2100π注2. 对调和函数u ,成立⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1)1()(4100π ⎪⎩⎪⎨⎧=.),(4,),(2,,000000内在上在外在ΩΓΩM M u M M u M ππ 3. 平均值定理记以0M 为球心、R 为半径的球为)(0M B R ,球面为).(0M S R).()()(000M S M B M B R R R = 设))((00M B C u R ∈, 且在)(0M B R 内调和,则⎰⎰=)(20041)(M S R dS u R M u π证明: 先假设)),(())((0102M B C M B Cu R R ∈由中的基本积分公式,⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-=)(0000)(1)1()(41)(M S MM MM R dS n M u r r n M u M u π⎰⎰=)(20)(41M S R dS M u R π⎰⎰∂∂+)(0)(41M S R dS n M u R π⎰⎰=)(20)(41M S R dS M u R π若))((00M B Cu R ∈,则取R R <,在)(0M B R 上有⎰⎰=)(20041)(M S RdS u R M u π 取极限R R →即可.注1. 上调和(0≤u ∆): ⎰⎰≥)(20041)(M S R dS u R M u π下调和(0≥u ∆): ⎰⎰≤)(20041)(M S R dS u R M u π注2.平()θϕθϕθϕθθπϕθρππcos ,sin sin ,cos sin sin ),,(41),,(000200000R z z R y y R x x d d z y x u u +=+=+==⎰⎰注3.()()⎰⎰++===πθθθππ200000)(0sin ,cos 21)(21)(20d R y R xu M M S uds RM u n R M S R 为圆心的圆周:以时的平均值公式:4. 极值原理,min min ,max max ,,,,u u u u u ΓΩΓΩ==ΩΩΓΩ=ΩΓ=Ω∂Ω则上连续内调和且在在若为有界区域设.,,,,,)(1.v u v u v u v u ≡≤Ω≤ΩΩΓΓ且等号成立当且仅当内恒成立则在且上连续在内调和在设顺序原理注.,:.2与最低点温度在边界取到最高点时稳定温度场内部无热源物理意义注uu f u u u f u C C u ΓΓΩ=⇒≤=∆=⇒≥=∆ΩΩ∈min min 0max max 0),()(3.12则设注例题()()球上的最大值与最小值球心处的值和在试求为球坐标题设有单位球内的定解问u r u r u r .,,sin cos sin cos 1013ϕθϕϕθθ⎪⎩⎪⎨⎧+++=<=∆= ()4sin 41sin sin cos sin cos 41)0,0,0(2002200πϕθθπϕθθϕϕθθπππππ==+++=⎰⎰⎰⎰d d d d u ()()21sin cos sin cos min min 22sin cos sin cos max max 11--=+++==+++=≤≤ϕϕθθϕϕθθu u r r5. Dirichlet 内问题解的唯一性与稳定性内问题⎩⎨⎧=∈=gu x f u ΓΩ∆)(唯一性: 考虑相应的齐次问题⎩⎨⎧=∈=0)(0ΓΩ∆u x u .0min min ,0max max ====u u u u ΓΓΩ⎭⎬⎫⇒ .0≡u稳定性: 连续依赖于边界条件.考虑⎩⎨⎧=∈=g u x u ΓΩ∆)(0,⇒⎪⎭⎪⎬⎫====g u u g u u ΓΓΓΓΩmin min min ,max max max .m a x m a x g u ΓΩ=§4 Green 函数及其应用4.1 Green 函数 1. G reen 函数的定义设3R ⊂Ω为有界区域,ΓΩ=∂.设函数),()(,12ΩΩC Cg u ∈若g 在Ω中调和,则⎰⎰⎰⎰⎰∂∂-∂∂+=ΓΩ∆dS n ug n g u udx g )(0设Ω∈0M ,已知基本积分公式⎰⎰⎰⎰⎰ΓΩ∂∂-∂∂-∆-=dSn M u r r n M u dxr uM u MM MM MM ])(41)41()([4)(0000πππ相加得⎰⎰⎰⎰⎰ΓΩ∂∂---∂∂--∆-=dS nM u g r g r n M u dxg r u M u MM MM MM ])()41()41()([)41()(0000πππ因此选),(0M M g g =满足⎪⎩⎪⎨⎧==ΓΓ∆0410MM r g g π 称函数),(41),(000M M g r M M G MM -=π为Green 函数.易知),(0M M G 除0M M=外关于变量M 处处满足调和方程,且0),(0=∈ΓM M M G .注1. 对Dirichlet 问题⎩⎨⎧==ϕΓ∆u fu ,⎰⎰⎰⎰⎰ΓΩ∂∂--=dSn M M G M dxM f M M G M u ),()()(),()(000ϕ注2. 对二维情形,Green 函数为),(1ln 21),(000M M g r M M G MM -=π 其中g 满足⎪⎩⎪⎨⎧==ΓΓ∆01ln 210MM rg g π2. Green 函数的意义1) G reen 函数仅依赖于区域,而与边界条件无关. 2) 特殊区域上的Green 函数可用初等的方法求出. 3) 利用Green 函数求解的积分公式可以讨论解的性质. 4) 有明显的物理意义:在接地的导电闭曲面Γ内的点0M 处放一 单位正电荷,则Γ内任一点M 处的电位为),(0M M G ,它由两部分组成:即0M 处电位正电荷产生的电位41MM r π与Γ内表面上感 应负电荷产生的感应电位),(0M M g -.