第四章 平面向量、数系的扩充与复数的引入
- 格式:doc
- 大小:807.50 KB
- 文档页数:19
第2课时复数代数形式的加减运算及其几何意义1.理解复数代数形式的加减运算规律.2.复数的加减与向量的加减的关系.重点:正确理解复数的加减运算,复数加减运算的几何意义.难点:对比复数加减法与向量加减法的异同,从而理解复数的几何意义.实数可以进行加减运算,并且具有丰富的运算律,其运算结果仍是实数;多项式也有相应的加减运算和运算律;对于引入的复数,其代数形式类似于一个多项式,当然它也应有加减运算,并且也有相应的运算律.问题1:依据多项式的加法法则,得到复数加法的运算法则.设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,很明显,两个复数的和仍然是一个确定的复数.问题2:复数的加法满足交换律、结合律.即z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).问题3:利用向量加法讨论复数加法的几何意义向量加法遵循平行四边形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相加.故复数相加就是实部与虚部分别相加得到一个新的复数.问题4:如何理解复数的减法?复数减法是复数加法的逆运算.向量减法遵循三角形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相减.故复数相减就是实部与虚部分别相减得到一个新的复数.十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用.1.设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【解析】(3-4i)-(-2+3i)=5-7i.【答案】D2.(2-i)+(3+i)+(4+i)+(5+i)-i(其中i为虚数单位)等于().A.10B.10+2iC.14D.14+2i【解析】(2-i)+(3+i)+(4+i)+(5+i)-i=2+3+4+5+(-+1++-)i=14.【答案】C3.复数z1=9+3i,z2=-5+2i,则z1-z2=.【解析】z1-z2=(9+3i)-(-5+2i)=14+i.【答案】14+i4.已知复数z1=7-6i,z1+z2=-4+3i.(1)求z2;(2)求z1-2z2.【解析】(1)z2=(z1+z2)-z1=(-4+3i)-(7-6i)=-11+9i.(2)z1-2z2=(7-6i)-2(-11+9i)=7-6i+22-18i=29-24i.复数代数形式的加减法运算(1)z1=2+3i,z2=-1+2i,求z1+z2,z1-z2;(2)计算:(+i)+(2-i)-(-i);(3)计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2019+2019i)+(2019-2019i).【方法指导】依据复数代数形式的加减运算法则以及运算律求解.【解析】(1)z1+z2=2+3i+(-1+2i)=1+5i,z1-z2=2+3i-(-1+2i)=3+i.(2)+i+(2-i)-(-i)=(+2-)+(-1+)i=1+i.(3)(法一)原式=[(1-2)+(3-4)+…+(2019-2019)+2019]+[(-2+3)+(-4+5)+…+(-2019+2019)-2019]i=(-1006+2019)+(1006-2019)i=1007-1008i.(法二)(1-2i)+(-2+3i)=-1+i,(3-4i)+(-4+5i)=-1+i,(2019-2019i)+(-2019+2019i)=-1+i,将以上各式(共1006个)相加可知:原式=1006(-1+i)+(2019-2019i)=1007-1008i.【小结】几个复数相加减,运算法则为这些复数的所有实部相加减,所有虚部相加减.第(3)小题的解法一是从整体上把握,将计算分实部和虚部进行,有机构造特殊数列的和进而求得结果.解法二是从局部入手,抓住了式中相邻两项和的特点,恰当地分组使计算得以简化.复数代数形式加减运算的几何意义在复平面内,A、B、C分别对应复数z1=1+i,z2=5+i,z3=3+3i,以AB、AC为邻边作一个平行四边形ABDC,求D点对应的复数z4及AD的长.【方法指导】根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.【解析】如图所示:对应复数z3-z1,对应复数z2-z1,对应复数z4-z1.由复数加减运算的几何意义得=+,∴z4-z1=(z2-z1)+(z3-z1),∴z4=z2+z3-z1=(5+i)+(3+3i)-(1+i)=7+3i,∴AD的长为||=|z4-z1|=|(7+3i)-(1+i)|=|6+2i|=2.【小结】利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.复数加减运算的综合应用已知实数a>0,b>0,复数z1=a+5i,z2=3-b i,|z1|=13,|z2|=5,求z1+z2.【方法指导】利用两复数的模,可求得a,b的值,再求z1+z2.【解析】由题意得∴∴z1=12+5i,z2=3-4i,∴z1+z2=15+i.【小结】本题结合了复数的模与复数的加法,表面看着难,其实难度不大.复数z1=2+3i,z2=4-5i,z3=-6i,求z1+z2-z3,并说明z1+z2-z3在复平面内对应的点所在的象限.【解析】z1+z2-z3=(2+3i)+(4-5i)-(-6i)=6+4i,z1+z2-z3在复平面内对应的点为(6,4),在第一象限.如图所示,平行四边形OABC的顶点O、A、C分别表示0、3+2i、-2+4i.求:(1)表示的复数;(2)表示的复数;(3)表示的复数.【解析】(1)因为=-,所以表示的复数为-3-2i.(2)因为=-,所以表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.已知实数a∈R,复数z1=a+2-3a i,z2=6-7i,若z1+z2为纯虚数,求a的值.【解析】z1+z2=(a+2-3a i)+(6-7i)=a+8-(3a+7)i,∴z1+z2为纯虚数,∴∴a=-8.1.复数z1=-3+4i,z2=6-7i,则z1+z2等于().A.3-3iB.3+3iC.-9+11iD.-9-3i【答案】A2.复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是().A.m<B.m<1C.<m<1D.m>1【解析】(3+i)m-(2+i)=(3m-2)+(m-1)i,∴点(3m-2,m-1)在第三象限,∴即m<.【答案】A3.复数z1=-2+3i,z2=4+3i,则z1-z2=.【解析】z1-z2=(-2+3i)-(4+3i)=-6.【答案】-64.已知a∈R,复数z1=2+(a+2)i,z2=a2+2a-1+3i,若z1+z2为实数,求z1-z2.【解析】z1+z2=a2+2a+1+(a+5)i,∴a∈R,z1+z2为实数,∴a+5=0,∴a=-5,∴z1=2-3i,z2=14+3i,∴z1-z2=-12-6i.在复平面内,A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求向量,,对应的复数;(2)判断∈ABC的形状.【解析】(1)=-=(2+i)-1=1+i,=-=(-1+2i)-1=-2+2i,=-=(-1+2i)-(2+i)=-3+i,所以,,对应的复数分别为1+i,-2+2i,-3+i.(2)因为||2=10,||2=8,||2=2,所以有||2=||2+||2,所以∈ABC为直角三角形.1.向量对应的复数是5-4i,向量对应的复数是-5+4i,则+对应的复数是().A.-10+8iB.10-8iC.0D.10+8i【解析】+对应的复数为5-4i+(-5+4i)=0.【答案】C2.复数z1=1-5i,z2=-2+i,则z1-z2在复平面内对应的点在().A.第一象限B.第二象限C.