注意:(1)如果两个复数都是实数,则可以比较大小;否则,不能 比较大小.
(2)复数相等的条件是把虚数问题转化为实数问题的重要依据, 是虚数问题实数化这一重要数学思想方法的体现.
2.复平面的概念 建立直角坐标系来表示复数的平面,叫做复平面.x轴叫做实
轴,y轴叫做虚轴.实轴上的点都表示实数;除原点外,虚轴上 的点都表示纯虚数;各象限内的点都表示虚数. 复数集C和复平面内所有的点组成的集合是一一对应的,复数 集C与复平面内所有以原点O为起点的向量组成的集合也 是一一对应的.
(1 sin cos )2 (cos sin )2
2 sin2 cos2 2 1 sin2 2 .
4
故|
z1
z2
|的最大值为 3 ,最小值为 2
2.
技法二
数形结合思想
【典例2】 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值 为( )
A.1 B. 2 C.2 D. 5
答案:C
2.(2010·陕西)复数
z 在1复i i平面上对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析 :因为z i i(1 i) 1 i 1 1 i,所以其对 1 i (1 i)(1 i) 11 2 2
应的点
1 2
,
1 2
位于第一象限, 故选A.
答案:A
3.(2010·湖北)若i为虚数单位,图中复平面内点Z表示复数z,则
【典例1】 已知复数z=m2(1+i)-m(3+i)-6i,则当m为何实数 时,复数z是(1)实数?(2)虚数?(3)纯虚数?(4)零?(5)对应点 在第三象限?