而且导体表面的电位恒为零. 3. Green 函数的性质 1))1(),(00MM r O M M G =事实上,),(411),(0000M M g r r M M G MM MM -=π而+∞<≤041max ),(0MM r M M g πΓ)(0),(000M M M M g r MM →→⇒ 2) 1),(0-=∂∂⎰⎰ΓdS n M M G (只需取1≡u 即可.)3) 041),(00MM r M M G π<<.事实上, 由极值原理, 041min min ),(00>=>MM r g M M g πΓΓ, 即 041),(0MM r M M G π<.0,0),(,,00=>Γ∃≠∀ΓΓG G M M M 而使得充分小球面为半径的以为球心以εεεε.0min ),(G 0=>⇒G M M G εεΓΓΓΓ 所围的区域内调和与在由4) .),(),(),(211221中不重合的两点为ΩM M M M G M M G =事实上,.),(),(),(),(,,,,2121212121内调和在与则所围区域与、由使得充分小为半径的球面以为球心、分别作以εεεεεεεεΩΓΓΓΩ∈ΓΓ≠∀M M G M M G M M M M M M ⎰⎰⎰-=εΩ∆∆dx M M G M M G M M G M M G )),(),(),(),((01221⎰⎰∂∂-∂∂=21)),(),(),(),((1221εεΓΓΓ dSn M M G M M G n M M G M M G ⎰⎰∂∂-∂∂=ΓdS n M M G M M G n M M G M M G )),(),(),(),((1221⎰⎰∂∂-∂∂+1)),(),(),(),((1221εΓdSn M M G M M G n M M G M M G⎰⎰∂∂-∂∂+2)),(),(),(),((1221εΓdS nM M G M M G n M M G M M GIII II I ++=).,(lim ),,(lim 0,120210M M G M M G -===→→III II I εε易知4.2 静电源像法当区域具有某种对称性时,感应负电荷产生的电位 可以用在相应的对称点放置的假想负电荷产生的电位 来取代------这种求Green 函数的方法称为静电源像法. 1. 上半空间的Green 函数{};41,0z z)y,(x,00MM r M M π点产生的电位为它对单位正电荷处放中的点在上半空间>),,,(0),,,(00011000000z y x M M z M z y x M M -===的对称点关于平面则设141,1MM r M M π-产生的电位为则它对放单位负电荷在104141),(0MM MM r r M M G ππ-=⇒ ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++-+---+-+-=202020202020)()()(1)()()(141z z y y x x z z y y x x π⎩⎨⎧=>==),()0(0Dirichlet 0y x f u z u z ∆ 问题考虑, dxdy z G y x f z y x u z 0000),(),,(=∞+∞-∞+∞-⎰⎰∂∂= []⎰⎰∞+∞-∞+∞-+-+-=232020200)()(),(2z y y x x dxdy y x f z π. ),(),,(],1ln 1[ln 21),(Green .00110000010y x M M y x M M r r M M G MM MM -==-=其中函数为上半平面的注π⎰∞+∞-=+-=⎪⎩⎪⎨⎧=>=∆2200000)()(),()()0(0Dirichlet y x x dxx f y y x u x f u y y π的解为问题2. 球的Green 函数 ,),0( ,),0(10M R B R B M 反演点为的它关于球面内的一点为球设∂=Γ 210R r r O M O M =⋅.441,,1010MM MM r qr M q M M ππ与产生的电位分别为它们对单位负电荷放在放单位正电荷在.,441100Γ∈=⇒P r qr PM PM 其中消这两个电位在球面上抵ππ 00100,OM PM PM r R r r q ===⇒ρρ其中)1(41),(1000MM MM r Rr M M G ρπ-=⇒⎩⎨⎧=<==fu R r u R r )(0Dirichlet ∆问题考虑2101221022001cos 2,cos 2,cos ),cos(,,101R G nGr r OM OM r r RMM MM OM OM =∂∂=∂∂-+=-+=====Γρρργρρρργρρρργρρρ及并注意到则记⎰⎰-+-=⇒ΓdS f R R R R M u 2302022020)cos 2(41)(γρρρπ ⎪⎪⎪⎭⎫ ⎝⎛≤<≤≤≤≤⎪⎩⎪⎨⎧===R z y x ρπϕπθθρϕθρϕθρ0200cos sin sin cos sin 利用球坐标变换 )Poisson (sin ),,()cos 2(4),,(2023020222000公式⎰⎰-+-=ππϕθθϕθγρρρπϕθρd d R f R R R R u)cos ,sin sin ,cos (sin )cos ,sin sin ,cos (sin 1.000000ϕϕθϕθθϕθϕθ的方向余弦为的方向余弦为注OM OM)cos(sin sin cos cos cos 000ϕϕθθθθγ-+=⇒ ]ln 1[ln 21),( Green 2.1000MM MM r Rr M M G ρπ-=函数为园的注 )P o i s s o n ()()c o s (221),(D i r i c h l e t 20002022200公式问题的解为相应的⎰--+-=πθθθθρρρπθρd f R R R u。