第三象限D.第四象限【解析】z1-z2=(1-5i)-(-2+i)=3-6i,对应的点为(3,-6),该点位于第四象限.【答案】D3.复数z1=5-12i,z2=4+7i,则z1-z2=.【解析】z1-z2=(5-12i)-(4+7i)=1-19i.【答案】1-19i4.已知z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R).设z=z1-z2且z=13-2i,求z1,z2.【解析】z=z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y)+(x+4y)i,又z=13-2i,且x,y∈R,则解得故z1=(3×2-1)+(-1-4×2)i=5-9i,z2=4×(-1)-2×2-[5×2+3×(-1)]i=-8-7i.5.复平面内点A,B,C对应的复数分别为i,1,4+2i,由A→B→C→D按逆时针顺序作平行四边形ABCD,则||等于().A.5B.C.D.【解析】如图所示,∈ABCD四个顶点对应复数分别为z1=i,z2=1,z3=4+2i,z4,则有=+,=(z1-z2)+(z3-z2)=2+3i,故||==.【答案】B6.已知复数z1,z2,有|z1|=5,|z2|=12,|z1+z2|=13,则|z1-z2|为().A.8B.10C.12D.13【解析】利用向量结合复数分析可知构成的平行四边形为矩形,故对角线相等.【答案】D7.已知实数a>0,复数z1=a+2i,z2=3+5i,|z1-z2|=5,则a的值为.【解析】z1-z2=a-3-3i(a∈R),∴|z1-z2|=5,∴=25,∴a-3=±4,又a>0,∴a=7.【答案】78.已知f(z)=2z+2-i,z0=1+2i,f(z0-z1)=6-3i,z∈C,求复数z1,f(|z0+z1|).【解析】由已知得2z0-2z1+2-i=6-3i,z0=1+2i,∴2+4i-2z1+2-i=6-3i,即4+3i-2z1=6-3i,∴2z1=(4+3i)-(6-3i)=(4-6)+(3+3)i=-2+6i,∴z1=-1+3i,∴|z0+z1|=|(1+2i)+(-1+3i)|=|5i|=5,∴f(|z0+z1|)=f(5)=2×5+2-i=12-i.9.已知复数z的模为2,则|z-i|的最大值为.【解析】(法一)∴|z|=2,∴|z-i|≤|z|+|i|=2+1=3.(法二)设w=z-i,则w+i=z,∴|w+i|=|z|=2.w表示以点(0,-1)为圆心,以2为半径的圆,由图知,圆上到原点的距离以|OP|为最大,最大值是3.【答案】310.已知a,b∈R,若复数z1=a+b i,|z1|=4,z2=b-a i,求|z1+z2|,|z1-z2|.【解析】∴|z1|=4,∴=4,a2+b2=16.∴z1+z2=(a+b)+(b-a)i,∴|z1+z2|====4.∴z1-z2=(a-b)+(b+a)i,∴|z1-z2|====4.。
2014届高考数学(理)一轮复习知识过关检测:第4章《平面向量、数系的扩充与复数的引入》(第2课时)(新人教A 版)一、选择题1.(2013·合肥质检)设平面向量a =(3,5),b =(-2,1),则a -2b =( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)解析:选A.依题意得a -2b =(3,5)-2(-2,1)=(7,3). 2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ) A .3a +b B .3a -b C .-a +3b D .a +3b 解析:选B.设c =m a +n b ,则(4,2)=(m -n ,m +n ). ∴⎩⎪⎨⎪⎧ m -n =4m +n =2⇒⎩⎪⎨⎪⎧m =3n =-1,∴c =3a -b . 3.(2013·鞍山质检)设向量a =(4sin α,3),b =(2,3cos α),且a ∥b ,则锐角α为( )A.π6B.π4C.π3D.512π 解析:选B.∵a ∥b ,∴4sin α·3cos α=2×3, ∴sin 2α=1, ∵α为锐角.∴α=π4.故选B.4.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析:选B.AQ →=PQ →-PA →=(-3,2), ∴AC →=2AQ →=(-6,4). PC →=PA →+AC →=(-2,7), ∴BC →=3PC →=(-6,21).故选B.5.(2011·高考广东卷)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( )A.14B.12 C .1 D .2解析:选B.∵a +λb =(1+λ,2),c =(3,4)且(a +λb )∥c , ∴1+λ3=24,∴λ=12.二、填空题6.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析:∵a =(2,-1),b =(-1,m ),∴a +b =(1,m -1). ∵(a +b )∥c ,c =(-1,2),∴2-(-1)·(m -1)=0. ∴m =-1. 答案:-17.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AB ,AD 分别落在x 轴,y轴的正方向上,则向量2AB →+3BC →+AC →的坐标为________.解析:由已知得A (0,0),B (1,0),C (1,1), 则AB →=(1,0),BC →=(0,1),AC →=(1,1), ∴2AB →+3BC →+AC →=2(1,0)+3(0,1)+(1,1)=(3,4). 答案:(3,4) 8.设两个向量a =(λ+2,λ2-cos 2α)和b =(m ,m2+sin α),其中λ,m ,α为实数.若a =2b ,则λm的取值范围是________________________________________________________________________.解析:根据已知条件得2b =(2m ,m +2sin α),又a =2b ,所以λ+2=2m ,λ2-cos 2α=m +2sin α,于是2λ2-2cos 2α=λ+2+4sin α,即2λ2-λ=-2sin 2α+4sin α+4=-2(sin α-1)2+6,故-2≤2λ2-λ≤6,即⎩⎪⎨⎪⎧2λ2-λ≤62λ2-λ≥-2,解得-32≤λ≤2,故λm =λλ2+1=2-4λ+2∈[-6,1]. 答案:[-6,1] 三、解答题9.已知A (1,-2),B (2,1),C (3,2)和D (-2,3),试以AB →、AC →为一组基底来表示AD →+BD →+CD →.解:由已知得:AB →=(1,3),AC →=(2,4), AD →=(-3,5),BD →=(-4,2),CD →=(-5,1), ∴AD →+BD →+CD →=(-3,5)+(-4,2)+(-5,1) =(-12,8). 设AD →+BD →+CD →=λ1AB →+λ2AC →, 则(-12,8)=λ1(1,3)+λ2(2,4), ∴⎩⎪⎨⎪⎧ λ1+2λ2=-12,3λ1+4λ2=8.解得⎩⎪⎨⎪⎧λ1=32,λ2=-22. ∴AD →+BD →+CD →=32AB →-22AC →.10.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.解:设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6).因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧x 1=0,y 1=4,和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4).一、选择题1.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论:①直线OC 与直线BA 平行;②AB →+BC →=CA →; ③OA →+OC →=OB →;④AC →=OB →-2OA →. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4解析:选C.∵OC →=(-2,1),BA →=(2,-1), ∴OC →=-BA →,∴ OC →∥ BA →.又由坐标知点O 、C 、A 、B 不共线,∴OC ∥BA ,①正确; ∵AB →+BC →=AC →,∴②错误; ∵OA →+OC →=(0,2)=OB →,∴③正确; ∵OB →-2OA →=(-4,0),AC →=(-4,0),∴④正确.故选C.2.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量的集合,则P ∩Q 等于( )A .{(1,1)}B .{(-1,1)}C .{(1,0)}D .{(0,1)} 解析:选A.因为a =(1,m ),b =(1-n,1+n ). 可得P ∩Q ={(1,1)},故选A. 二、填空题3.e 1,e 2是不共线向量,且a =-e 1+3e 2,b =4e 1+2e 2,c =-3e 1+12e 2,若b ,c 为一组基底,则a =________.解析:设a =λ1b +λ2c ,则-e 1+3e 2=λ1(4e 1+2e 2)+λ2(-3e 1+12e 2), 即-e 1+3e 2=(4λ1-3λ2)e 1+(2λ1+12λ2)e 2,∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,解得⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c .答案:-118b +727c4.(2012·高考山东卷)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解析:如图,作CQ ∥x 轴,PQ ⊥CQ ,Q 为垂足.根据题意得劣弧DP =2,故∠DCP =2弧度,则在△PCQ 中,∠PCQ =⎝⎛⎭⎪⎫2-π2弧度,|CQ |=cos ⎝⎛⎭⎪⎫2-π2=sin2,|PQ |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,所以点P 的横坐标为2-|CQ |=2-sin2,P 点的纵坐标为1+|PQ |=1-cos2,所以P 点的坐标为(2-sin2,1-cos2), 故OP →=(2-sin2,1-cos2). 答案:(2-sin2,1-cos2) 三、解答题5.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求: (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值,若不能,请说明理由.解:(1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13.(2)因为OA →=(1,2),PB →=(3-3t,3-3t ),若OABP 为平行四边形,则OA →=PB →, ∵⎩⎪⎨⎪⎧3-3t =1,3-3t =2,无解, 所以四边形OABP 不能成为平行四边形.。
第三节平面向量的数量积及其应用[考纲传真]1.理解平面向量数量积的含义及其物理意义 2 了解平面向量的数量积与向量投影的关系3掌握数量积的坐标表达式,会进行平面向量数量积的运算4能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题6会用向量方法解决简单的力学问题与其他一些实际问题.双基自主测评I基础知识环能力全面巩固■(对应学生用书第61页)[基础知识填充]1. 向量的夹角(1)定义:已知两个非零向量a和b,如图4-3-1 ,作0A= a, 0B= b,则/ AOB=0 (0 °w 0 < 180° )叫作a与b的夹角.0 b B图4-3-1(2)当0 = 0°时,a与b共线同向.当0 = 180°时,a与b共线反向.当0 =90°时,a与b互相垂直. '—2•平面向量的数量积(1) 定义:已知两个非零向量a和b,它们的夹角为0,则数量| a|| b| • cos 0叫做a与b的数量积(或内积).规定:零向量与任一向量的数量积为0.(2) 几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积Jk 曜或b的长度| b|与a在b方向上射影| a|cos 0的乘积.3. 平面向量数量积的运算律(1) 交换律:a • b= b • a;(2) 数乘结合律:(入a) • b=入(a • b) = a •(入b);(3) 分配律:a •( b+ c) = a • b+ a • C.4. 平面向量数量积的性质及其坐标表示122结论几何表示坐标表小2| a || b |cos 0夹角a - bcos 0 — . [[ i .|a || b |X 1X 2+ y 1y 2cos 0 — . y, ------------------------------- .,,V X 2 + y2^/X 2 + y 2a 丄ba -b — 0X 1X 2+ y 1y 2— 0|a • b | 与 | a || b | 的关系|a - b | w| a || b || X 1X 2+ y 1y 2| w 寸X 1 + y 2 •寸 X 2+ y ;[知识拓展]1两个向量a , b 的夹角为锐角? a •b >0且a , b 不共线;两个向量a ,b 的夹角为钝角? a •b <0且a , b 不共线. 2 •平面向量数量积运算的常用公式 (1)( (2)( (3)(2 2a +b ) •( a -b ) = a — b .2 2 2a +b ) = a + 2a • b + b .a -b )2= a 2-2a • b + b 2.3.当a 与b 同向时,a •b = | a||b1.当a 与b 反向时,a ・b = — |a||b |.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X” (1) 两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.由 a - b = 0,可得 a = 0 或 b = 0.()由a - b = a - c 及a ^0不能推出b = C.()2. 在四边形 ABCDh AB- DC &AC- BD= 0,则四边形 ABCD 为矩形•( [答案](1) V (2) X (3) V(2016 -全国卷川)已知向量BA=A . 30° ,1,则/ ABC=(3.C. 60°D. 120°A [因为BA=2, -2 , BC > 三3, 1,所以 E3A- £=¥+石3=_23.又因为 B A- B <> I B AII 航cos / ABC= 1X 1X cos / ABC 所以 cos / 又 0°<Z ABCc 180°,所以/ABC= 30° .故选 A .](2015 •全国卷 n )向量 a = (1 , - 1), b = ( — 1,2),则(2a + b ) - a =()A . - 1 B. 0 C. 1D. 22C [法: T a = (1 , — 1) , b = ( — 1,2) ,.•. a = 2, a • b =— 3, 从而(2a + b ) • a = 2a 2 + a • b = 4 — 3= 1. 法二:T a = (1 , — 1) , b = ( — 1,2), .2a + b = (2 , — 2) + ( — 1,2) = (1,0),从而(2a + b ) • a = (1,0) • (1 , — 1) = 1,故选 C.]4. ______________ (教材改编)已知|a | = 5, | b | = 4, a 与b 的夹角0 = 120° ,则向量b 在向量a 方向上的 投影为 __ .