数理方程(调和方程)第四章调和方程§1.调和方程的定解问题 1.方程的几个例子例1. 稳定的温度分布温度分布满足),(2t x f u a u t =?-稳定热源:),,,)((321x x x x x f f ==与t 无关边界绝热(即边界条件也与t 无关)则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u =此时有)(1x f u =?, (21a ff -=)称为Poission 方程当01=f 时,0=?u ,称为Laplace 方程或调和方程.例2.弹性膜的平衡状态:u 为膜在垂直方向的位移,外力),(21x x f f =,则有f x ux u =??+222212例3.静电场的电势uMaxwell 方程组==??-=??+=ρdivD divB t B rotE t D J rotH 0E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度物质方程??===E J H B E D σμε:μ导磁率, σ:导电率, ε: 介质的介电常数divE divD ερ==∵静电场是有势场:u grad E -=ερ-=?u grad div , 即ερ-=u ?若静电场是无源的,即0=ρ,则0=?u 例4.解析函数)(),,(),()(iy x z y x iv y x u z f +=+=则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止,===?0,10`),,(),,(211C C u u u C z y x z y x u 概率,则上的为起点,终止在:以易知,0,0=?=?v u2.定解问题(1)内问题:nR ?Ω,有界,Γ=Ω?,u 在Ω内满足f u =? 边界条件:第一类(Dirichlet):g u =Γ|第二类(Neumann):g n u=??Γ| 第三类(Robin):)0(|)(>=+??Γσσg u nun 为Γ的单位外法线方向.(2) 外问题:u 在Ω外部满足f u =?同样有三类边界条件(此时n 为Ω的内法线方向).但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子:例1.2=n =>+=?=+0|)1(,012222y x u y x u221ln 1ln ,0yx r u u +===均为解, 例 2. 3=n =++=>==1),1(01222r u zy x r r u ?ru u 1,1==均为解.因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常,:2=n 解在无穷远处有界:),(lim y x u r ∞→有界:3≥n 解在无穷远处趋于0:0),,(lim =∞→z y x u r(3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=?u边界条件:??=??=?ΓΓ)()(|已知待定A dS n uC u 这个问题可约化为 Dirichlet 问题:设==?Γ1|0U U 的解为)(x U U =,选取常数C ,s.t.:A dS n UC=Γ 则CU u =§2.分离变量法1. 圆的Dirichlet 内问题与外问题内问题=<+=?=+)(|)(0222222θf u a y x u a y x引入极坐标θθsin ,cos r y r x ==222222221)(111θθ??+=??+??+??≡urr u r r r ur r u r ru u ? 则原问题化为:≤≤=≤≤<=++=)20()(|)20,(0112πθθπθθθf u a r u r u r u a r r rr 将)()(θΘr R 代入方程并分离变量得-='+''-=''λ21r R R r RΘΘ0,02=-'+''=+''R R r R r λλΘΘ求解特征值问题:?==+'')2()0(0πλΘΘΘΘθλθλθλθθλθλθλθλsin cos )(:0)(:0)(:0212121C C C C e C e C +=Θ>+=Θ=+=Θ<---∴0<λ时不是解. 1)(:0C =Θ=θλ.θθθλλk C k C k s i n c o s )(,:0212+==>Θ∴,....)2,1,0(2==k k k λ,...)2,1(sin cos )(,)(00=+==k k B k A A k k k θθθθΘΘ求解)(022方程Euler R k R r R r =-'+'':一般Euler 方程的求解:()()t B t A t t y i t B t A t y BtAt t y a a a t y a t y t a t y t a ln sin ln cos )(ln )()(0)1(0)()()(212121212102120121βββαμμμμμμμμμμμαμμμ+=±?+=?+=?=++-=+'+'':为一对共轭虚数,为相等的实数:,为不相等的实数:,,其解为特征值相应的特征方程为00)1(222=-?=-+-k k μμμμk ±=?μ,...)2,1()(=+=?-k r D r C r R k k k k kr D C r R ln )(000+=),2,1,0(0)0( ==?k D R k k 有界 ,...)2,1()(==?k r C r R k k k 00)(C r R = ∑∞=++=∴10)sin cos (2),(k kk k r k k r u θβθααθ∑∞=++==1)sin cos (2)(:k kk k a k k f a r θβθααθ====πππβπα2020,...2,1,sin )(1,...2,1,0,cos )(1k ktdt t f a k ktdt t f a k k k k代入级数表达式得,注:将k k βα, ()()()()∑∑?