—2 [由数量积的定义知, b 在a 方向上的投影为| b |cos 0 = 4x cos 120 ° =— 2.]5. (2017 •全国卷I)已知向量 a = ( — 1,2) , b = (m,1).若向量 a + b 与a 垂直,则 m=7 [ T a = ( — 1,2) , b = (m,1), ••• a + b = ( — 1 + m,2 + 1) = ( m- 1,3). 又 a + b 与 a 垂直,二(a + b ) • a = 0, 即(m-1) x ( — 1) + 3X 2= 0, 解得m= 7.]题型分类突破I 高琴题型烦律方法逐-突砸■(对应学生用书第62页)心 ......平面向量数量积的运算■■■I (1)(2016 •天津高考)已知△ ABC 是边长为1的等边三角形,点D, E 分别是边AB,BC 的中点,连接 DE 并延长到点F ,使得DE= 2EF,则AF- BC 勺值为()A . 11D -S'已知正方形 ABCD 勺边长为1,点E 是AB 边上的动点,则DE- CB 勺值为C.;DE ・DC的最大值为 【导学号: 00090135】AF = AM DF又D, E 分别为AB BC 的中点,(1) B (2) 1 1 [(1)如图所示,f 1 f f 1 ・_且DE=2EF所以AD= 1A B DF=2AC+;AC=4AC1f2当E 运动到B 点时,DE^DC 方向上的投影最大,即为 DC = 1, 所以(DE' Dg =| DC - 1= 1.][规律方法]1.求两个向量的数量积有三种方法: 利用定义;利用向量的坐标运算; 利用数量积的几何意义.~T 1 -T 3 ~T 所以 AF = 2AB+ 4AC又 BC= AC- AB3T-4AC-又 | AB =|AQ = 1,z BAO 60°,故AF- E3C = 4-2 — 4X 1X 1X 2= 1.故选 B.4 2 4 2 8⑵ 法一:以射线AB AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),巳1,0),C (1,1) ,D (0,1),设E (t, 0) , t € [0,1],则DE = (t , - 1),(t , -1) - (0,- 1) = 1.因为 DC = (1,0),所以 DE- DC = (t ,- 1) - (1,0) = t w 1, 故D E- DC 的最大值为1.法二:由图知,无论E 点在哪个位置,DE 在CB^向上的投影都是 CB= 1,所以DE- CB= | CB则 AF- BC= -(AC-AB 3 T T2. (1)要有“基底”意识,关键用基向量表示题目中所求相关向量. (2)注意向量夹角的大小,以及夹角0 = 0°, 90°, 180°三种特殊情形.2[变式训练1] ⑴ 已知AB= (2,1),点C ( — 1,0) , D (4,5),则向量AB 在 C [方向上的投影为(1) C (2)C [(1)因为点 C ( —1,0) , Q4,5),所以 C* (5,5),又AB= (2,1),所以向量 AB 在CD?向上的投影为|AB |cos 〈 AB C D =磊=芈I CD%2⑵ 由 AB- AF = 3 得AB ・(AM DF = AB- DF= 3,所以 |DF = 1, |CF = 2,BE • BC= — 6 + 2 = — 4.](1)(2017 •合肥二次质检)已知不共线的两个向量a ,b 满足|a — b | = 2且a 丄(a—2b ),则 | b | =( )A . 2 C. 2 2⑵(2018 •西安模拟)已知平面向量a , b 的夹角为 卡,且|a | = .3, | b | = 2,在厶ABC 中,AB= 2a + 2b , AC= 2a — 6b , D 为 BC 的中点,贝U |AQ = ______ .(1)B (2)2[(1)由 a 丄(a — 2b )得 a - (a — 2b ) = | a | — 2a - b = 0.又•/ | a — b | = 2,「. | a(2)(2018 •榆林模拟)已知在矩形ABCD 中 AB= 3, BC = 3, BE = 2EC 点 F 在边 CD 上.若AB- AF = 3,则 A E- 'BF 的值为()【导学号:00090136】A . 0B 育C.— 4D. 42B.- 3 5 D. 3 5C. 所以 AE - BF = ( AB+ BE ) •( BC+ CF ) =AB- BC+ AB- CF + BE- BC + BE- CF = AB- CF +ISfifl... ......... . ............................ j平面向量数量积的性质角度1平面向量的模MBB. 2 D. 4—b| 2= | a|2—2a - b+ | b|2= 4,则| b|2= 4, | b| = 2,故选B.■ ■ ~9 1 ~> (2)因为 A[> 2(AB+ AC 1=2(2a + 2b + 2a — 6b ) =2a — 2b ,所以 |AD 2= 4(a — b )2= 4(a 2— 2b •a + b 2)—e 2的夹角为B ,贝U cos 3 =⑵ 若向量a = (k, 3) , b = (1,4) , c = (2,1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取2=I — 2X 3X 2X1 X cos a + 4= I ,所以|a | = 3,i i222因为 b = (3e 1 — e 2) = I — 2X 3X 1 XI X cos a + 1 = 8, 所以 | b | = 2 2,a •b = (3 e 1 — 2e 2)- (3 e 1 — e ?)2 21 =9e 1 — 9e 1 • e2 + 2e 2= I — I X 1 X 1 X + 2 = 8,3 所以cos 3= rOi 占=3^=弩.(2) •/ 2a — 3b 与c 的夹角为钝角, ••• (2 a — 3b ) - c v 0, 即(2 k — 3, — 6) - (2,1) v 0,• 4k — 6— 6v 0, • k v 3.9又若(2a — 3b ) // c ,贝U 2k — 3 =— 12,即卩 k =—》 当 k =— I 时,2a — 3b = ( — 12,— 6) = — 6c ,=4X (3 — 2X 2X3 X cos n + 4) = 4,所以 | AD = 2.]角度2平面向量的夹角2-2 1(1)已知单位向量 e 1与e 2的夹角为 a ,且cos a = 3 向量 a = 3e i — 2e 2与 b = 3e i值范围是 (1)弩(2)[(1)因为 a 2= (3 e 1 — 2e 2)2△in 2 x — ¥cos x = 2,2 2即2a -3b 与c 反向. 综上,k 的取值范围为 一R, 角度3平面向量的垂直 (2016 •山东高考)已知向量a = (1 , - 1), b = (6 , - 4).若a 丄(ta + b ),则实 数t 的值为 _________ —5 [ - a = (1 , — 1), b = (6 , — 4),…ta + b = (t + 6, — t — 4). 又 a 丄(ta + b ),则 a •( ta + b ) = 0,即 t + 6 +1 + 4= 0,解得 t =— 5.] a • b [规律方法]1.求两向量的夹角:cos 0 = ,要注意0 c [0 , n ]. 丨a l •丨b | 2.两向量垂直的应用: 两非零向量垂直的充要条件是: a 丄b ? a • b = 0? | a — b | = |a + b |. 3 •求向量的模:利用数量积求解长度问题的处理方法有: (1) a 2= a • a = | a |2 或 | a | = a • a . (2) | a ± b | = a ± b 2= a ±2a • b + b . ⑶若 a = (x , y ),则 | a | = x 2 + y 2. |U3[ 平面向量与三角函数的综合 (2018 •佛山模拟)在平面直角坐标系 xOy 中,已知向量m = ^2, — 2小=(sin cos x ) , x c (1)若 miL n ,求 tan x 的值; n ⑵若m 与n 的夹角为—,求x 的值. 