∑?∑++--=??-+-=+??? ??=-+=+??? ??+=--------∞=--∞=-∞=∞=πθθπθθθπθθπππππθπθθπθ202)()(220)()()(201)(0)(20120111)(21111)(21)(21)(cos 21)(21sin sin cos cos 21)(21),(dt a r e e a r a r t f dt e a r e a r e a r t f dt e a r e a r t f dt t k a r t f dt kt kt a r t f r u t i t i t i t i t i k t ik k k t ik k k k k k ()a r dt rt ar a r a t f r u <+---=??πθπθ202222)cos(2)(21),( (Poisson 公式)外问题??=>=∞→=有界u f u a r u r a r lim )()(0θ?∑∞=-++=1)sin cos (2),(k k k k r k k r u θβθααθ∑∞=-++==1)sin cos (2)(:k k k k a k k f a r θβθααθ====πππβπα2020,...2,1,sin )(,...2,1,0,cos )(k ktdt t f ak ktdt t f a kk kk同样有Poisson 公式)()cos(2)(21),(202222a r dt rt ar a a r t f r u >+---=θπθ 2.扇形域()??==<<<=++==θαθαθθθf u u a r u r u r u a r r rr 0 ),0(011,02 分离变量得:()()?===+''000αλΘΘΘΘ 与()+∞<=-'+''002R R R r R r λ 2=?απλk k(),.......2,1sin ==Θk k B k k θαπθ()απαπk k k k k rD rC r R -+=()00=?+∞<="" d="" p="" r="">==∴1,k k k k r a r u θαπθαπ()∑∞===1sin:k k k k a a f a r θαπθαπ()θθαπθαααπd k f aa k k sin2=∴3.环形域()()==<<===θθ212121,0f u f u rr r u r r r r ? ()......2,1,0,sin cos ......2,1,0,2=+=Θ==k k B k A k k k k k k θθθλ()≠+=+=-0,0,ln 00k r D r C k r D C R kk k k k θ ()()∑∞=-+++++=∴100sin cos sin cos ln ),(k kk k k k k r k d k c r k b k a r b a r u θθθθθ ()()()) 2,1(sin cos sin cos ln :100=+++++==∑∞=-i r k d k c r k b k a r b a f r r k ki k k k i k k i i i θθθθθ ()θθππd f r b a i i ?=+?200021ln ()θθθππd k f r c r a i k i k k i k ?=+-20cos 1()θθθππd k f r d r b i k i k k i k ?=+-20sin 1.....2,1,2,1==k i解联立方程即得().....2,1,0,,,,0,0=k d c b a b a k k k k 例如()()θθθθθ2cos 212122cos 1cos ,0221+=+===f f =≠=+=+=+--2,212,0,0,0ln 2211100k k r c r a r c r a r b a kk k k k k kk k r d r b r d r b r b a k k k k k k k k ?=+=+=+--,0,0,21 ln 2211200()()()())2(0),(02,2ln ln 21,ln ln 2ln 42412224241224121201210≠==?==--=-=-=--=?k c a k d b rr r c rr r r a r r b r r r a k k k k4.矩形域()()()()=====+====x u x u y u y u u u b y y a x x yy xx 100 100,,0ψψ??w v u +=分解()()=====+====x v x v v v v v y x v b y y a x x yy xx 100 0,0,00:),(ψψ()()=====+====0,0,0:),(0100b y y a x x yy xx w w y w y w w w y x w ??:),(y x v 求解分离变量得特征值问题()()??=X =X =X +X ''000a λ0=-''Y Y λ及(),......2,1,sin ,2==??=?k a x k B x a k k k k ππλX()ak D y a k C y k k k ππsinh cosh +=Y()x a k y a k b y a k a y x v k k k πππsin sinh cosh ,1∑∞=??? ?+=∴()x a k a x y k k πψsin :010∑∞===()xdx a k x a a a k πψsin 200?=∴()x a k b a k b b a k a x k k k πππψsin sinh cosh 11∑∞=??? ?