【导学号:00090137】所以 sin x = cos x ,所以 tan x = 1. n 1⑵因为 | m = I n | = 1,所以 m-n = cos —=-,3 2x . 所以 m-n = 0, x , cos x ), n Ln . 即承n cos x(1)因为m = n = (sin所以sin 12因为 O v x v n ,所以—n_< x — n_<n n , 一 n n 5 n 所以x —才=6,即x =〒2. [规律方法]平面向量与三角函数的综合问题的解题思路得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题 sin x x= -------cos x •- tan 2 x = —=1 — tan x 53⑵•/ a = sin ^, , b = (cos x , — 1),3 2 2 2 2••• a •b = sin x cos x — ?, b = cos x + ( — 1) = cos x + 1,23 2 1 1 1• f (x ) = (a + b ) - b = a •b + b = sin x cos x — ~ + cos x + 1 = 2sin 2x + 尹 + cos 2x ) — ?⑴ 题目条件给出向量的坐标中含有三角函数的形式, 运用向量共线或垂直或等式成立等, 思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018 •郴州模拟)已知向量a = sin x , | , b = (cos X , (1)当a //b 时,求tan 2 x 的值; (2)求函数f (x ) = (a + b ) - b 在|—-2 , 0上的值域. (1) ■/ a //b , a = sin x , | , b = (cos x , 3 x - ( — 1) — 2 • cos 即sin 3 X + 2C0S x = 0, 得sin 3 x = — 2C0S x , 二tan -32,匕2tan x 12 x = 0,1 n 1 sin 2x+ 才.I nT x€ |—— , 0••• sin 2x+4 € —1 ,n故函数 f (X ) = (a + b ) • b 在 | — , 0 • •• f(X)= 刍n -弓,2上的值域为•—, 2。
复数的确立有了实数概念,人们就解决了过去仅有有理数概念时所不能解决的不可公度和开方开不尽等矛盾.但后来随着生产实践的深入发展,又产生了新的矛盾,如负数开平方是什么?众所周知,在实数范围内,任何一个正数或负数的平方都得正数,或者说,没有一个数的平方这样的数称之为“虚数”,以示“不存在”、“虚无”的意思.后来,人们经过长期实践逐步认识到,“虚数”并不虚无,还把虚数与实数的复合形式a+a b,为实数)称为复数.于是,在数的概念中,又引进了复数的概念,数的系统得到了再一次的扩充.“虚数”概念的确立,是一个漫长而曲折的过程,大体可分为以下几个阶段:第一,问题提出阶段.早在公元前,在解决生产实际问题时,人们就遇到了负数开平方问题,例如,解方程210x+=时,又遇到了负数开平方.例如,公元七世纪,我国唐代的《辑古算经》中,就有三次方程问题及其解法.但一直到十六世纪以前,无论是我国还是外国,虽然研究并解决了许多三次方程问题,但对负数开平方问题仍采取回避的态度.就是说,问题是提出来了,但没有解决.第二、理论探讨阶段.到了十六世纪,人们已获得了三次方程的一般求解公式:30x px q++=(p q,为实数)有x①后来,人们发现,某些三次方程有实根,但用公式①求不出实根,于是出现了矛盾.例如,31540x x--=,显然有实根4x=.但应用公式①,则得x===如何解决这一矛盾?当时,人们从理论上进行了探讨,充分发挥了辩证思维的能动作用.例如,1572年,意大利数学家邦别利(R.Bombelli,1526-1572),从21=-出发,证得332(22(2⎧+=+⎪⎨-=⎪⎩③将③代入②,得x224=+.这样,就解决了用公式①求不出实根的矛盾.不仅如此,还逐渐建立了关于虚数的一些运算法则.虚数开始得到人们的承认.第三,实践检验阶段.有了虚数概念之后,人们在理论上把数的概念由实数扩展到了复数.但是,在相当长的时期里,一些人对虚数和复数的存在是有怀疑的.十六世纪的意大利数学家卡当(G.Cardane,1501-1576)仍称复数为“似实而虚的”数.十七、十八世纪,人们努力寻找复数的几何表示和物理意义.到了十九世纪,人们最终作出了复数的各种几何解释,它被理解为平面上的点或矢量,并与物理学上的各种矢量联系起来了.这样,复数在物理学的实际研究中首先得到了一些应用,并受到了初步检验.这种应用,反过来又推动了复数理论的进一步发展,逐渐形成了一门重要的数学分支———复变函数论.复变函数论在解决与弹性力学、电工学、空气动力学、流体力学等有关的生产实际问题中显示出,它是一种很有效的数学工具.既然复变函数论在实践中得到了检验,证明它是科学的数学理论,那么,作为这种理论的基本概念的复数及虚数,也就一同在实践中得到了检验,证明它是科学的数学概念.复数确立之后,数的概念得到了又一次扩展.。
课时跟踪检测(二十六)平面向量的概念及其线性运算第Ⅰ组:全员必做题1.设a、b是两个非零向量()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|2.设D,E,F分别是△ABC的三边BC、CA、AB上的点,且DC=2BD,CE=2EA,AF=2FB,则AD+BE+CF与BC()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直3.(2013·安庆二模)已知a,b是不共线的两个向量,AB=x a+b,AC=a +y b(x,y∈R),若A,B,C三点共线,则点P(x,y)的轨迹是() A.直线B.双曲线C.圆D.椭圆4.(2014·山师大附中模拟)已知平面内一点P及△ABC,若PA+PB+PC=AB,则点P与△ABC的位置关系是()A.点P在线段AB上B.点P在线段BC上C.点P在线段AC上D.点P在△ABC外部5.(2014·大连高三双基测试)设O在△ABC的内部,且有OA+2OB+3OC=0,则△ABC的面积和△AOC的面积之比为()A.3 B.5 3C.2 D.3 26.(2013·淮阴模拟)已知△ABC和点M满足MA+MB+MC=0.若存在实数m使得AB+AC=m AM成立,则m=________.7.(2013·大庆模拟)已知O为四边形ABCD所在平面内一点,且向量OA,OB,OC,OD满足等式OA+OC=OB+OD,则四边形ABCD的形状为________.8.已知D,E,F分别为△ABC的边BC,CA,AB的中点,且BC=a,CA=b,给出下列命题:①AD=12a-b;②BE=a+12b;③CF=-12a+12b;④AD+BE+CF=0.其中正确命题的个数为________.9.设两个非零向量e1和e2不共线.(1)如果AB=e1-e2,BC=3e1+2e2,CD=-8e1-2e2,求证:A、C、D三点共线;(2)如果AB=e1+e2,BC=2e1-3e2,CD=2e1-k e2,且A、C、D三点共线,求k的值.10.如图所示,在△ABC中,D,F分别是BC,AC的中点,AE=23AD,AB=a,AC=b.(1)用a,b表示向量AD,AE,AF,BE,BF;(2)求证:B,E,F三点共线.第Ⅱ组:重点选做题1.A,B,O是平面内不共线的三个定点,且OA=a,OB=b,点P关于点A的对称点为Q,点Q关于点B的对称点为R,则PR等于() A.a-b B.2(b-a)C.2(a-b) D.b-a2.如图,在△ABC中,设AB=a,AC=b,AP的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP 等于________.答 案第Ⅰ组:全员必做题 1.选C 对于A ,可得a ,b =-1,因此a ⊥b 不成立;对于B ,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于C ,可得a ,b =-1,因此成立,而D显然不一定成立.2.选A 由题意得AD =AB +BD =AB +13BD , BE =BE +AE =BE +13AC ,CF =CB CB +BF =CB +13BE ,因此AD +BE +CF =CB +13(BD +AC -AB )=CB +23BD =-13BD , 故AD +BE +CF 与BD 反向平行.3.选B ∵若A ,B ,C 三点共线,∴AB =λAC . 即x a +b =λ(a +y b )⇒⎩⎨⎧x =λ,1=λy ,⇒xy =1,故选B.4.选C 由BF +BF PB +PC =AB 得BF +PC =AB -PB =AP ,即PC =AP -BF =2AP ,所以点P 在线段AC 上,选C.5.选A 设AC ,BC 的中点分别为M ,N ,则已知条件可化为(OA +OC )+2(OB +OC )=0,即OM +2ON =0,所以OM =-2ON ,说明M ,O ,N 共线,即O 为中位线MN 上的靠近N 的三等分点,S △AOC =23S △ANC =23·12S △ABC =13S △ABC ,所以S △ABC S △AOC=3.6.解析:由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D ,则AM =23AD ,因为AD 为中线,则AB +AC =2AD =3AM ,所以m =3.答案:37.解析:∵OA +OC =OB +OD ,∴OA -OB =OD -OC ,∴BE =CD ,BA 綊CD ,∴四边形ABCD 为平行四边形.答案:平行四边形8.解析:BD =a , CA =b ,AD =12CB +AC =-12a -b ,故①错; BE =BD +12CA =a +12b ,故②错;CF =12(CB +CA )=12(-a +b ) =-12a +12b ,故③正确;∴AD +BE +CF =-b -12a +a +12b +12b -12a =0.∴正确命题为②③④. 答案:39.解:(1)证明:∵AB =e 1-e 2,BD =3e 1+2e 2,CD =-8e 1-2e 2, ∴AC =AB +BD =4e 1+e 2 =-12(-8e 1-2e 2)=-12CD , ∴AC 与CD 共线.又∵AC 与CD 有公共点C ,∴A 、C 、D 三点共线. (2)AC =AB +BD =(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC 与CD 共线,从而存在实数λ使得AC =λCD ,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎨⎧3=2λ,-2=-λk ,解得λ=32,k =43.10.解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到▱ABGC , 所以AG =a +b , AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b , BE =AE -AB =13(a +b )-a =13(b -2a ),BF =AF -AB =12b -a =12(b -2a ). (2)证明:由(1)可知BE =23BF ,又因为BE ,BF 有公共点B ,所以B ,E ,F 三点共线. 第Ⅱ组:重点选做题1.选B PR =OR -OP OP =(OR +OQ )-(OP +OQ )=2OB -2OA =2(b -a ).2.解析:如图,连接BP , 则AP =AC +CP =b +PR ,①AP =AB +BP =a +RP -RB ,② ①+②,得2AP = a +b -RB .③又RB =12QB =12(AB -AQ ) =12⎝ ⎛⎭⎪⎫a -12 AP ,④将④代入③,得2AP =a +b -12⎝ ⎛⎭⎪⎫a -12 AP ,解得AP =27a +47b . 答案:27a +47b课时跟踪检测(二十七) 平面向量的基本定理及坐标表示第Ⅰ组:全员必做题1.(2013·辽宁高考)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45 B.⎝ ⎛⎭⎪⎫45,-35 C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 2.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s 的值是( )A.23B.43 C .-3D .03.(2014·江苏五市联考)已知向量a =⎝ ⎛⎭⎪⎫8,12x ,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为( )A .4B .8C .0D .24.(创新题)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)5.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是( )A .AC =AB +ADB .BD =AD -ABC .AO =12AB +12AD D .AE =53AB +AD6.在△ABC 中,点P 在BC 上,且BP =2OB ,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC =________.7.(2014·九江模拟)P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.8.已知向量OA =(1,-3), OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.9.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?10.已知点O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB . (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.第Ⅱ组:重点选做题1.在△ABC 中,点D 在线段BC 的延长线上,且BC =3CD ,点O 在线段CD 上(与点C 、D 不重合),若AO =x AB +(1-x )AC ,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 2.(2014·湖南五市联合检测)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =⎝ ⎛⎭⎪⎫2,12,n =⎝ ⎛⎭⎪⎫π3,0,点P (x ,y )在y =sin x 的图像上运动.Q 是函数y =f (x )图像上的点,且满足OQ =m ⊗OP +n (其中O 为坐标原点),则函数y =f (x )的值域是________.答 案第Ⅰ组:全员必做题1.选A AB =(3,-4),则与其同方向的单位向量e =AB| AB |=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 2.选D ∵CD =2DB , ∴CD =23CB =23(AB -AC ), ∴CD =23AB -23AC ,又CD =r AB +s AC ,∴r =23,s =-23, ∴r +s =0.故选D.3.选A a -2b =⎝ ⎛⎭⎪⎫8-2x ,12x -2,2a +b =(16+x ,x +1),由已知(a -2b )∥(2a +b ),显然2a +b ≠0, 故有⎝ ⎛⎭⎪⎫8-2x ,12x -2=λ(16+x ,x +1),λ∈R ,∴⎩⎪⎨⎪⎧8-2x =λ(16+x ),12x -2=λ(x +1)⇒x =4(x >0).4.