+=()xd ak x a b a k b b a k a a k k πψππsin 2sinh cosh 01?=+?()()xdx a k a b k x x ab k a b a k ππψψπsin cosh sinh2001-=∴ 类似地,()y b k x b k d x b k c y x w k k k πππsin sinh cosh ,1∑∞=??? ?+=()ydy bk x b c b k π?sin 200?=()()ydy b k b a k y y ba kb d b k ππ??πsin cosh sinh2001-= 5.非齐次问题例()=<-+==cu R r y x b a u R r )(222?方法一:方程齐次化令21w w u v --=()()()212211111144,2)1(:1:r ar w a A a r A r A Ar r w aw rw w r w w =∴==?=+-==+"=?=-- 令设21212),(ρρy A x A y x w +=)()1()1(:)(222222*********y x b y A x A y x b w -=-+--=?--ρρρρρρ 12/,42121b A A =-===?ρρθ2cos 12)(12),(4442r by x b y x w =-=∴--=<=--=∴=θθ2cos 124)(02cos 12442242R b R a c v R r v r b r a u v Rr ?满足∑∞=++=1)sin cos (2),(n n n n r n n r v θβθααθ∑∞=++=--=142)sin cos (22cos 124:n nn n R n n R bR a c R r θβθααθ222012,42)(0),2,0(0R bR a c n n n n -=-=?=≠=?ααβα θθ2cos 124),(222R r b R a c r v --=∴θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴方法二.特征函数法:=<+=++=cuR r br a u r u r u R r r rr )(2cos 1122θθθ 令()∑∞=+=0sin )(cos )(),(n nnn r B n r A r v θθθ代入方程:θθθ2cos sin )()(1)(cos )()(1)(202222br a n r B r n r B r r B n r A r n r A r r A n n n n n n n +=?????????????????? ??-'+"+???? ??-'+''∑∞= )2,0(0)()(1)(22≠=-'+''?n r A r n r A r r A n n n, )(0)()(1)(22n r B r n r B r r B n n n ?=-'+" (**))(4)(1)((*),)(1)(2222200br r A rr A r r A a r A rr A =-'+''='+'')0(,)0(==?+∞<+∞<="" b="" d="" n="" p="">)()(),2,0(,)(n r c r B n r a r A nn n n n n ?=≠=∴边界条件()?+=∑∞=0sin )(cos )(n n n n R B n R A c θθ()0)(,)(;00)(,0)(00==≠==R B c R A n R B R A n n )(0)(),2,0(0)(n r B n r A n n ?=≠=∴易求得(*)的一个特解为24r a,(**)的一个特解为412r b20004ln )(r a r b a r A ++= , 42222212)(r br b r a r A ++=-)0(,)0(2020==?+∞<+∞)(4)(4)(220200R r ac r A R a c a c R A -+=?-=?=,)(12)(120)(2222222R r r br A R ba R A -=?-=?=θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴ §3调和函数的基本性质 3.1 Green 公式设nR ?Ω为有界区域, ΓΩ=?分块光滑, ΓΩΩ =.Green 第一公式设)()(),()(0112ΩΩ∈ΩΩ∈C C v C Cu ,则-??=ΩΓΩ?udx v dS n uv udx v 证明:∑=??=ΩΩni idx x uv udx v 122∑?∑==-=ΩΩni ii ni i i dx x ux v dx x u v x 11)(-??=ΩΓudx v dS n uv 同样地, 若)()(),()(0112ΩΩ∈ΩΩ∈C C u C Cv ,则 -??=ΩΓΩ?vdx u dS n vu vdx u 因此有,Green 第二公式设),()(,12ΩΩC Cv u ∈则 -??=-ΓΩ??dS n uv n v u dx u v v u )()(Green 公式特例=ΓΩdS n uudx 0,==?v vdx u dS n vuΩΓ 0,0)(===??-v u dS n u v n v u ??Γ3.2 调和函数的基本性质1. Neumann 问题解的自由度及可解性条件 (1)解的自由度考虑问题 (PN)=??=g nu f u Γ?若它有两个解21,u u , 则21u u u -=满足问题(N) =??=00Γ?nu u-??==ΩΓΩdxu dS n u u udxu 2-=Ωdx u 2),,2,1(0n i u i x ==?.const u ≡?结论: 问题(PN)在相差一个常数的意义下有唯一解. (2)可解性条件对问题(PN),=ΓΩ?dS n uudx ??=?ΓΩdS g dx f结论: 问题(PN)有解的必要条件为=ΓΩdS g dx f .2. 基本积分公式先考察3=n 的情形.设.,,),,(30000ΓΩΩΓΩΩ ==??∈R z y x M考虑函数,41),(00MM r M M v π=其中,),,(Ω∈z y x M202020)()()(0z z y y x x r MM -+-+-=.易知,),(0M M v 除0M M=外关于M 处处满足调和方程,称之为调和方程的基本解.取ε充分小,使得Ω?)(0M B ε. 记,\,εεεεB BΩΩΓ==?,,εεεεεΩΩΩΓΓΩ?==? (见图)则)()(12εεΩΩC C v ∈,且在εΩ内处处满足调和方程.设)()(12ΩΩC Cu ∈,对u 与v 应用Green 第二公式, Ω?-επdx M u r MM )(41-??=εππΓΓ dS n M u r r n M u MM MM )(41)41()(00-??=ΓdS n M u r r n M u MM MM )(1)1()(4100π-??-επΓdS n M u r r n M u MM MM )(1)1()(4100-??=ΓdS n M u r r n M u MM MM )(1)1()(4100π ++εεπεπεΓΓdS r M u dS M u )(41)(412-??=ΓdS n M u r r n M u MM MM )(1)1()(4100πε)()(21M ruM u ??++其中εΓ∈21,M M令,0→ε则,,,021ΩΩ→→εM M M 从而,-=Ω?dx r M u M u MM 0)(41)(0π-??-ΓdS n M u r r n M u MM MM )(1)1()(4100π成为基本积分公式.调和函数的基本积分公式为:-??-=ΓdS n M u r r n M u M u MM MM )(1)1()(41)(000π注1. 基本解:1ln21:2MM r n π= ,1:32-≥n MM n r n ω其中n ω为n 维空间中单位球面的面积. 2=n 时的基本积分公式为:-=Ω?dx M u r M u MM )(1ln 21)(00π-??-ΓdS n M u r r n M u MM MM )(1ln )1(ln )(2100π注2. 对调和函数u ,成立-??-ΓdS n M u r r n M u MM MM )(1)1()(4100π ??=.),(4,),(2,,000000内在上在外在ΩΓΩM M u M M u M ππ 3. 平均值定理记以0M 为球心、R 为半径的球为)(0M B R ,球面为).(0M S R ).()()(000M S M B M B R R R = 设))((00M B C u R ∈, 且在)(0M B R 内调和,则=)(20041)(M S R dS u R M u π证明: 先假设)),(())((0102M B C M B Cu R R ∈由中的基本积分公式,-??-=)(0000)(1)1()(41)(M S MM MM R dS n M u r r n M u M u π=)(20)(41M S R dS M u R π+)(0)(41M S R dS n M u R π=)(20)(41M S R dS M u R π若))((00M B Cu R ∈,则取R R <,在)(0M B R 上有=)(20041)(M S RdS u R M u π 取极限R R →即可.注1. 上调和(0≤u ?): ??≥)(20041)(M S R dS u R M u π下调和(0≥u ?): ??≤)(20041)(M S R dS u R M u π注2.平()θ?θ?θ?θθπ?θρππcos ,sin sin ,cos sin sin ),,(41),,(000200000R z z R y y R x x d d z y x u u +=+=+==注3.()()??++===πθθθππ200000)(0sin ,cos 21)(21)(20d R y R xu M M S uds RM u n R M S R 为圆心的圆周:以时的平均值公式:4. 极值原理,min min ,max max ,,,,u u u u u ΓΩΓΩ==ΩΩΓΩ=ΩΓ=Ω?Ω则上连续内调和且在在若为有界区域设.,,,,,)(1.v u v u v u v u ≡≤Ω≤ΩΩΓΓ且等号成立当且仅当内恒成立则在且上连续在内调和在设顺序原理注.,:.2与最低点温度在边界取到最高点时稳定温度场内部无热源物理意义注uu f u u u f u C C u ΓΓΩ=?≤=?=?≥=?ΩΩ∈min min 0max max 0),()(3.12则设注例题()()球上的最大值与最小值球心处的值和在试求为球坐标题设有单位球内的定解问u r u r u r .,,sin cos sin cos 1013?θ?θθ+++=<=?= ()4sin 41sin sin cos sin cos 41)0,0,0(2002200π?θθπ?θθ??θθπππππ==+++=d d d d u ()()21sin cos sin cos min min 22sin cos sin cos max max 11--=+++==+++=≤≤??θθ??θθu u r r5. Dirichlet 内问题解的唯一性与稳定性内问题??=∈=gu x f u ΓΩ?)(唯一性: 考虑相应的齐次问题=∈=0)(0ΓΩ?u x u .0min min ,0max max ====u u u u ΓΓΩ.0≡u稳定性: 连续依赖于边界条件.考虑=∈=g u x u ΓΩ?)