选D ∵a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ), ∴⎩⎨⎧ -x +y =2,x +2y =4,即⎩⎨⎧x =0,y =2. ∴a 在基底m ,n 下的坐标为(0,2).5.选D 由向量减法的三角形法则知,BD =AD -AB ,排除B ;由向量加法的平行四边形法则知,AC =AB +AD ,AO =12AC =12AB +12AD ,排除A 、 C.6.解析:AQ =PQ -BF =(-3,2), ∴AC =2AQ =(-6,4).PC =BF +AC =(-2,7), ∴BD =3PC =(-6,21). 答案:(-6,21)7.解析:P 中,a =(-1+m,1+2m ),Q 中, b =(1+2n ,-2+3n ).则⎩⎨⎧ -1+m =1+2n ,1+2m =-2+3n .得⎩⎨⎧m =-12,n =-7. 此时a =b =(-13,-23). 答案:{}(-13,-23)8.解析:若点A ,B ,C 能构成三角形, 则向量AB ,AC 不共线.∵AB =OB -OA =(2,-1)-(1,-3)=(1,2),AC =OC -OA =(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠19.解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3),因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13. 此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1,a +3b =(7,3),则a +3b =-3(k a -b ), 即此时向量a +3b 与k a -b 方向相反.10.解:(1)OM =t 1OA +t 2AB =t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时, 有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明:当t 1=1时, 由(1)知OM =(4t 2,4t 2+2). ∵AB =OB -OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB ,∴A ,B ,M 三点共线. 第Ⅱ组:重点选做题1.选D 依题意,设BO =λBD ,其中1<λ<43,则有AO =AB +BO =AB +λBD =AB +λ(AC -AB )=(1-λ)AB +λAC .又AO =x AB +(1-x )AC ,且AB ,AC 不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0.2.解析:令Q (c ,d ),由新的运算可得OQ =m ⊗OP +n =2x ,12sin x +π3,0=⎝ ⎛⎭⎪⎫2x +π3,12sin x ,⎩⎪⎨⎪⎧c =2x +π3,d =12sin x ,消去x 得d =12sin ⎝ ⎛⎭⎪⎫12c -π6,所以y =f (x )=12sin ⎝ ⎛⎭⎪⎫12x -π6,易知y =f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12.答案:⎣⎢⎡⎦⎥⎤-12,12课时跟踪检测(二十八) 平面向量的数量积与平面向量应用举例第Ⅰ组:全员必做题1.(2014·武汉调研)已知向量a ,b ,满足|a |=3,|b |=23,且a ⊥(a +b ),则a 与b 的夹角为( )A.π2 B.2π3 C.3π4D.5π62.已知A ,B ,C 为平面上不共线的三点,若向量AB =(1,1),n =(1,-1),且n ·AC =2,则n ·BC 等于( ) A .-2 B .2 C .0 D .2或-23.在平面直角坐标系中,O 为坐标原点,已知向量OA =(2,2),OB =(4,1),在x 轴上取一点P ,使AP ·BP 有最小值,则P 点的坐标是( ) A .(-3,0) B .(2,0) C .(3,0)D .(4,0)4.(2014·昆明质检)在直角三角形ABC 中,∠C =π2,AC =3,取点D 使BD =2DA ,那么CD ·CA =( ) A .3 B .4 C .5D .65.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ·EM 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,2B.⎣⎢⎡⎦⎥⎤0,32C.⎣⎢⎡⎦⎥⎤12,32D.[]0,16.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN 的模为________.8.(2013·山东高考)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |= 2.若AP =λ AB +AC ,且AP ⊥BC ,则实数λ的值为________.9.已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b )?10.已知△ABC 为锐角三角形,向量m =(3cos 2A ,sin A ),n =(1,-sin A ),且m ⊥n .(1)求A 的大小;(2)当AB =p m ,AC =q n (p >0,q >0),且满足p +q =6时,求△ABC 面积的最大值.第Ⅱ组:重点选做题1.(2013·湖南高考)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为( )A.2-1B. 2C.2+1D.2+22.(2013·天津一中月考)在四边形ABCD 中,AB =DC =(1,1),1| BA |BA +1| BC |BC =3| BD |BD ,则四边形ABCD 的面积为________.答 案第Ⅰ组:全员必做题1.选D a ⊥(a +b )⇒a ·(a +b )=a 2+a ·b =|a |2+|a ||b a ,b =0,故a ,b =-32,故所求夹角为5π6.2.选B n ·BD =n ·(BE +AC )=n ·BE +n ·AC =(1,-1)·(-1,-1)+2=0+2=2.3.选C 设P 点坐标为(x,0),则AP =(x -2,-2),BP =(x -4,-1).AP ·BP =(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1.当x =3时,AP ·BP 有最小值1. ∴此时点P 坐标为(3,0),故选C. 4.选D 如图,CD =CB +BD .又∵BD =2DA ,∴CD =CB +23BE =CB +23(CA -CB ), 即CD =23CA +13CB , ∵∠C =π2,∴CA ·CB =0, ∴CD ·CA =⎝ ⎛⎭⎪⎫23 CA +13 CA ·CA=23CA 2+13CB ·CA =6,故选D.5.选C 将正方形放入如图所示的平面直角坐标系中,设E (x,0),0≤x ≤1.又M ⎝ ⎛⎭⎪⎫1,12,C (1,1),所以EM =⎝ ⎛⎭⎪⎫1-x ,12,EC =(1-x ,1),所以EM ·EC =⎝ ⎛⎭⎪⎫1-x ,12·(1-x,1)=(1-x )2+12.因为0≤x ≤1, 所以12≤(1-x )2+12≤32,即EM ·EC 的取值范围是⎣⎢⎡⎦⎥⎤12,32.6.解析:∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |·|b |·cos 45°=22|b |,∴|2a -b |2=4-4×22|b |+|b |2=10.∴|b |=3 2. 答案:3 27.解析:∵a ∥b ,∴x =4.∴b =(4,-2), ∴a +b =(6,-3),b -c =(1,-2-y ). ∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0, 即6-3(-2-y )=0,解得y =-4. ∴向量EN =(-8,8),∴|EN |=8 2. 