(0,====g u u g u u ΓΓΓΓΩmin min min ,max max max .m a x m a x g u ΓΩ=§4 Green 函数及其应用4.1 Green 函数 1. G reen 函数的定义设3R ?Ω为有界区域,ΓΩ=?.设函数),()(,12ΩΩC Cg u ∈若g 在Ω中调和,则-??+=ΓΩ?dS n ug n g u udx g )(0设Ω∈0M ,已知基本积分公式ΓΩ-??-?-=dSn M u r r n M u dxr uM u MM MM MM ])(41)41()([4)(0000πππ相加得ΓΩ---??--?-=dS nM u g r g r n M u dxg r u M u MM MM MM ])()41()41() ([)41()(0000πππ因此选),(0M M g g =满足==ΓΓ?0410MM r g g π 称函数),(41),(000M M g r M M G MM -=π为Green 函数. 易知),(0M M G 除0M M=外关于变量M 处处满足调和方程,且0),(0=∈ΓM M M G .注1. 对Dirichlet 问题==?Γu fu ,ΓΩ--=dSn M M G M dxM f M M G M u ),()()(),()(000?注2. 对二维情形,Green 函数为),(1ln 21),(000M M g r M M G MM -=π 其中g 满足??==ΓΓ?01ln 210MM rg g π2. Green 函数的意义1) G reen 函数仅依赖于区域,而与边界条件无关. 2) 特殊区域上的Green 函数可用初等的方法求出. 3) 利用Green 函数求解的积分公式可以讨论解的性质. 4) 有明显的物理意义:在接地的导电闭曲面Γ内的点0M 处放一单位正电荷,则Γ内任一点M 处的电位为),(0M M G ,它由两部分组成:即0M 处电位正电荷产生的电位41MM r π与Γ内表面上感应负电荷产生的感应电位),(0M M g -.而且导体表面的电位恒为零. 3. Green 函数的性质 1))1(),(00MM r O M M G =事实上,),(411),(0000M M g r r M M G MM MM -=π而+∞<≤041max ),(0MM r M M g πΓ)(0),(000M M M M g r MM →→? 2) 1),(0-=ΓdS n M M G (只需取1≡u 即可.)3) 041),(00MM r M M G π<<.事实上, 由极值原理, 041min min ),(00>=>MM r g M M g πΓΓ, 即 041),(0MM r M M G π<.0,0),(,,00=>Γ?≠?ΓΓG G M M M 而使得充分小球面为半径的以为球心以εεεε.0min ),(G 0=>?G M M G εεΓΓΓΓ 所围的区域内调和与在由4) .),(),(),(211221中不重合的两点为ΩM M M M G M M G =事实上,.),(),(),(),(,,,,2121212121内调和在与则所围区域与、由使得充分小为半径的球面以为球心、分别作以εεεεεεεεΩΓΓΓΩ∈ΓΓ≠?M M G M M G M M M M M M -=εΩ??dx M M G M M G M M G M MG )),(),(),(),((01221-??=21)),(),(),(),((1221εεΓΓΓ dSn M M G M M G n M M G M M G -??=ΓdS n M M G M M G n M M G M M G )),(),(),(),((1221-??+1)),(),(),(),((1221εΓdSn M M G M M G n M M G M M G-??+2)),(),(),(),((1221εΓdS nM M G M M G n M M G M M GIII II I ++=).,(lim ),,(lim 0,120210M M G M M G -===→→III II I εε易知4.2 静电源像法当区域具有某种对称性时,感应负电荷产生的电位可以用在相应的对称点放置的假想负电荷产生的电位来取代------这种求Green 函数的方法称为静电源像法. 1. 上半空间的Green 函数{};41,0z z)y,(x,00MM r M M π点产生的电位为它对单位正电荷处放中的点在上半空间>),,,(0),,,(00011000000z y x M M z M z y x M M -===的对称点关于平面则设141,1MM r M M π-产生的电位为则它对放单位负电荷在104141),(0MM MM r r M M G ππ-=++-+---+-+-=202020202020)()()(1)()()(141z z y y x x z z y y x x π=>==),()0(0Dirichlet 0y x f u z u z ? 问题考虑, dxdy z G y x f z y x u z 0000),(),,(=∞+∞-∞+∞-= []∞+∞-∞+∞-+-+-=232020200)()(),(2z y y x x dxdy y x f z π. ),(),,(],1ln 1[ln 21),(Green .00110000010y x M M y x M M r r M M G MM MM -==-=其中函数为上半平面的注π∞+∞-=+-==>=?2200000)()(),()()0(0Dirichlet y x x dxx f y y x u x f u y y π的解为问题2. 球的Green 函数 ,),0( ,),0(10M R B R B M 反演点为的它关于球面内的一点为球设?