答案:8 28.解析:BD =AC -AB ,由于AP ⊥BD ,所以AP ·BD =0,即(λAB +AC )·(AC -AB )=-λ2AB +2AC +(λ-1)AB ·AC =-9λ+4+(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12=0,解得λ=712.答案:7129.解:由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16.(1)①∵|a +b |2=a 2+2a ·b +b 2=16+2×(-16)+64=48,∴|a +b |=4 3. ②∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=768, ∴|4a -2b |=16 3. (2)∵(a +2b )⊥(k a -b ),∴(a +2b )·(k a -b )=0, ∴k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0.∴k =-7. 即k =-7时,a +2b 与k a -b 垂直. 10.解:(1)∵m ⊥n ,∴3cos 2A -sin 2A =0. ∴3cos 2A -1+cos 2A =0,∴cos 2A =14. 又∵△ABC 为锐角三角形,∴cos A =12, ∴A =π3.(2)由(1)可得m =⎝ ⎛⎭⎪⎫34,32,n =⎝⎛⎭⎪⎫1,-32.∴|AB |=214p ,|AC |=72q . ∴S △ABC =12|AB |·|AC |·sin A =2132pq . 又∵p +q =6,且p >0,q >0,∴p ·q ≤p +q2,∴p ·q ≤3.∴p ·q ≤9. ∴△ABC 面积的最大值为2132×9=18932. 第Ⅱ组:重点选做题1.选C 建立平面直角坐标系,令向量a ,b 的坐标a =(1,0),b =(0,1),令向量c =(x ,y ),则有(x -1)2+(y -1)2=1,|c |的最大值为圆(x -1)2+(y -1)2=1上的动点到原点的距离的最大值,即圆心(1,1)到原点的距离加圆的半径,即2+1.2.解析:由AB =DC =(1,1),可知四边形ABCD 为平行四边形,且|AB |=|DC |=2,因为1| BA |BE +1| BC |BD =3| BD |BD ,所以可知平行四边形ABCD 的角平分线BD 平分∠ABC ,四边形ABCD为菱形,其边长为2,且对角线BD 长等于边长的3倍,即BD =3×2=6,则CE 2=(2)2-⎝ ⎛⎭⎪⎫622=12,即CE =22,所以三角形BCD 的面积为12×6×22=32,所以四 边形ABCD 的面积为2×32= 3.答案: 3课时跟踪检测(二十九) 数系的扩充与复数的引入第Ⅰ组:全员必做题 1.已知a 是实数,a +i1-i是纯虚数,则a 等于( ) A .-1 B .1 C. 2D .- 22.(2013·郑州质量预测)若复数z =2-i ,则z -+10z =( ) A .2-iB .2+iC .4+2iD .6+3i3.(2014·萍乡模拟)复数(1+2i )(2+i )(1-i )2等于( )A.52B .-52 C.52iD .-52i4.(2014·长沙模拟)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫i ,i 2,1i ,(1+i )2i ,i 是虚数单位,Z 为整数集,则集合Z ∩M 中的元素个数是( )A .3个B .2个C .1个D .0个5.(2013·陕西高考)设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z 1=z 2 B .若z 1=z 2,则z 1=z 2 C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D.若|z1|=|z2|,则z21=z226.(2013·重庆高考)已知复数z=5i1+2i(i是虚数单位),则|z|=________.7.若3+b i1-i=a+b i(a,b为实数,i为虚数单位),则a+b=________.8.已知复数z=1-i,则z2-2zz-1=________.9.计算:(1)(-1+i)(2+i)i3;(2)(1+2i)2+3(1-i)2+i;(3)1-i(1+i)2+1+i(1-i)2;(4)1-3i (3+i)2.10.已知z是复数,z+2i,z2-i均为实数(i为虚数单位),且复数(z+a i)2在复平面上对应的点在第一象限,求实数a的取值范围.第Ⅱ组:重点选做题1.定义:若z2=a+b i(a,b∈R,i为虚数单位),则称复数z是复数a+b i 的平方根.根据定义,则复数-3+4i的平方根是()A.1-2i或-1+2i B.1+2i或-1-2iC.-7-24i D.7+24i2.已知复数z=x+y i,且|z-2|=3,则yx的最大值为________.答 案第Ⅰ组:全员必做题 1.选B a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -1+(a +1)i 2,当a +i 1-i为纯虚数时,a -12=0,即a =1.2.选D ∵z =2-i ,∴z -+10z =(2+i)+102-i =(2+i)+10(2+i )(2-i )(2+i )=6+3i.3.选B (1+2i )(2+i )(1-i )2=2+4i +i +2i 2-2i =5i -2i=-52. 4.选B 由已知得M ={i ,-1,-i,2},Z 为整数集,∴Z ∩M ={-1,2},即集合Z ∩M 中有2个元素.5.选D 对于A ,|z 1-z 2|=0⇒z 1=z 2⇒1z =2z ,是真命题;对于B ,C 易判断是真命题;对于D ,若z 1=2,z 2=1+ 3 i ,则|z 1|=|z 2|,但z 21=4,z 22=-2+23i ,是假命题.6.解析:5i 1+2i =5i (1-2i )(1+2i )(1-2i )=2+i ,所以|z |= 5. 答案: 57.解析:由3+b i 1-i =(3+b i )(1+i )(1-i )(1+i )=3-b +(3+b )i 2=a +b i ,得a =3-b 2,b =3+b 2, 解得b =3,a =0,所以a +b =3. 答案:38.解析:z 2-2z z -1=(z -1)2-1z -1=z -1-1z -1=(-i)-1-i =-i -i -i·i =-2i.答案:-2i 9.解:(1)(-1+i )(2+i )i 3=-3+i-i =-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i=i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i =(-i )(3-i )4=-14-34i. 10.解:设z =x +y i(x ,y ∈R ), 则z +2i =x +(y +2)i ,由题意得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i. 由题意得x =4,∴z =4-2i. ∴(z +a i)2=(12+4a -a 2)+8(a -2)i.由于(z +a i)2在复平面上对应的点在第一象限,∴⎩⎨⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6.∴实数a 的取值范围是(2,6). 第Ⅱ组:重点选做题1.选B 设(x +y i)2=-3+4i ,则⎩⎨⎧x 2-y 2=-3,xy =2,解得⎩⎨⎧ x =1,y =2或⎩⎨⎧x =-1,y =-2.2.解析:∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3. 由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 答案: 3。