=Γ 210R r r O M O M =?.441,,1010MM MM r qr M q M M ππ与产生的电位分别为它们对单位负电荷放在放单位正电荷在.,441100Γ∈=?P r qr PM PM 其中消这两个电位在球面上抵ππ 00100,OM PM PM r R r r q ===?ρρ其中)1(41),(1000MM MM r Rr M M G ρπ-=?=<==fu R r u R r )(0Dirichlet ?问题考虑2101221022001cos 2,cos 2,cos ),cos(,,101R G nGr r OM OM r r RMM MM OM OM =??=-+=-+=====Γρρργρρρργρρρργρρρ及并注意到则记-+-=?ΓdS f R R R R M u 2302022020)cos 2(41)(γρρρπ≤<≤≤≤≤??===R z y x ρπ?πθθρ?θρ?θρ0200cos sin sin cos sin 利用球坐标变换 ) Poisson (sin ),,()cos 2(4),,(2023020222000公式??-+-=ππθθ?θγρρρπθρd d R f R R R R u)cos ,sin sin ,cos (sin )cos ,sin sin ,cos (sin 1.000000??θ?θθ?θ?θ的方向余弦为的方向余弦为注OM OM)cos(sin sin cos cos cos 000??θθθθγ-+=? ]ln 1[ln 21),( Green 2.1000MM MM r Rr M M G ρπ-=函数为园的注 )P o i s s o n ()()c o s (221),(D i r i c h l e t 20002022200公式问题的解为相应的?--+-=πθθθθρρρπθρd f R R R u。
数理方程教学大纲一、引言数理方程是物理学、工程学、经济学等多个学科的重要工具。
它以数学为语言,描述了自然现象中的各种复杂现象,帮助我们理解并解决实际问题。
本教学大纲旨在为学生提供全面、系统的数理方程学习方案,培养其运用数理方程解决实际问题的能力。
二、教学目标1、理解数理方程的基本概念和分类;2、掌握常见数理方程的解法及应用;3、能运用数理方程解决实际问题;4、培养学生对数理方程的兴趣和爱好。
三、教学内容1、数理方程基本概念:讲解什么是数理方程,其基本形式和分类等;2、一阶线性微分方程:讲解一阶线性微分方程的基本解法,包括分离变量法、积分因子法等;3、高阶微分方程:讲解高阶微分方程的解法,如降阶法、常数变易法等;4、偏微分方程:讲解偏微分方程的基本概念和分类,以及常见的偏微分方程的解法;5、特殊类型方程:讲解一些特殊类型的数理方程,如Sturm-Liouville 方程、Schrödinger方程等;6、数理方程应用:通过实例讲解数理方程在物理学、工程学、经济学等领域的应用。
四、教学方法1、课堂讲解:通过讲解典型例题,使学生掌握数理方程的基本概念和解题方法;2、数值模拟:利用计算机进行数值模拟,帮助学生理解数理方程的解的性质和实际应用;3、小组讨论:组织学生进行小组讨论,促进交流与合作,加深对数理方程的理解;4、自主学习:鼓励学生通过自主学习,深入探究数理方程的相关知识和应用领域。
五、教学资源1、教材:选用优秀的数理方程教材,保证教学内容的科学性和系统性;2、网络资源:推荐优秀的数理方程学习网站和在线课程资源,以便学生进行拓展学习;3、教学软件:使用适当的数学软件和编程工具,辅助学生进行数理方程的学习和计算;4、实验课程:设置相关的实验课程,让学生在实践中进一步理解和掌握数理方程的相关知识。
六、评估与反馈1、课堂表现:观察学生在课堂上的表现,包括听讲、提问、讨论等方面的情况;2、作业与考试:定期布置作业和进行考试,以检验学生对数理方程知识的掌握程度;3、反馈与指导:根据学生的表现和考核结果,进行及时的反馈和指导,帮助学生发现不足并改进学习策略。
第四章 二阶线性偏微分方程的分类与总结§1 二阶方程的分类1. 证明两个自变量的二阶线性方程经过可逆变换后它的类型不会改变,也就是说,经可逆变换后2211212a a a -=∆的符号不变。
证:因两个自变量的二阶线性方程一般形式为fcu u b u b u a u a u a y x yy xy xx =+++++212212112经可逆变换 ⎩⎨⎧==),(),(y x y x ηηξξ 0),(),(≠y x D D ηξ化为 f u c u b u a u a u a =++++ηηηξηξξ22212112其中 ⎪⎪⎩⎪⎪⎨⎧++=+++=++=22212211222212111222212211112)(2y y x x y y x y y x x x y y x x a a a a a a a a a a a a ηηηηηξηξηξηξξξξξ所以 y x y x y x y x x y yx a a a aa a aηηξξηηξξηξηξ2211112222122221112222)(+-+=-=∆22221112222222211),(),())(()(⎥⎦⎤⎢⎣⎡∆=--=+-y x D D a a aa a x y y x y x y x ηξηξηξηξξη因0),(),(2>⎥⎦⎤⎢⎣⎡y x D D ηξ,故∆与∆同号,即类型不变。
2. 判定下述方程的类型(1)022=-yy xx u y u x (2)0)(2=++yy xx u y x u (3)0=+yyxx xyuu(4))010001(sgn 0sgn 2sgn ⎪⎩⎪⎨⎧<-=>==++x x x x xuu yu yyxy xx(5) 0424=+++-zz yy xz xy xx u u u u u 解:(1)022=-yy xx u y u x因 022>=∆y x 当0,0≠≠y x 时0,0=>∆x 或0=y 时0=∆。